Contributing

This project is a community effort, and everyone is welcome to contribute.

The project is hosted on https://github.com/scikit-learn/scikit-learn

Scikit-learn is somewhat selective when it comes to adding new algorithms, and the best way to contribute and to help the project is to start working on known issues. See Issues for New Contributors to get started.

Our community, our values

We are a community based on openness and friendly, didactic, discussions.

We aspire to treat everybody equally, and value their contributions.

Decisions are made based on technical merit and consensus.

Code is not the only way to help the project. Reviewing pull requests, answering questions to help others on mailing lists or issues, organizing and teaching tutorials, working on the website, improving the documentation, are all priceless contributions.

We abide by the principles of openness, respect, and consideration of others of the Python Software Foundation: https://www.python.org/psf/codeofconduct/


In case you experience issues using this package, do not hesitate to submit a ticket to the GitHub issue tracker. You are also welcome to post feature requests or pull requests.

Ways to contribute

There are many ways to contribute to scikit-learn, with the most common ones being contribution of code or documentation to the project. Improving the documentation is no less important than improving the library itself. If you find a typo in the documentation, or have made improvements, do not hesitate to send an email to the mailing list or preferably submit a GitHub pull request. Full documentation can be found under the doc/ directory.

But there are many other ways to help. In particular answering queries on the issue tracker, investigating bugs, and reviewing other developers’ pull requests are very valuable contributions that decrease the burden on the project maintainers.

Another way to contribute is to report issues you’re facing, and give a “thumbs up” on issues that others reported and that are relevant to you. It also helps us if you spread the word: reference the project from your blog and articles, link to it from your website, or simply star to say “I use it”:

Star

Contributing to related projects

Scikit-learn thrives in an ecosystem of several related projects, which also may have relevant issues to work on, including smaller projects such as:

and larger projects:

Look for issues marked “help wanted” or similar. Helping these projects may help Scikit-learn too. See also Related Projects.

Submitting a bug report or a feature request

In case you experience issues using this package, do not hesitate to submit a ticket to the Bug Tracker. You are also welcome to post feature requests or pull requests.

It is recommended to check that your issue complies with the following rules before submitting:

How to make a good bug report

When you submit an issue to Github, please do your best to follow these guidelines! This will make it a lot easier to provide you with good feedback:

  • The ideal bug report contains a short reproducible code snippet, this way anyone can try to reproduce the bug easily (see this for more details). If your snippet is longer than around 50 lines, please link to a gist or a github repo.

  • If not feasible to include a reproducible snippet, please be specific about what estimators and/or functions are involved and the shape of the data.

  • If an exception is raised, please provide the full traceback.

  • Please include your operating system type and version number, as well as your Python, scikit-learn, numpy, and scipy versions. This information can be found by running the following code snippet:

    >>> import sklearn
    >>> sklearn.show_versions()  
    

    Note

    This utility function is only available in scikit-learn v0.20+. For previous versions, one has to explicitly run:

    import platform; print(platform.platform())
    import sys; print("Python", sys.version)
    import numpy; print("NumPy", numpy.__version__)
    import scipy; print("SciPy", scipy.__version__)
    import sklearn; print("Scikit-Learn", sklearn.__version__)
    
  • Please ensure all code snippets and error messages are formatted in appropriate code blocks. See Creating and highlighting code blocks for more details.

Contributing code

Note

To avoid duplicating work, it is highly advised that you contact the developers on the mailing list before starting work on a non-trivial feature.

https://mail.python.org/mailman/listinfo/scikit-learn

How to contribute

The preferred way to contribute to scikit-learn is to fork the main repository on GitHub, then submit a “pull request” (PR):

  1. Create an account on GitHub if you do not already have one.

  2. Fork the project repository: click on the ‘Fork’ button near the top of the page. This creates a copy of the code under your account on the GitHub server. For more details on how to fork a repository see this guide.

  3. Clone this copy to your local disk:

    $ git clone [email protected]:YourLogin/scikit-learn.git
    
  4. Create a branch to hold your changes:

    $ git checkout -b my-feature
    

    and start making changes. Never work in the master branch!

  5. Work on this copy, on your computer, using Git to do the version control. When you’re done editing, do:

    $ git add modified_files
    $ git commit
    

    to record your changes in Git, then push them to GitHub with:

    $ git push -u origin my-feature
    

Finally, follow these instructions to create a pull request from your fork. This will send an email to the committers. You may want to consider sending an email to the mailing list for more visibility.

Note

In the above setup, your origin remote repository points to YourLogin/scikit-learn.git. If you wish to fetch/merge from the main repository instead of your forked one, you will need to add another remote to use instead of origin. If we choose the name upstream for it, the command will be:

$ git remote add upstream https://github.com/scikit-learn/scikit-learn.git

If any of the above seems like magic to you, then look up the Git documentation and the Git development workflow on the web.

