Fast dense graphs¶
For an overview of graph data structures in sage, see
overview
.
Usage Introduction¶
sage: from sage.graphs.base.dense_graph import DenseGraph
Dense graphs are initialized as follows:
sage: D = DenseGraph(nverts = 10, extra_vertices = 10)
This example initializes a dense graph with room for twenty vertices, the first
ten of which are in the graph. In general, the first nverts
are “active.”
For example, see that 9 is already in the graph:
sage: D.verts()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
sage: D.add_vertex(9)
9
sage: D.verts()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
But 10 is not, until we add it:
sage: D.add_vertex(10)
10
sage: D.verts()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
You can begin working right away as follows:
sage: D.add_arc(0,1)
sage: D.add_arc(1,2)
sage: D.add_arc(1,0)
sage: D.has_arc(7,3)
False
sage: D.has_arc(0,1)
True
sage: D.in_neighbors(1)
[0]
sage: D.out_neighbors(1)
[0, 2]
sage: D.del_all_arcs(0,1)
sage: D.has_arc(0,1)
False
sage: D.has_arc(1,2)
True
sage: D.del_vertex(7)
sage: D.has_arc(7,3)
False
Dense graphs do not support multiple or labeled edges.
sage: T = DenseGraph(nverts = 3, extra_vertices = 2)
sage: T.add_arc(0,1)
sage: T.add_arc(1,2)
sage: T.add_arc(2,0)
sage: T.has_arc(0,1)
True
sage: for _ in range(10): D.add_arc(5,4)
sage: D.has_arc(5,4)
True
Dense graphs are by their nature directed. As of this writing, you need to do operations in pairs to treat the undirected case (or use a backend or a Sage graph):
sage: T.has_arc(1,0)
False
The curious developer is encouraged to check out the unsafe
functions,
which do not check input but which run in pure C.
Underlying Data Structure¶
The class DenseGraph
contains the following variables which are inherited
from CGraph
(for explanation, refer to the documentation there):
cdef int num_verts
cdef int num_arcs
cdef int *in_degrees
cdef int *out_degrees
cdef bitset_t active_vertices
It also contains the following variables:
cdef int num_longs
cdef unsigned long *edges
The array edges
is a series of bits which are turned on or off, and due to
this, dense graphs only support graphs without edge labels and with no multiple
edges. num_longs
stores the length of the edges
array. Recall that this
length reflects the number of available vertices, not the number of “actual”
vertices. For more details about this, refer to the documentation for
CGraph
.
-
class
sage.graphs.base.dense_graph.
DenseGraph
¶ Bases:
sage.graphs.base.c_graph.CGraph
Compiled dense graphs.
sage: from sage.graphs.base.dense_graph import DenseGraph
Dense graphs are initialized as follows:
sage: D = DenseGraph(nverts = 10, extra_vertices = 10)
INPUT:
nverts
- non-negative integer, the number of vertices.extra_vertices
- non-negative integer (default: 0), how many extra- vertices to allocate.
verts
- optional list of vertices to addarcs
- optional list of arcs to add
The first
nverts
are created as vertices of the graph, and the nextextra_vertices
can be freely added without reallocation. See top level documentation for more details. The inputverts
andarcs
are mainly for use in pickling.-
add_arc
(u, v)¶ Adds arc
(u, v)
to the graph.INPUT:
u, v
– non-negative integers, must be in self
EXAMPLES:
sage: from sage.graphs.base.dense_graph import DenseGraph sage: G = DenseGraph(5) sage: G.add_arc(0,1) sage: G.add_arc(4,7) Traceback (most recent call last): ... LookupError: Vertex (7) is not a vertex of the graph. sage: G.has_arc(1,0) False sage: G.has_arc(0,1) True
-
complement
()¶ Replaces the graph with its complement
Note
Assumes that the graph has no loop.
