Scilab 6.0.0
      
      
    
      
      Справка Scilab >> Linear Algebra > Matrix Pencil > glever
      
      
    
    
    
        
    
    
    
      
  
glever
inverse of matrix pencil
Syntax
[Bfs,Bis,chis]=glever(E,A [,s])
Arguments
- E, A
- two real square matrices of same dimensions 
- s
- character string (default value ' - s')
- Bfs,Bis
- two polynomial matrices 
- chis
- polynomial 
Description
Computation of
(s*E-A)^-1
by generalized Leverrier's algorithm for a matrix pencil.
(s*E-A)^-1 = (Bfs/chis) - Bis.
chis = characteristic polynomial (up to a multiplicative constant).
Bfs  = numerator polynomial matrix.
Bis
            = polynomial matrix ( - expansion of (s*E-A)^-1 at infinity).
Note the - sign before Bis.
Caution
This function uses cleanp to simplify Bfs,Bis and chis.
Examples
s=%s;F=[-1,s,0,0;0,-1,0,0;0,0,s-2,0;0,0,0,s-1]; [Bfs,Bis,chis]=glever(F) inv(F)-((Bfs/chis) - Bis)
Comments
Add a comment:
Please login to comment this page.