If some conflicts arise between your branch and the master branch, you need to merge master. The command will be:

$ git merge master

with master being synchronized with the upstream.

Subsequently, you need to solve the conflicts. You can refer to the Git documentation related to resolving merge conflict using the command line.

Note

In the past, the policy to resolve conflicts was to rebase your branch on master. GitHub interface deals with merging master better than in the past.

Contributing pull requests

It is recommended to check that your contribution complies with the following rules before submitting a pull request:

  • Follow the coding-guidelines (see below). To make sure that your PR does not add PEP8 violations you can run ./build_tools/travis/flake8_diff.sh or make flake8-diff on a Unix-like system.

  • When applicable, use the validation tools and other code in the sklearn.utils submodule. A list of utility routines available for developers can be found in the Utilities for Developers page.

  • Give your pull request a helpful title that summarises what your contribution does. In some cases “Fix <ISSUE TITLE>” is enough. “Fix #<ISSUE NUMBER>” is not enough.

  • Often pull requests resolve one or more other issues (or pull requests). If merging your pull request means that some other issues/PRs should be closed, you should use keywords to create link to them (e.g., Fixes #1234; multiple issues/PRs are allowed as long as each one is preceded by a keyword). Upon merging, those issues/PRs will automatically be closed by GitHub. If your pull request is simply related to some other issues/PRs, create a link to them without using the keywords (e.g., See also #1234).

  • All public methods should have informative docstrings with sample usage presented as doctests when appropriate.

  • Please prefix the title of your pull request with [MRG] if the contribution is complete and should be subjected to a detailed review. Two core developers will review your code and change the prefix of the pull request to [MRG + 1] and [MRG + 2] on approval, making it eligible for merging. An incomplete contribution – where you expect to do more work before receiving a full review – should be prefixed [WIP] (to indicate a work in progress) and changed to [MRG] when it matures. WIPs may be useful to: indicate you are working on something to avoid duplicated work, request broad review of functionality or API, or seek collaborators. WIPs often benefit from the inclusion of a task list in the PR description.

  • All other tests pass when everything is rebuilt from scratch. On Unix-like systems, check with (from the toplevel source folder):

    $ make
    
  • When adding additional functionality, provide at least one example script in the examples/ folder. Have a look at other examples for reference. Examples should demonstrate why the new functionality is useful in practice and, if possible, compare it to other methods available in scikit-learn.

  • Documentation and high-coverage tests are necessary for enhancements to be accepted. Bug-fixes or new features should be provided with non-regression tests. These tests verify the correct behavior of the fix or feature. In this manner, further modifications on the code base are granted to be consistent with the desired behavior. For the case of bug fixes, at the time of the PR, the non-regression tests should fail for the code base in the master branch and pass for the PR code.

  • At least one paragraph of narrative documentation with links to references in the literature (with PDF links when possible) and the example. For more details on writing and building the documentation, see the Documentation section.

You can also check for common programming errors with the following tools:

  • Code with a good unittest coverage (at least 90%, better 100%), check with:

    $ pip install pytest pytest-cov
    $ pytest --cov sklearn path/to/tests_for_package
    

    see also Testing and improving test coverage

  • No flake8 warnings, check with:

    $ pip install flake8
    $ flake8 path/to/module.py
    

Bonus points for contributions that include a performance analysis with a benchmark script and profiling output (please report on the mailing list or on the GitHub wiki).

Also check out the How to optimize for speed guide for more details on profiling and Cython optimizations.

Note

The current state of the scikit-learn code base is not compliant with all of those guidelines, but we expect that enforcing those constraints on all new contributions will get the overall code base quality in the right direction.

Note

For two very well documented and more detailed guides on development workflow, please pay a visit to the Scipy Development Workflow - and the Astropy Workflow for Developers sections.

Continuous Integration (CI)

  • Travis is used for testing on Linux platforms
  • Appveyor is used for testing on Windows platforms
  • CircleCI is used to build the docs for viewing, for linting with flake8, and for testing with PyPy on Linux

Please note that if one of the following markers appear in the latest commit message, the following actions are taken.

Commit Message Marker Action Taken by CI
[scipy-dev] Add a Travis build with our dependencies (numpy, scipy, etc …) development builds
[ci skip] CI is skipped completely
[doc skip] Docs are not built
[doc quick] Docs built, but excludes example gallery plots
[doc build] Docs built including example gallery plots

Issues for New Contributors

New contributors should look for the following tags when looking for issues. We strongly recommend that new contributors tackle “easy” issues first: this helps the contributor become familiar with the contribution workflow, and for the core devs to become acquainted with the contributor; besides which, we frequently underestimate how easy an issue is to solve!

good first issue tag

A great way to start contributing to scikit-learn is to pick an item from the list of good first issues in the issue tracker. Resolving these issues allow you to start contributing to the project without much prior knowledge. If you have already contributed to scikit-learn, you should look at Easy issues instead.