EXAMPLES:
sage: from sage.graphs.base.dense_graph import DenseGraph sage: G = DenseGraph(5) sage: G.add_arc(0,1) sage: G.has_arc(0,1) True sage: G.complement() sage: G.has_arc(0,1) False
-
del_all_arcs
(u, v)¶ Deletes the arc from
u
tov
.- INPUT:
u, v
- integers
NOTE: The naming of this function is for consistency with
SparseGraph
. Of course, there can be at most one arc for aDenseGraph
.EXAMPLES:
sage: from sage.graphs.base.dense_graph import DenseGraph sage: G = DenseGraph(5) sage: G.add_arc(0,1) sage: G.has_arc(0,1) True sage: G.del_all_arcs(0,1) sage: G.has_arc(0,1) False
-
has_arc
(u, v)¶ Checks whether arc
(u, v)
is in the graph.- INPUT:
- u, v – integers
EXAMPLES:
sage: from sage.graphs.base.dense_graph import DenseGraph sage: G = DenseGraph(5) sage: G.add_arc(0,1) sage: G.has_arc(1,0) False sage: G.has_arc(0,1) True
-
in_neighbors
(v)¶ Gives all
u
such that(u, v)
is an arc of the graph.- INPUT:
v
- integer
EXAMPLES:
sage: from sage.graphs.base.dense_graph import DenseGraph sage: G = DenseGraph(5) sage: G.add_arc(0,1) sage: G.add_arc(3,1) sage: G.add_arc(1,3) sage: G.in_neighbors(1) [0, 3] sage: G.in_neighbors(3) [1]
-
out_neighbors
(u)¶ Gives all
v
such that(u, v)
is an arc of the graph.- INPUT:
u
- integer
EXAMPLES:
sage: from sage.graphs.base.dense_graph import DenseGraph sage: G = DenseGraph(5) sage: G.add_arc(0,1) sage: G.add_arc(1,2) sage: G.add_arc(1,3) sage: G.out_neighbors(0) [1] sage: G.out_neighbors(1) [2, 3]
-
realloc
(total_verts)¶ Reallocate the number of vertices to use, without actually adding any.
INPUT:
total
- integer, the total size to make the array
Returns -1 and fails if reallocation would destroy any active vertices.
EXAMPLES:
sage: from sage.graphs.base.dense_graph import DenseGraph sage: D = DenseGraph(nverts=4, extra_vertices=4) sage: D.current_allocation() 8 sage: D.add_vertex(6) 6 sage: D.current_allocation() 8 sage: D.add_vertex(10) 10 sage: D.current_allocation() 16 sage: D.add_vertex(40) Traceback (most recent call last): ... RuntimeError: Requested vertex is past twice the allocated range: use realloc. sage: D.realloc(50) sage: D.add_vertex(40) 40 sage: D.current_allocation() 50 sage: D.realloc(30) -1 sage: D.current_allocation() 50 sage: D.del_vertex(40) sage: D.realloc(30) sage: D.current_allocation() 30
-
class
sage.graphs.base.dense_graph.
DenseGraphBackend
¶ Bases:
sage.graphs.base.c_graph.CGraphBackend
Backend for Sage graphs using DenseGraphs.
sage: from sage.graphs.base.dense_graph import DenseGraphBackend
This class is only intended for use by the Sage Graph and DiGraph class. If you are interested in using a DenseGraph, you probably want to do something like the following example, which creates a Sage Graph instance which wraps a DenseGraph object:
sage: G = Graph(30, implementation="c_graph", sparse=False) sage: G.add_edges([(0,1), (0,3), (4,5), (9, 23)]) sage: G.edges(labels=False) [(0, 1), (0, 3), (4, 5), (9, 23)]
Note that Sage graphs using the backend are more flexible than DenseGraphs themselves. This is because DenseGraphs (by design) do not deal with Python objects:
sage: G.add_vertex((0,1,2)) sage: G.vertices() [0, ... 29, (0, 1, 2)] sage: from sage.graphs.base.dense_graph import DenseGraph sage: DG = DenseGraph(30) sage: DG.add_vertex((0,1,2)) Traceback (most recent call last): ... TypeError: an integer is required
-
add_edge
(u, v, l, directed)¶ Adds the edge
(u,v)
to self.INPUT:
u,v
- the vertices of the edgel
- the edge label (ignored)directed
- if False, also add(v,u)
NOTE: The input
l
is for consistency with other backends.EXAMPLES:
sage: D = sage.graphs.base.dense_graph.DenseGraphBackend(9) sage: D.add_edge(0,1,None,False) sage: list(D.iterator_edges(range(9), True)) [(0, 1, None)]
-
add_edges
(edges, directed)¶ Add edges from a list.
