bvodeS — simplified call of bvode
z=bvodeS(x,m,n,a,b,fsub,gsub,zeta, [ystart,dfsub,dgsub,fixpnt,ndimf,ndimi,ltol,tol,ntol,nonlin, collpnt,subint,iprint,ireg,ifail])
array of points at which approximations of the solution will be computed. The points x(i) must be given in increasing order.
array of orders for the differential equations given in
fsub
.
number of differential equations, length of
m
.
left end of solution interval, where a<=x(1).
right end of solution interval, where x($)<=b.
name of a Scilab function for evaluating the rhs of the differential equation system to be solved; fsub also may be a list for parameter transfer.
name of a Scilab function for evaluating the boundary conditions for the given differential equation system; gsub may also be a list as for fsub.
array of points at which the boundary or side conditions are given in increasing order. Each point must occur as often as boundary or side conditions are given there. Each side condition point other than a or b must be included in the array fixpnt. The length of zeta should be sum(m).
array of all derivatives of the solution functions up to the order m(i)-1 for the i-th function. (See the examples below.) The length of z should be sum(m).
These optional arguments may be called by name in any order in
the form argument=name. The meaning of ystart to ireg is given in
the bvode help page. The Scilab
functions dfsub
and dgsub
for
evaluating the Jacobians may also be lists for parameter transfer.
The function ystart
is called
guess
in bvode.
if ifail=1, all parameters needed for the call of bvode are displayed.
This interface program simplifies the call of bvode, a program for the numerical solution of multi-point boundary value problems for mixed order systems of ordinary differential equations. The Scilab program bvode is adapted from the fortran program colnew. See the paper by U. Asher, J. Christiansen, and R.D. Russel: Collocation software for boundary-value ODE's, ACM Trans. Math. Soft. 7:209-222, 1981. The following examples should demonstrate not only how such systems can be solved with the help of bvodeS, but also should emphazise some important problems which occur with boundary value problems for ordinary ode's.
// 1. Modified example from help bvode. // DE: y1''''(x)=(1-6*x*x*y1'''(x)-6*x*y1''(x))/(y2(x)^3) // y2'(x)=1 // z=[y1 ; y1' ; y1'' ; y1''' ; y2] // BV: y1(1)=0 y1''(1)=0 // BV: y1(2)=1 y1''(2)=0 y2(2)=2 function RhS=fsub(x,z) RhS=[(1-6*x*x*z(4)-6*x*z(3))/(z(5)^3);1] endfunction function g=gsub(i,z) g=[z(1) z(3) z(1)-1 z(3) z(5)-2] g=g(i) endfunction function [z,lhS]=ystart(x) z=zeros(5,1);z(5)=1; lhS=[0;1]; endfunction n=2; m=[4 1]; N=100; a=1; b=2; zeta=[a a b b b]; x=linspace(a,b,N); ltol=4; // We want to change the default error for y1'''. tol=1e-12; tic() z=bvodeS(x,m,n,a,b,fsub,gsub,zeta,ltol=ltol,tol=tol,ystart=ystart); // Try tol=1e-14 etc. toc() function z=yex(x) // True solution z=zeros(5,1); z(1)=0.25*(10*log(2)-3)*(1-x)+0.5*(1/x+(3+x)*log(x)-x)+(x-1) z(2)=-0.25*(10*log(2)-3)+0.5*(-1/x^2+(3+x)/x+log(x)-1)+1 z(3)=0.5*(2/x^3+1/x-3/x^2) z(4)=0.5*(-6/x^4-1/x/x+6/x^3) z(5)=x endfunction zex=[];for xx=x, zex=[zex yex(xx)]; end