Easy tag

Another great way to contribute to scikit-learn is to pick an item from the list of Easy issues in the issue tracker. Your assistance in this area will be greatly appreciated by the more experienced developers as it helps free up their time to concentrate on other issues.

help wanted tag

We often use the help wanted tag to mark issues regardless of difficulty. Additionally, we use the help wanted tag to mark Pull Requests which have been abandoned by their original contributor and are available for someone to pick up where the original contributor left off. The list of issues with the help wanted tag can be found here .

Note that not all issues which need contributors will have this tag.

Documentation

We are glad to accept any sort of documentation: function docstrings, reStructuredText documents (like this one), tutorials, etc. reStructuredText documents live in the source code repository under the doc/ directory. You can edit the documentation using any text editor, and then generate the HTML output by building the documentation website.

Building the documentation

Building the documentation requires installing some additional packages:

pip install sphinx sphinx-gallery numpydoc matplotlib Pillow pandas scikit-image joblib

To build the documentation, you need to be in the doc folder:

cd doc

It also requires having the version of scikit-learn installed that corresponds to the documentation, e.g.:

pip install --editable ..

To generate the full web site, including the example gallery:

make html

Generating the example gallery will run all our examples which takes a while. To save some time, you can use:

  • make html-noplot: this will generate the documentation without the example gallery. This is useful when changing a docstring for example.
  • EXAMPLES_PATTERN=your_regex_goes_here make html: only the examples matching your_regex_goes_here will be run. This is particularly useful if you are modifying a few examples.

That should create all the documentation in the _build/html/stable directory. Set the environment variable NO_MATHJAX=1 if you intend to view the documentation in an offline setting.

To build the PDF manual, run:

make latexpdf

Warning

Sphinx version

While we do our best to have the documentation build under as many versions of Sphinx as possible, the different versions tend to behave slightly differently. To get the best results, you should use the same version as the one we used on CircleCI. Look at this github search to know the exact version.

Guidelines for writing documentation

It is important to keep a good compromise between mathematical and algorithmic details, and give intuition to the reader on what the algorithm does.

Basically, to elaborate on the above, it is best to always start with a small paragraph with a hand-waving explanation of what the method does to the data. Then, it is very helpful to point out why the feature is useful and when it should be used - the latter also including “big O” (\(O\left(g\left(n\right)\right)\)) complexities of the algorithm, as opposed to just rules of thumb, as the latter can be very machine-dependent. If those complexities are not available, then rules of thumb may be provided instead.

Secondly, a generated figure from an example (as mentioned in the previous paragraph) should then be included to further provide some intuition.

Next, one or two small code examples to show its use can be added.

Next, any math and equations, followed by references, can be added to further the documentation. Not starting the documentation with the maths makes it more friendly towards users that are just interested in what the feature will do, as opposed to how it works “under the hood”.

Finally, follow the formatting rules below to make it consistently good:

  • Add “See also” in docstrings for related classes/functions.

  • “See also” in docstrings should be one line per reference, with a colon and an explanation, for example:

    See also
    --------
    SelectKBest : Select features based on the k highest scores.
    SelectFpr : Select features based on a false positive rate test.
    
  • For unwritten formatting rules, try to follow existing good works:

Generated documentation on CircleCI

When you change the documentation in a pull request, CircleCI automatically builds it. To view the documentation generated by CircleCI:

  • navigate to the bottom of your pull request page to see the CI statuses. You may need to click on “Show all checks” to see all the CI statuses.
  • click on the CircleCI status with “python3” in the title.
  • add #artifacts at the end of the URL. Note: you need to wait for the CircleCI build to finish before being able to look at the artifacts.
  • once the artifacts are visible, navigate to doc/_changed.html to see a list of documentation pages that are likely to be affected by your pull request. Navigate to doc/index.html to see the full generated html documentation.

If you often need to look at the documentation generated by CircleCI, e.g. when reviewing pull requests, you may find this tip very handy.

Testing and improving test coverage

High-quality unit testing is a corner-stone of the scikit-learn development process. For this purpose, we use the pytest package. The tests are functions appropriately named, located in tests subdirectories, that check the validity of the algorithms and the different options of the code.

The full scikit-learn tests can be run using ‘make’ in the root folder. Alternatively, running ‘pytest’ in a folder will run all the tests of the corresponding subpackages.

We expect code coverage of new features to be at least around 90%.

Note

Workflow to improve test coverage

To test code coverage, you need to install the coverage package in addition to pytest.

