The space of \(p\)-adic weights¶
A \(p\)-adic weight is a continuous character \(\ZZ_p^\times \to \CC_p^\times\). These are the \(\CC_p\)-points of a rigid space over \(\QQ_p\), which is isomorphic to a disjoint union of copies (indexed by \((\ZZ/p\ZZ)^\times\)) of the open unit \(p\)-adic disc.
Sage supports both “classical points”, which are determined by the data of a Dirichlet character modulo \(p^m\) for some \(m\) and an integer \(k\) (corresponding to the character \(z \mapsto z^k \chi(z)\)) and “non-classical points” which are determined by the data of an element of \((\ZZ/p\ZZ)^\times\) and an element \(w \in \CC_p\) with \(|w - 1| < 1\).
EXAMPLES:
sage: W = pAdicWeightSpace(17)
sage: W
Space of 17-adic weight-characters defined over '17-adic Field with capped relative precision 20'
sage: R.<x> = QQ[]
sage: L = Qp(17).extension(x^2 - 17, names='a'); L.rename('L')
sage: W.base_extend(L)
Space of 17-adic weight-characters defined over 'L'
We create a simple element of \(\mathcal{W}\): the algebraic character, \(x \mapsto x^6\):
sage: kappa = W(6)
sage: kappa(5)
15625
sage: kappa(5) == 5^6
True
A locally algebraic character, \(x \mapsto x^6 \chi(x)\) for \(\chi\) a Dirichlet character mod \(p\):
sage: kappa2 = W(6, DirichletGroup(17, Qp(17)).0^8)
sage: kappa2(5) == -5^6
True
sage: kappa2(13) == 13^6
True
A non-locally-algebraic character, sending the generator 18 of \(1 + 17 \ZZ_{17}\) to 35 and acting as \(\mu \mapsto \mu^4\) on the group of 16th roots of unity:
sage: kappa3 = W(35 + O(17^20), 4, algebraic=False)
sage: kappa3(2)
16 + 8*17 + ... + O(17^20)
AUTHORS:
- David Loeffler (2008-9)
-
class
sage.modular.overconvergent.weightspace.
AlgebraicWeight
(parent, k, chi=None)¶ Bases:
sage.modular.overconvergent.weightspace.WeightCharacter
A point in weight space corresponding to a locally algebraic character, of the form \(x \mapsto \chi(x) x^k\) where \(k\) is an integer and \(\chi\) is a Dirichlet character modulo \(p^n\) for some \(n\).
-
Lvalue
()¶ Return the value of the p-adic L-function of \(\QQ\) evaluated at this weight-character. If the character is \(x \mapsto x^k \chi(x)\) where \(k > 0\) and \(\chi\) has conductor a power of \(p\), this is an element of the number field generated by the values of \(\chi\), equal to the value of the complex L-function \(L(1-k, \chi)\). If \(\chi\) is trivial, it is equal to \((1 - p^{k-1})\zeta(1-k)\).
At present this is not implemented in any other cases, except the trivial character (for which the value is \(\infty\)).
TODO: Implement this more generally using the Amice transform machinery in sage/schemes/elliptic_curves/padic_lseries.py, which should clearly be factored out into a separate class.
EXAMPLES:
sage: pAdicWeightSpace(7)(4).Lvalue() == (1 - 7^3)*zeta__exact(-3) True sage: pAdicWeightSpace(7)(5, DirichletGroup(7, Qp(7)).0^4).Lvalue() 0 sage: pAdicWeightSpace(7)(6, DirichletGroup(7, Qp(7)).0^4).Lvalue() 1 + 2*7 + 7^2 + 3*7^3 + 3*7^5 + 4*7^6 + 2*7^7 + 5*7^8 + 2*7^9 + 3*7^10 + 6*7^11 + 2*7^12 + 3*7^13 + 5*7^14 + 6*7^15 + 5*7^16 + 3*7^17 + 6*7^18 + O(7^19)
-
chi
()¶ If this character is \(x \mapsto x^k \chi(x)\) for an integer \(k\) and a Dirichlet character \(\chi\), return \(\chi\).
EXAMPLES:
sage: kappa = pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0^14) sage: kappa.chi() Dirichlet character modulo 29 of conductor 29 mapping 2 |--> 28 + 28*29 + 28*29^2 + ... + O(29^20)
-
k
()¶ If this character is \(x \mapsto x^k \chi(x)\) for an integer \(k\) and a Dirichlet character \(\chi\), return \(k\).
