Ideals in Function Fields¶
AUTHORS:
- William Stein (2010): initial version
- Maarten Derickx (2011-09-14): fixed ideal_with_gens_over_base()
EXAMPLES:
Ideals in the maximal order of a rational function field:
sage: K.<x> = FunctionField(QQ)
sage: O = K.maximal_order()
sage: I = O.ideal(x^3+1); I
Ideal (x^3 + 1) of Maximal order in Rational function field in x over Rational Field
sage: I^2
Ideal (x^6 + 2*x^3 + 1) of Maximal order in Rational function field in x over Rational Field
sage: ~I
Ideal (1/(x^3 + 1)) of Maximal order in Rational function field in x over Rational Field
sage: ~I * I
Ideal (1) of Maximal order in Rational function field in x over Rational Field
Ideals in the equation order of an extension of a rational function field:
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^2-x^3-1)
sage: O = L.equation_order()
sage: I = O.ideal(y); I
Ideal (x^3 + 1, -y) of Order in Function field in y defined by y^2 - x^3 - 1
sage: I^2
Ideal (x^3 + 1, (-x^3 - 1)*y) of Order in Function field in y defined by y^2 - x^3 - 1
sage: ~I
Ideal (-1, (1/(x^3 + 1))*y) of Order in Function field in y defined by y^2 - x^3 - 1
sage: ~I * I
Ideal (1, y) of Order in Function field in y defined by y^2 - x^3 - 1
sage: I.intersection(~I)
Ideal (x^3 + 1, -y) of Order in Function field in y defined by y^2 - x^3 - 1
-
class
sage.rings.function_field.function_field_ideal.FunctionFieldIdeal(ring, gens, coerce=True)¶ Bases:
sage.rings.ideal.Ideal_genericA fractional ideal of a function field.
EXAMPLES:
sage: K.<x> = FunctionField(GF(7)) sage: O = K.maximal_order() sage: I = O.ideal(x^3+1) sage: isinstance(I, sage.rings.function_field.function_field_ideal.FunctionFieldIdeal) True
-
class
sage.rings.function_field.function_field_ideal.FunctionFieldIdeal_module(ring, module)¶ Bases:
sage.rings.function_field.function_field_ideal.FunctionFieldIdealA fractional ideal specified by a finitely generated module over the integers of the base field.
EXAMPLES:
An ideal in an extension of a rational function field:
sage: K.<x> = FunctionField(QQ); R.<y> = K[] sage: L.<y> = K.extension(y^2 - x^3 - 1) sage: O = L.equation_order() sage: I = O.ideal(y) sage: I Ideal (x^3 + 1, -y) of Order in Function field in y defined by y^2 - x^3 - 1 sage: I^2 Ideal (x^3 + 1, (-x^3 - 1)*y) of Order in Function field in y defined by y^2 - x^3 - 1
-
intersection(other)¶ Return the intersection of the ideals self and
other.EXAMPLES:
sage: K.<x> = FunctionField(GF(7)); R.<y> = K[] sage: L.<y> = K.extension(y^2 - x^3 - 1) sage: O = L.equation_order() sage: I = O.ideal(y^3); J = O.ideal(y^2) sage: Z = I.intersection(J); Z Ideal (x^6 + 2*x^3 + 1, (6*x^3 + 6)*y) of Order in Function field in y defined by y^2 + 6*x^3 + 6 sage: y^2 in Z False sage: y^3 in Z True
-
module()¶ Return module over the maximal order of the base field that underlies self.
The formation of this module is compatible with the vector space corresponding to the function field.
OUTPUT:
- a module over the maximal order of the base field of self
EXAMPLES:
sage: K.<x> = FunctionField(GF(7)) sage: O = K.maximal_order(); O Maximal order in Rational function field in x over Finite Field of size 7 sage: K.polynomial_ring() Univariate Polynomial Ring in x over Rational function field in x over Finite Field of size 7 sage: I = O.ideal_with_gens_over_base([x^2 + 1, x*(x^2+1)]) sage: I.gens() (x^2 + 1,) sage: I.module() Free module of degree 1 and rank 1 over Maximal order in Rational function field in x over Finite Field of size 7 User basis matrix: [x^2 + 1] sage: V, from_V, to_V = K.vector_space(); V Vector space of dimension 1 over Rational function field in x over Finite Field of size 7 sage: I.module().is_submodule(V) True
-
-
sage.rings.function_field.function_field_ideal.ideal_with_gens(R, gens)¶ Return fractional ideal in the order
Rwith generatorsgensoverR.EXAMPLES:
sage: K.<x> = FunctionField(QQ); R.<y> = K[] sage: L.<y> = K.extension(y^2 - x^3 - 1) sage: O = L.equation_order() sage: sage.rings.function_field.function_field_ideal.ideal_with_gens(O, [y]) Ideal (x^3 + 1, -y) of Order in Function field in y defined by y^2 - x^3 - 1
-
sage.rings.function_field.function_field_ideal.ideal_with_gens_over_base(R, gens)¶ Return fractional ideal in the order
Rwith generatorsgensover the maximal order of the base field.EXAMPLES:
sage: K.<x> = FunctionField(QQ); R.<y> = K[] sage: L.<y> = K.extension(y^2 - x^3 - 1) sage: O = L.equation_order() sage: sage.rings.function_field.function_field_ideal.ideal_with_gens_over_base(O, [x^3+1,-y]) Ideal (x^3 + 1, -y) of Order in Function field in y defined by y^2 - x^3 - 1