  1. Run ‘make test-coverage’. The output lists for each file the line numbers that are not tested.
  2. Find a low hanging fruit, looking at which lines are not tested, write or adapt a test specifically for these lines.
  3. Loop.

Developers web site

More information can be found on the developer’s wiki.

Issue Tracker Tags

All issues and pull requests on the GitHub issue tracker should have (at least) one of the following tags:

Bug / Crash:Something is happening that clearly shouldn’t happen. Wrong results as well as unexpected errors from estimators go here.
Cleanup / Enhancement:
 Improving performance, usability, consistency.
Documentation:Missing, incorrect or sub-standard documentations and examples.
New Feature:Feature requests and pull requests implementing a new feature.

There are four other tags to help new contributors:

good first issue:
 This issue is ideal for a first contribution to scikit-learn. Ask for help if the formulation is unclear. If you have already contributed to scikit-learn, look at Easy issues instead.
Easy:This issue can be tackled without much prior experience.
Moderate:Might need some knowledge of machine learning or the package, but is still approachable for someone new to the project.
help wanted:This tag marks an issue which currently lacks a contributor or a PR that needs another contributor to take over the work. These issues can range in difficulty, and may not be approachable for new contributors. Note that not all issues which need contributors will have this tag.

Coding guidelines

The following are some guidelines on how new code should be written. Of course, there are special cases and there will be exceptions to these rules. However, following these rules when submitting new code makes the review easier so new code can be integrated in less time.

Uniformly formatted code makes it easier to share code ownership. The scikit-learn project tries to closely follow the official Python guidelines detailed in PEP8 that detail how code should be formatted and indented. Please read it and follow it.

In addition, we add the following guidelines:

  • Use underscores to separate words in non class names: n_samples rather than nsamples.
  • Avoid multiple statements on one line. Prefer a line return after a control flow statement (if/for).
  • Use relative imports for references inside scikit-learn.
  • Unit tests are an exception to the previous rule; they should use absolute imports, exactly as client code would. A corollary is that, if sklearn.foo exports a class or function that is implemented in sklearn.foo.bar.baz, the test should import it from sklearn.foo.
  • Please don’t use import * in any case. It is considered harmful by the official Python recommendations. It makes the code harder to read as the origin of symbols is no longer explicitly referenced, but most important, it prevents using a static analysis tool like pyflakes to automatically find bugs in scikit-learn.
  • Use the numpy docstring standard in all your docstrings.

A good example of code that we like can be found here.

Input validation

The module sklearn.utils contains various functions for doing input validation and conversion. Sometimes, np.asarray suffices for validation; do not use np.asanyarray or np.atleast_2d, since those let NumPy’s np.matrix through, which has a different API (e.g., * means dot product on np.matrix, but Hadamard product on np.ndarray).

In other cases, be sure to call check_array on any array-like argument passed to a scikit-learn API function. The exact parameters to use depends mainly on whether and which scipy.sparse matrices must be accepted.

For more information, refer to the Utilities for Developers page.

Random Numbers

If your code depends on a random number generator, do not use numpy.random.random() or similar routines. To ensure repeatability in error checking, the routine should accept a keyword random_state and use this to construct a numpy.random.RandomState object. See sklearn.utils.check_random_state in Utilities for Developers.

Here’s a simple example of code using some of the above guidelines:

from sklearn.utils import check_array, check_random_state

def choose_random_sample(X, random_state=0):
    """
    Choose a random point from X

    Parameters
    ----------
    X : array-like, shape (n_samples, n_features)
        array representing the data
    random_state : RandomState or an int seed (0 by default)
        A random number generator instance to define the state of the
        random permutations generator.

    Returns
    -------
    x : numpy array, shape (n_features,)
        A random point selected from X
    """
    X = check_array(X)
    random_state = check_random_state(random_state)
    i = random_state.randint(X.shape[0])
    return X[i]

If you use randomness in an estimator instead of a freestanding function, some additional guidelines apply.

First off, the estimator should take a random_state argument to its __init__ with a default value of None. It should store that argument’s value, unmodified, in an attribute random_state. fit can call check_random_state on that attribute to get an actual random number generator. If, for some reason, randomness is needed after fit, the RNG should be stored in an attribute random_state_. The following example should make this clear:

class GaussianNoise(BaseEstimator, TransformerMixin):
    """This estimator ignores its input and returns random Gaussian noise.

    It also does not adhere to all scikit-learn conventions,
    but showcases how to handle randomness.
    """

    def __init__(self, n_components=100, random_state=None):
        self.random_state = random_state

    # the arguments are ignored anyway, so we make them optional
    def fit(self, X=None, y=None):
        self.random_state_ = check_random_state(self.random_state)

    def transform(self, X):
        n_samples = X.shape[0]
        return self.random_state_.randn(n_samples, n_components)

The reason for this setup is reproducibility: when an estimator is fit twice to the same data, it should produce an identical model both times, hence the validation in fit, not __init__.