EXAMPLES:
sage: kappa = pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0^14) sage: kappa.k() 13
-
teichmuller_type
()¶ Return the Teichmuller type of this weight-character \(\kappa\), which is the unique \(t \in \ZZ/(p-1)\ZZ\) such that \(\kappa(\mu) = \mu^t\) for mu a \((p-1)\)-st root of 1.
For \(p = 2\) this doesn’t make sense, but we still want the Teichmuller type to correspond to the index of the component of weight space in which \(\kappa\) lies, so we return 1 if \(\kappa\) is odd and 0 otherwise.
EXAMPLES:
sage: pAdicWeightSpace(11)(2, DirichletGroup(11,QQ).0).teichmuller_type() 7 sage: pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0).teichmuller_type() 14 sage: pAdicWeightSpace(2)(3, DirichletGroup(4,QQ).0).teichmuller_type() 0
-
-
class
sage.modular.overconvergent.weightspace.
ArbitraryWeight
(parent, w, t)¶ Bases:
sage.modular.overconvergent.weightspace.WeightCharacter
Create the element of p-adic weight space in the given component mapping 1 + p to w. Here w must be an element of a p-adic field, with finite precision.
EXAMPLES:
sage: pAdicWeightSpace(17)(1 + 17^2 + O(17^3), 11, False) [1 + 17^2 + O(17^3), 11]
-
teichmuller_type
()¶ Return the Teichmuller type of this weight-character \(\kappa\), which is the unique \(t \in \ZZ/(p-1)\ZZ\) such that \(\kappa(\mu) = \mu^t\) for mu a \((p-1)\)-st root of 1.
For \(p = 2\) this doesn’t make sense, but we still want the Teichmuller type to correspond to the index of the component of weight space in which \(\kappa\) lies, so we return 1 if \(\kappa\) is odd and 0 otherwise.
EXAMPLES:
sage: pAdicWeightSpace(17)(1 + 3*17 + 2*17^2 + O(17^3), 8, False).teichmuller_type() 8 sage: pAdicWeightSpace(2)(1 + 2 + O(2^2), 1, False).teichmuller_type() 1
-
-
class
sage.modular.overconvergent.weightspace.
WeightCharacter
(parent)¶ Bases:
sage.structure.element.Element
Abstract base class representing an element of the p-adic weight space \(Hom(\ZZ_p^\times, \CC_p^\times)\).
-
Lvalue
()¶ Return the value of the p-adic L-function of \(\QQ\), which can be regarded as a rigid-analytic function on weight space, evaluated at this character.
EXAMPLES:
sage: W = pAdicWeightSpace(11) sage: sage.modular.overconvergent.weightspace.WeightCharacter(W).Lvalue() Traceback (most recent call last): ... NotImplementedError
-
base_extend
(R)¶ Extend scalars to the base ring R (which must have a canonical map from the current base ring)
EXAMPLES:
sage: w = pAdicWeightSpace(17, QQ)(3) sage: w.base_extend(Qp(17)) 3
-
is_even
()¶ Return True if this weight-character sends -1 to +1.
EXAMPLES:
sage: pAdicWeightSpace(17)(0).is_even() True sage: pAdicWeightSpace(17)(11).is_even() False sage: pAdicWeightSpace(17)(1 + 17 + O(17^20), 3, False).is_even() False sage: pAdicWeightSpace(17)(1 + 17 + O(17^20), 4, False).is_even() True
-
is_trivial
()¶ Return True if and only if this is the trivial character.
EXAMPLES:
sage: pAdicWeightSpace(11)(2).is_trivial() False sage: pAdicWeightSpace(11)(2, DirichletGroup(11, QQ).0).is_trivial() False sage: pAdicWeightSpace(11)(0).is_trivial() True
-
one_over_Lvalue
()¶ Return the reciprocal of the p-adic L-function evaluated at this weight-character.
If the weight-character is odd, then the L-function is zero, so an error will be raised.
EXAMPLES:
sage: pAdicWeightSpace(11)(4).one_over_Lvalue() -12/133 sage: pAdicWeightSpace(11)(3, DirichletGroup(11, QQ).0).one_over_Lvalue() -1/6 sage: pAdicWeightSpace(11)(3).one_over_Lvalue() Traceback (most recent call last): ... ZeroDivisionError: rational division by zero sage: pAdicWeightSpace(11)(0).one_over_Lvalue() 0 sage: type(_) <type 'sage.rings.integer.Integer'>
-
pAdicEisensteinSeries
(ring, prec=20)¶ Calculate the q-expansion of the p-adic Eisenstein series of given weight-character, normalised so the constant term is 1.