scf(0); clf(); plot2d(x,abs(z-zex)',style=[1 2 3 5 6]) xtitle('Absolute error','x',' ') legend(['z1(x)';'z2(x)';'z3(x)';'z4(x)';'z5(x)']) // example #2. An eigenvalue problem // y''(x)=-la*y(x) // BV: y(0)=y'(0); y(1)=0 // Eigenfunctions and eigenvalues are y(x,n)=sin(s(n)*(1-x)), la(n)=s(n)^2, // where s(n) are the zeros of f(s,n)=s+atan(s)-(n+1)*pi, n=0,1,2,... // To get a third boundary condition, we choose y(0)=1 // (With y(x) also c*y(x) is a solution for each constant c.) // We solve the following ode system: // y''=-la*y // la'=0 // BV: y(0)=y'(0), y(0)=1; y(1)=0 // z=[y(x) ; y'(x) ; la] function rhs=fsub(x,z) rhs=[-z(3)*z(1);0] endfunction function g=gsub(i,z) g=[z(1)-z(2) z(1)-1 z(1)] g=g(i) endfunction // The following start function is good for the first 8 eigenfunctions. function [z,lhs]=ystart(x,z,la0) z=[1;0;la0] lhs=[0;0] endfunction a=0;b=1; m=[2;1]; n=2; zeta=[a a b]; N=101; x=linspace(a,b,N)'; // We have s(n)-(n+1/2)*pi -> 0 for n to infinity. la0=input('n-th eigenvalue: n= ?');la0=(%pi/2+la0*%pi)^2; z=bvodeS(x,m,n,a,b,fsub,gsub,zeta,ystart=list(ystart,la0)); clf() plot2d(x,[z(1,:)' z(2,:)'],style=[5 1],axesflag=5) xtitle(['Startvalue = '+string(la0);'Eigenvalue = '+string(z(3,1))],'x',' ') legend(['y(x)';'y''(x)']) // example #3. A boundary value problem with more than one solution. // DE: y''(x)=-exp(y(x)) // BV: y(0)=0; y(1)=0 // This boundary value problem has more than one solution. // It is demonstrated how to find two of them with the help of // some preinformation of the solutions y(x) to build the function ystart. // z=[y(x);y'(x)] a=0;b=1;m=2;n=1; zeta=[a b]; N=101; tol=1e-8*[1 1]; x=linspace(a,b,N); function rhs=fsub(x,z),rhs=-exp(z(1));endfunction function g=gsub(i,z) g=[z(1) z(1)] g=g(i) endfunction function [z,lhs]=ystart(x,z,M) //z=[4*x*(1-x)*M ; 4*(1-2*x)*M] z=[M;0] //lhs=[-exp(4*x*(1-x)*M)] lhs=0 endfunction for M=[1 4] if M==1 z=bvodeS(x,m,n,a,b,fsub,gsub,zeta,ystart=list(ystart,M),tol=tol); else z1=bvodeS(x,m,n,a,b,fsub,gsub,zeta,ystart=list(ystart,M),tol=tol); end end // Integrating the ode yield e.g. the two solutions yex and yex1. function y=f(c),y=c.*(1-tanh(sqrt(c)/4).^2)-2;endfunction c=fsolve(2,f); function y=yex(x,c) y=log(c/2*(1-tanh(sqrt(c)*(1/4-x/2)).^2)) endfunction function y=f1(c1), y=2*c1^2+tanh(1/4/c1)^2-1;endfunction c1=fsolve(0.1,f1); function y=yex1(x,c1) y=log((1-tanh((2*x-1)/4/c1).^2)/2/c1/c1) endfunction disp(norm(z(1,:)-yex(x)),'norm(yex(x)-z(1,:))= ') disp(norm(z1(1,:)-yex1(x)),'norm(yex1(x)-z1(1,:))= ') clf(); subplot(2,1,1) plot2d(x,z(1,:),style=[5]) xtitle('Two different solutions','x',' ') subplot(2,1,2) plot2d(x,z1(1,:),style=[5]) xtitle(' ','x',' ') // example #4. A multi-point boundary value problem. // DE y'''(x)=1 // z=[y(x);y'(x);y''(x)] // BV: y(-1)=2 y(1)=2 // Side condition: y(0)=1 a=-1;b=1;c=0; // The side condition point c must be included in the array fixpnt. n=1; m=[3]; function rhs=fsub(x,z) rhs=1 endfunction function g=gsub(i,z) g=[z(1)-2 z(1)-1 z(1)-2] g=g(i) endfunction N=10; zeta=[a c b]; x=linspace(a,b,N); z=bvodeS(x,m,n,a,b,fsub,gsub,zeta,fixpnt=c); function y=yex(x) y=x.^3/6+x.^2-x./6+1 endfunction disp(norm(yex(x)-z(1,:)),'norm(yex(x)-z(1,:))= ')