Deprecation

If any publicly accessible method, function, attribute or parameter is renamed, we still support the old one for two releases and issue a deprecation warning when it is called/passed/accessed. E.g., if the function zero_one is renamed to zero_one_loss, we add the decorator deprecated (from sklearn.utils) to zero_one and call zero_one_loss from that function:

from ..utils import deprecated

def zero_one_loss(y_true, y_pred, normalize=True):
    # actual implementation
    pass

@deprecated("Function 'zero_one' was renamed to 'zero_one_loss' "
            "in version 0.13 and will be removed in release 0.15. "
            "Default behavior is changed from 'normalize=False' to "
            "'normalize=True'")
def zero_one(y_true, y_pred, normalize=False):
    return zero_one_loss(y_true, y_pred, normalize)

If an attribute is to be deprecated, use the decorator deprecated on a property. E.g., renaming an attribute labels_ to classes_ can be done as:

@property
@deprecated("Attribute labels_ was deprecated in version 0.13 and "
            "will be removed in 0.15. Use 'classes_' instead")
def labels_(self):
    return self.classes_

If a parameter has to be deprecated, use DeprecationWarning appropriately. In the following example, k is deprecated and renamed to n_clusters:

import warnings

def example_function(n_clusters=8, k='not_used'):
    if k != 'not_used':
        warnings.warn("'k' was renamed to n_clusters in version 0.13 and "
                      "will be removed in 0.15.", DeprecationWarning)
        n_clusters = k

When the change is in a class, we validate and raise warning in fit:

import warnings

class ExampleEstimator(BaseEstimator):
    def __init__(self, n_clusters=8, k='not_used'):
        self.n_clusters = n_clusters
        self.k = k

    def fit(self, X, y):
        if k != 'not_used':
            warnings.warn("'k' was renamed to n_clusters in version 0.13 and "
                          "will be removed in 0.15.", DeprecationWarning)
            self._n_clusters = k
        else:
            self._n_clusters = self.n_clusters

As in these examples, the warning message should always give both the version in which the deprecation happened and the version in which the old behavior will be removed. If the deprecation happened in version 0.x-dev, the message should say deprecation occurred in version 0.x and the removal will be in 0.(x+2), so that users will have enough time to adapt their code to the new behaviour. For example, if the deprecation happened in version 0.18-dev, the message should say it happened in version 0.18 and the old behavior will be removed in version 0.20.

In addition, a deprecation note should be added in the docstring, recalling the same information as the deprecation warning as explained above. Use the .. deprecated:: directive:

.. deprecated:: 0.13
   ``k`` was renamed to ``n_clusters`` in version 0.13 and will be removed
   in 0.15.

What’s more, a deprecation requires a test which ensures that the warning is raised in relevant cases but not in other cases. The warning should be caught in all other tests (using e.g., @pytest.mark.filterwarnings), and there should be no warning in the examples.

Change the default value of a parameter

If the default value of a parameter needs to be changed, please replace the default value with a specific value (e.g., warn) and raise FutureWarning when users are using the default value. In the following example, we change the default value of n_clusters from 5 to 10 (current version is 0.20):

import warnings

def example_function(n_clusters='warn'):
    if n_clusters == 'warn':
        warnings.warn("The default value of n_clusters will change from "
                      "5 to 10 in 0.22.", FutureWarning)
        n_clusters = 5

When the change is in a class, we validate and raise warning in fit:

import warnings

class ExampleEstimator:
    def __init__(self, n_clusters='warn'):
        self.n_clusters = n_clusters

    def fit(self, X, y):
        if self.n_clusters == 'warn':
          warnings.warn("The default value of n_clusters will change from "
                        "5 to 10 in 0.22.", FutureWarning)
          self._n_clusters = 5

Similar to deprecations, the warning message should always give both the version in which the change happened and the version in which the old behavior will be removed. The docstring needs to be updated accordingly. We need a test which ensures that the warning is raised in relevant cases but not in other cases. The warning should be caught in all other tests (using e.g., @pytest.mark.filterwarnings), and there should be no warning in the examples.

Python versions supported

All scikit-learn code should work unchanged in both Python 2.7 and 3.4 or newer. Since Python 3.x is not backwards compatible, that may require changes to code and it certainly requires testing on both 2.7 and 3.4 or newer.

For most numerical algorithms, Python 3.x support is easy: just remember that print is a function and integer division is written //. String handling has been overhauled, though, as have parts of the Python standard library. The six package helps with cross-compatibility and is included in scikit-learn as sklearn.externals.six.