EXAMPLES:
sage: kappa = pAdicWeightSpace(3)(3, DirichletGroup(3,QQ).0) sage: kappa.pAdicEisensteinSeries(QQ[['q']], 20) 1 - 9*q + 27*q^2 - 9*q^3 - 117*q^4 + 216*q^5 + 27*q^6 - 450*q^7 + 459*q^8 - 9*q^9 - 648*q^10 + 1080*q^11 - 117*q^12 - 1530*q^13 + 1350*q^14 + 216*q^15 - 1845*q^16 + 2592*q^17 + 27*q^18 - 3258*q^19 + O(q^20)
-
values_on_gens
()¶ If \(\kappa\) is this character, calculate the values \((\kappa(r), t)\) where \(r\) is \(1 + p\) (or 5 if \(p = 2\)) and \(t\) is the unique element of \(\ZZ/(p-1)\ZZ\) such that \(\kappa(\mu) = \mu^t\) for \(\mu\) a (p-1)st root of unity. (If \(p = 2\), we take \(t\) to be 0 or 1 according to whether \(\kappa\) is odd or even.) These two values uniquely determine the character \(\kappa\).
EXAMPLES:
sage: W=pAdicWeightSpace(11); W(2).values_on_gens() (1 + 2*11 + 11^2 + O(11^20), 2) sage: W(2, DirichletGroup(11, QQ).0).values_on_gens() (1 + 2*11 + 11^2 + O(11^20), 7) sage: W(1 + 2*11 + O(11^5), 4, algebraic = False).values_on_gens() (1 + 2*11 + O(11^5), 4)
-
-
class
sage.modular.overconvergent.weightspace.
WeightSpace_class
(p, base_ring)¶ Bases:
sage.structure.parent_base.ParentWithBase
The space of \(p\)-adic weight-characters \(\mathcal{W} = {\rm Hom}(\ZZ_p^\times, \CC_p^\times)\). This isomorphic to a disjoint union of \((p-1)\) open discs of radius 1 (or 2 such discs if \(p = 2\)), with the parameter on the open disc corresponding to the image of \(1 + p\) (or 5 if \(p = 2\))
-
base_extend
(R)¶ Extend scalars to the ring R. There must be a canonical coercion map from the present base ring to R.
EXAMPLES:
sage: W = pAdicWeightSpace(3, QQ) sage: W.base_extend(Qp(3)) Space of 3-adic weight-characters defined over '3-adic Field with capped relative precision 20' sage: W.base_extend(IntegerModRing(12)) Traceback (most recent call last): ... TypeError: No coercion map from 'Rational Field' to 'Ring of integers modulo 12' is defined
-
prime
()¶ Return the prime \(p\) such that this is a \(p\)-adic weight space.
EXAMPLES:
sage: pAdicWeightSpace(17).prime() 17
-
zero
()¶ Return the zero of this weight space.
EXAMPLES:
sage: W = pAdicWeightSpace(17) sage: W.zero() 0
-
zero_element
(*args, **kwds)¶ Deprecated: Use
zero()
instead. See trac ticket #17694 for details.
-
-
sage.modular.overconvergent.weightspace.
WeightSpace_constructor
(p, base_ring=None)¶ Construct the p-adic weight space for the given prime p. A \(p\)-adic weight is a continuous character \(\ZZ_p^\times \to \CC_p^\times\). These are the \(\CC_p\)-points of a rigid space over \(\QQ_p\), which is isomorphic to a disjoint union of copies (indexed by \((\ZZ/p\ZZ)^\times\)) of the open unit \(p\)-adic disc.
Note that the “base ring” of a \(p\)-adic weight is the smallest ring containing the image of \(\ZZ\); in particular, although the default base ring is \(\QQ_p\), base ring \(\QQ\) will also work.
EXAMPLES:
sage: pAdicWeightSpace(3) # indirect doctest Space of 3-adic weight-characters defined over '3-adic Field with capped relative precision 20' sage: pAdicWeightSpace(3, QQ) Space of 3-adic weight-characters defined over 'Rational Field' sage: pAdicWeightSpace(10) Traceback (most recent call last): ... ValueError: p must be prime