FFT卷积的速度比较

相关文档: 频域信号处理

直接卷积的复杂度为O(N*N),FFT的复杂度为O(N*log(N)),此程序分别计算直接卷积和快速卷积的耗时曲线。请注意Y轴为每点的平均运算时间。

_images/spectrum_example_09.png
# -*- coding: utf-8 -*-
import numpy as np
import timeit
def fft_convolve(a,b):
    n = len(a)+len(b)-1
    N = 2**(int(np.log2(n))+1)
    A = np.fft.fft(a, N)
    B = np.fft.fft(b, N)
    return np.fft.ifft(A*B)[:n]
    
if __name__ == "__main__":
    from pylab import *
    n_list = []
    t1_list = []
    t2_list = []
    for n in xrange(4, 14):
        N = 2**n
        count = 10000**2 / N**2
        if count > 10000: count = 10000
        setup = """
import numpy as np
from __main__ import fft_convolve
a = np.random.rand(%s)
b = np.random.rand(%s)
        """ % (N, N)
        t1 = timeit.timeit("np.convolve(a,b)", setup, number=count)
        t2 = timeit.timeit("fft_convolve(a,b)", setup, number=count)
        t1_list.append(t1*1000/count/N)
        t2_list.append(t2*1000/count/N)
        n_list.append(N)
    figure(figsize=(8,4))
    plot(n_list, t1_list, label=u"直接卷积")
    plot(n_list, t2_list, label=u"FFT卷积")
    legend()
    title(u"卷积的计算时间")
    ylabel(u"计算时间(ms/point)")
    xlabel(u"长度")
    xlim(min(n_list),max(n_list))
    show()
    

上一篇文章

频谱泄漏和hann窗

下一篇文章

二次均衡器设计