Code Review Guidelines

Reviewing code contributed to the project as PRs is a crucial component of scikit-learn development. We encourage anyone to start reviewing code of other developers. The code review process is often highly educational for everybody involved. This is particularly appropriate if it is a feature you would like to use, and so can respond critically about whether the PR meets your needs. While each pull request needs to be signed off by two core developers, you can speed up this process by providing your feedback.

Here are a few important aspects that need to be covered in any code review, from high-level questions to a more detailed check-list.

  • Do we want this in the library? Is it likely to be used? Do you, as a scikit-learn user, like the change and intend to use it? Is it in the scope of scikit-learn? Will the cost of maintaining a new feature be worth its benefits?
  • Is the code consistent with the API of scikit-learn? Are public functions/classes/parameters well named and intuitively designed?
  • Are all public functions/classes and their parameters, return types, and stored attributes named according to scikit-learn conventions and documented clearly?
  • Is any new functionality described in the user-guide and illustrated with examples?
  • Is every public function/class tested? Are a reasonable set of parameters, their values, value types, and combinations tested? Do the tests validate that the code is correct, i.e. doing what the documentation says it does? If the change is a bug-fix, is a non-regression test included? Look at this to get started with testing in Python.
  • Do the tests pass in the continuous integration build? If appropriate, help the contributor understand why tests failed.
  • Do the tests cover every line of code (see the coverage report in the build log)? If not, are the lines missing coverage good exceptions?
  • Is the code easy to read and low on redundancy? Should variable names be improved for clarity or consistency? Should comments be added? Should comments be removed as unhelpful or extraneous?
  • Could the code easily be rewritten to run much more efficiently for relevant settings?
  • Is the code backwards compatible with previous versions? (or is a deprecation cycle necessary?)
  • Will the new code add any dependencies on other libraries? (this is unlikely to be accepted)
  • Does the documentation render properly (see the Documentation section for more details), and are the plots instructive?

Standard replies for reviewing includes some frequent comments that reviewers may make.

APIs of scikit-learn objects

To have a uniform API, we try to have a common basic API for all the objects. In addition, to avoid the proliferation of framework code, we try to adopt simple conventions and limit to a minimum the number of methods an object must implement.

Elements of the scikit-learn API are described more definitively in the Glossary of Common Terms and API Elements.

Different objects

The main objects in scikit-learn are (one class can implement multiple interfaces):

Estimator:

The base object, implements a fit method to learn from data, either:

estimator = estimator.fit(data, targets)

or:

estimator = estimator.fit(data)
Predictor:

For supervised learning, or some unsupervised problems, implements:

prediction = predictor.predict(data)

Classification algorithms usually also offer a way to quantify certainty of a prediction, either using decision_function or predict_proba:

probability = predictor.predict_proba(data)
Transformer:

For filtering or modifying the data, in a supervised or unsupervised way, implements:

new_data = transformer.transform(data)

When fitting and transforming can be performed much more efficiently together than separately, implements:

new_data = transformer.fit_transform(data)
Model:

A model that can give a goodness of fit measure or a likelihood of unseen data, implements (higher is better):

score = model.score(data)

Estimators

The API has one predominant object: the estimator. A estimator is an object that fits a model based on some training data and is capable of inferring some properties on new data. It can be, for instance, a classifier or a regressor. All estimators implement the fit method:

estimator.fit(X, y)

All built-in estimators also have a set_params method, which sets data-independent parameters (overriding previous parameter values passed to __init__).

All estimators in the main scikit-learn codebase should inherit from sklearn.base.BaseEstimator.

Instantiation

This concerns the creation of an object. The object’s __init__ method might accept constants as arguments that determine the estimator’s behavior (like the C constant in SVMs). It should not, however, take the actual training data as an argument, as this is left to the fit() method:

clf2 = SVC(C=2.3)
clf3 = SVC([[1, 2], [2, 3]], [-1, 1]) # WRONG!

The arguments accepted by __init__ should all be keyword arguments with a default value. In other words, a user should be able to instantiate an estimator without passing any arguments to it. The arguments should all correspond to hyperparameters describing the model or the optimisation problem the estimator tries to solve. These initial arguments (or parameters) are always remembered by the estimator. Also note that they should not be documented under the “Attributes” section, but rather under the “Parameters” section for that estimator.

In addition, every keyword argument accepted by __init__ should correspond to an attribute on the instance. Scikit-learn relies on this to find the relevant attributes to set on an estimator when doing model selection.

To summarize, an __init__ should look like:

def __init__(self, param1=1, param2=2):
    self.param1 = param1
    self.param2 = param2

There should be no logic, not even input validation, and the parameters should not be changed. The corresponding logic should be put where the parameters are used, typically in fit. The following is wrong:

def __init__(self, param1=1, param2=2, param3=3):
    # WRONG: parameters should not be modified
    if param1 > 1:
        param2 += 1
    self.param1 = param1
    # WRONG: the object's attributes should have exactly the name of
    # the argument in the constructor
    self.param3 = param2

The reason for postponing the validation is that the same validation would have to be performed in set_params, which is used in algorithms like GridSearchCV.