INPUT:
edges
- the edges to be added - can either be of the form(u,v)
or(u,v,l)
directed
- if False, add(v,u)
as well as(u,v)
EXAMPLES:
sage: D = sage.graphs.base.dense_graph.DenseGraphBackend(9) sage: D.add_edges([(0,1), (2,3), (4,5), (5,6)], False) sage: list(D.iterator_edges(range(9), True)) [(0, 1, None), (2, 3, None), (4, 5, None), (5, 6, None)]
-
del_edge
(u, v, l, directed)¶ Delete edge
(u,v)
.INPUT:
u,v
- the vertices of the edgel
- the edge label (ignored)directed
- if False, also delete(v,u,l)
NOTE: The input
l
is for consistency with other backends.EXAMPLES:
sage: D = sage.graphs.base.dense_graph.DenseGraphBackend(9) sage: D.add_edges([(0,1), (2,3), (4,5), (5,6)], False) sage: list(D.iterator_edges(range(9), True)) [(0, 1, None), (2, 3, None), (4, 5, None), (5, 6, None)] sage: D.del_edge(0,1,None,True) sage: list(D.iterator_out_edges(range(9), True)) [(1, 0, None), (2, 3, None), (3, 2, None), (4, 5, None), (5, 4, None), (5, 6, None), (6, 5, None)]
-
get_edge_label
(u, v)¶ Returns the edge label for
(u,v)
. Always None, since dense graphs do not support edge labels.INPUT:
u,v
- the vertices of the edge
EXAMPLES:
sage: D = sage.graphs.base.dense_graph.DenseGraphBackend(9) sage: D.add_edges([(0,1), (2,3,7), (4,5), (5,6)], False) sage: list(D.iterator_edges(range(9), True)) [(0, 1, None), (2, 3, None), (4, 5, None), (5, 6, None)] sage: D.del_edge(0,1,None,True) sage: list(D.iterator_out_edges(range(9), True)) [(1, 0, None), (2, 3, None), (3, 2, None), (4, 5, None), (5, 4, None), (5, 6, None), (6, 5, None)] sage: D.get_edge_label(2,3) sage: D.get_edge_label(2,4) Traceback (most recent call last): ... LookupError: (2, 4) is not an edge of the graph.
-
has_edge
(u, v, l)¶ Returns whether this graph has edge
(u,v)
.NOTE: The input
l
is for consistency with other backends.INPUT:
u,v
- the vertices of the edgel
- the edge label (ignored)
EXAMPLES:
sage: D = sage.graphs.base.dense_graph.DenseGraphBackend(9) sage: D.add_edges([(0,1), (2,3), (4,5), (5,6)], False) sage: D.has_edge(0,1,None) True
-
iterator_edges
(vertices, labels)¶ Iterate over the edges incident to a sequence of vertices. Edges are assumed to be undirected.
- INPUT:
vertices
- a list of vertex labelslabels
- boolean, whether to return labels as well
EXAMPLES:
sage: G = sage.graphs.base.dense_graph.DenseGraphBackend(9) sage: G.add_edge(1,2,None,False) sage: list(G.iterator_edges(range(9), False)) [(1, 2)] sage: list(G.iterator_edges(range(9), True)) [(1, 2, None)]
-
iterator_in_edges
(vertices, labels)¶ Iterate over the incoming edges incident to a sequence of vertices.
- INPUT:
vertices
- a list of vertex labelslabels
- boolean, whether to return labels as well
EXAMPLES:
sage: G = sage.graphs.base.dense_graph.DenseGraphBackend(9) sage: G.add_edge(1,2,None,True) sage: list(G.iterator_in_edges([1], False)) [] sage: list(G.iterator_in_edges([2], False)) [(1, 2)] sage: list(G.iterator_in_edges([2], True)) [(1, 2, None)]
-
iterator_out_edges
(vertices, labels)¶ Iterate over the outbound edges incident to a sequence of vertices.
- INPUT:
vertices
- a list of vertex labelslabels
- boolean, whether to return labels as well
EXAMPLES:
sage: G = sage.graphs.base.dense_graph.DenseGraphBackend(9) sage: G.add_edge(1,2,None,True) sage: list(G.iterator_out_edges([2], False)) [] sage: list(G.iterator_out_edges([1], False)) [(1, 2)] sage: list(G.iterator_out_edges([1], True)) [(1, 2, None)]
-
multiple_edges
(new)¶ Get/set whether or not
self
allows multiple edges.INPUT:
new
- boolean (to set) orNone
(to get)
EXAMPLES:
sage: import sage.graphs.base.dense_graph sage: G = sage.graphs.base.dense_graph.DenseGraphBackend(9) sage: G.multiple_edges(True) Traceback (most recent call last): ... NotImplementedError: Dense graphs do not support multiple edges. sage: G.multiple_edges(None) False
-
set_edge_label
(u, v, l, directed)¶ Label the edge
(u,v)
byl
.INPUT:
u,v
- the vertices of the edgel
- the edge labeldirected
- if False, also set(v,u)
with labell
EXAMPLES:
sage: import sage.graphs.base.dense_graph sage: G = sage.graphs.base.dense_graph.DenseGraphBackend(9) sage: G.set_edge_label(1,2,'a',True) Traceback (most recent call last): ... NotImplementedError: Dense graphs do not support edge labels.
-