Fitting

The next thing you will probably want to do is to estimate some parameters in the model. This is implemented in the fit() method.

The fit() method takes the training data as arguments, which can be one array in the case of unsupervised learning, or two arrays in the case of supervised learning.

Note that the model is fitted using X and y, but the object holds no reference to X and y. There are, however, some exceptions to this, as in the case of precomputed kernels where this data must be stored for use by the predict method.

Parameters  
X array-like, shape (n_samples, n_features)
y array, shape (n_samples,)
kwargs optional data-dependent parameters.

X.shape[0] should be the same as y.shape[0]. If this requisite is not met, an exception of type ValueError should be raised.

y might be ignored in the case of unsupervised learning. However, to make it possible to use the estimator as part of a pipeline that can mix both supervised and unsupervised transformers, even unsupervised estimators need to accept a y=None keyword argument in the second position that is just ignored by the estimator. For the same reason, fit_predict, fit_transform, score and partial_fit methods need to accept a y argument in the second place if they are implemented.

The method should return the object (self). This pattern is useful to be able to implement quick one liners in an IPython session such as:

y_predicted = SVC(C=100).fit(X_train, y_train).predict(X_test)

Depending on the nature of the algorithm, fit can sometimes also accept additional keywords arguments. However, any parameter that can have a value assigned prior to having access to the data should be an __init__ keyword argument. fit parameters should be restricted to directly data dependent variables. For instance a Gram matrix or an affinity matrix which are precomputed from the data matrix X are data dependent. A tolerance stopping criterion tol is not directly data dependent (although the optimal value according to some scoring function probably is).

When fit is called, any previous call to fit should be ignored. In general, calling estimator.fit(X1) and then estimator.fit(X2) should be the same as only calling estimator.fit(X2). However, this may not be true in practice when fit depends on some random process, see random_state. Another exception to this rule is when the hyper-parameter warm_start is set to True for estimators that support it. warm_start=True means that the previous state of the trainable parameters of the estimator are reused instead of using the default initialization strategy.

Estimated Attributes

Attributes that have been estimated from the data must always have a name ending with trailing underscore, for example the coefficients of some regression estimator would be stored in a coef_ attribute after fit has been called.

The estimated attributes are expected to be overridden when you call fit a second time.

Optional Arguments

In iterative algorithms, the number of iterations should be specified by an integer called n_iter.

Rolling your own estimator

If you want to implement a new estimator that is scikit-learn-compatible, whether it is just for you or for contributing it to scikit-learn, there are several internals of scikit-learn that you should be aware of in addition to the scikit-learn API outlined above. You can check whether your estimator adheres to the scikit-learn interface and standards by running utils.estimator_checks.check_estimator on the class:

>>> from sklearn.utils.estimator_checks import check_estimator
>>> from sklearn.svm import LinearSVC
>>> check_estimator(LinearSVC)  # passes

The main motivation to make a class compatible to the scikit-learn estimator interface might be that you want to use it together with model evaluation and selection tools such as model_selection.GridSearchCV and pipeline.Pipeline.

Before detailing the required interface below, we describe two ways to achieve the correct interface more easily.

Project template:

We provide a project template which helps in the creation of Python packages containing scikit-learn compatible estimators. It provides:

  • an initial git repository with Python package directory structure
  • a template of a scikit-learn estimator
  • an initial test suite including use of check_estimator
  • directory structures and scripts to compile documentation and example galleries
  • scripts to manage continuous integration (testing on Linux and Windows)
  • instructions from getting started to publishing on PyPi

BaseEstimator and mixins:

We tend to use “duck typing”, so building an estimator which follows the API suffices for compatibility, without needing to inherit from or even import any scikit-learn classes.

However, if a dependency on scikit-learn is acceptable in your code, you can prevent a lot of boilerplate code by deriving a class from BaseEstimator and optionally the mixin classes in sklearn.base. For example, below is a custom classifier, with more examples included in the scikit-learn-contrib project template.

>>> import numpy as np
>>> from sklearn.base import BaseEstimator, ClassifierMixin
>>> from sklearn.utils.validation import check_X_y, check_array, check_is_fitted
>>> from sklearn.utils.multiclass import unique_labels
>>> from sklearn.metrics import euclidean_distances
>>> class TemplateClassifier(BaseEstimator, ClassifierMixin):
...
...     def __init__(self, demo_param='demo'):
...         self.demo_param = demo_param
...
...     def fit(self, X, y):
...
...         # Check that X and y have correct shape
...         X, y = check_X_y(X, y)
...         # Store the classes seen during fit
...         self.classes_ = unique_labels(y)
...
...         self.X_ = X
...         self.y_ = y
...         # Return the classifier
...         return self
...
...     def predict(self, X):
...
...         # Check is fit had been called
...         check_is_fitted(self, ['X_', 'y_'])
...
...         # Input validation
...         X = check_array(X)
...
...         closest = np.argmin(euclidean_distances(X, self.X_), axis=1)
...         return self.y_[closest]

get_params and set_params

All scikit-learn estimators have get_params and set_params functions. The get_params function takes no arguments and returns a dict of the __init__ parameters of the estimator, together with their values. It must take one keyword argument, deep, which receives a boolean value that determines whether the method should return the parameters of sub-estimators (for most estimators, this can be ignored). The default value for deep should be true.

The set_params on the other hand takes as input a dict of the form 'parameter': value and sets the parameter of the estimator using this dict. Return value must be estimator itself.

While the get_params mechanism is not essential (see Cloning below), the set_params function is necessary as it is used to set parameters during grid searches.

The easiest way to implement these functions, and to get a sensible __repr__ method, is to inherit from sklearn.base.BaseEstimator. If you do not want to make your code dependent on scikit-learn, the easiest way to implement the interface is:

def get_params(self, deep=True):
    # suppose this estimator has parameters "alpha" and "recursive"
    return {"alpha": self.alpha, "recursive": self.recursive}

def set_params(self, **parameters):
    for parameter, value in parameters.items():
        setattr(self, parameter, value)
    return self

Parameters and init

As model_selection.GridSearchCV uses set_params to apply parameter setting to estimators, it is essential that calling set_params has the same effect as setting parameters using the __init__ method. The easiest and recommended way to accomplish this is to not do any parameter validation in __init__. All logic behind estimator parameters, like translating string arguments into functions, should be done in fit.

Also it is expected that parameters with trailing _ are not to be set inside the __init__ method. All and only the public attributes set by fit have a trailing _. As a result the existence of parameters with trailing _ is used to check if the estimator has been fitted.

Cloning

For use with the model_selection module, an estimator must support the base.clone function to replicate an estimator. This can be done by providing a get_params method. If get_params is present, then clone(estimator) will be an instance of type(estimator) on which set_params has been called with clones of the result of estimator.get_params().

Objects that do not provide this method will be deep-copied (using the Python standard function copy.deepcopy) if safe=False is passed to clone.

Pipeline compatibility

For an estimator to be usable together with pipeline.Pipeline in any but the last step, it needs to provide a fit or fit_transform function. To be able to evaluate the pipeline on any data but the training set, it also needs to provide a transform function. There are no special requirements for the last step in a pipeline, except that it has a fit function. All fit and fit_transform functions must take arguments X, y, even if y is not used. Similarly, for score to be usable, the last step of the pipeline needs to have a score function that accepts an optional y.

Estimator types

Some common functionality depends on the kind of estimator passed. For example, cross-validation in model_selection.GridSearchCV and model_selection.cross_val_score defaults to being stratified when used on a classifier, but not otherwise. Similarly, scorers for average precision that take a continuous prediction need to call decision_function for classifiers, but predict for regressors. This distinction between classifiers and regressors is implemented using the _estimator_type attribute, which takes a string value. It should be "classifier" for classifiers and "regressor" for regressors and "clusterer" for clustering methods, to work as expected. Inheriting from ClassifierMixin, RegressorMixin or ClusterMixin will set the attribute automatically. When a meta-estimator needs to distinguish among estimator types, instead of checking _estimator_type directly, helpers like base.is_classifier should be used.

Working notes

For unresolved issues, TODOs, and remarks on ongoing work, developers are advised to maintain notes on the GitHub wiki.

Specific models

Classifiers should accept y (target) arguments to fit that are sequences (lists, arrays) of either strings or integers. They should not assume that the class labels are a contiguous range of integers; instead, they should store a list of classes in a classes_ attribute or property. The order of class labels in this attribute should match the order in which predict_proba, predict_log_proba and decision_function return their values. The easiest way to achieve this is to put:

self.classes_, y = np.unique(y, return_inverse=True)

in fit. This returns a new y that contains class indexes, rather than labels, in the range [0, n_classes).

A classifier’s predict method should return arrays containing class labels from classes_. In a classifier that implements decision_function, this can be achieved with:

def predict(self, X):
    D = self.decision_function(X)
    return self.classes_[np.argmax(D, axis=1)]

In linear models, coefficients are stored in an array called coef_, and the independent term is stored in intercept_. sklearn.linear_model.base contains a few base classes and mixins that implement common linear model patterns.

The sklearn.utils.multiclass module contains useful functions for working with multiclass and multilabel problems.