A Spring IoC container manages one or more
beans. These beans are created with the configuration
metadata that you supply to the container, for example, in the form of XML
<bean/>
definitions.
Within the container itself, these bean definitions are represented
as BeanDefinition
objects, which contain
(among other information) the following metadata:
A package-qualified class name: typically the actual implementation class of the bean being defined.
Bean behavioral configuration elements, which state how the bean should behave in the container (scope, lifecycle callbacks, and so forth).
References to other beans that are needed for the bean to do its work; these references are also called collaborators or dependencies.
Other configuration settings to set in the newly created object, for example, the number of connections to use in a bean that manages a connection pool, or the size limit of the pool.
This metadata translates to a set of properties that make up each bean definition.
Table 3.1. The bean definition
Property | Explained in... |
---|---|
class | |
name | |
scope | |
constructor arguments | |
properties | |
autowiring mode | |
dependency checking mode | |
lazy-initialization mode | |
initialization method | |
destruction method |
In addition to bean definitions that contain information on how to
create a specific bean, the
ApplicationContext
implementations also
permit the registration of existing objects that are created outside the
container, by users. This is done by accessing the ApplicationContext's
BeanFactory via the method getBeanFactory
which
returns the BeanFactory implementation
DefaultListableBeanFactory
.
DefaultListableBeanFactory
supports this
registration through the methods
registerSingleton(..)
and
registerBeanDefinition(..)
. However, typical
applications work solely with beans defined through metadata bean
definitions.
Every bean has one or more identifiers. These identifiers must be unique within the container that hosts the bean. A bean usually has only one identifier, but if it requires more than one, the extra ones can be considered aliases.
In XML-based configuration metadata, you use the
id
and/or name
attributes to
specify the bean identifier(s). The id
attribute
allows you to specify exactly one id, and because it is a real XML
element ID attribute, the XML parser can do some extra validation when
other elements reference the id. As such, it is the preferred way to
specify a bean identifier. However, the XML specification does limit the
characters that are legal in XML ids. This is usually not a constraint,
but if you need to use one of these special XML characters, or want to
introduce other aliases to the bean, you can also specify them in the
name
attribute, separated by a comma
(,
), semicolon (;
), or white
space.
You are not required to supply a name or id for a bean. If no name
or id is supplied explicitly, the container generates a unique name for
that bean. However, if you want to refer to that bean by name, through
the use of the ref
element or Service Location style lookup,
you must provide a name. Motivations for not supplying a name are
related to using inner beans
and autowiring
collaborators.
In a bean definition itself, you can supply more than one name
for the bean, by using a combination of up to one name specified by
the id
attribute, and any number of other names in
the name
attribute. These names can be equivalent
aliases to the same bean, and are useful for some situations, such as
allowing each component in an application to refer to a common
dependency by using a bean name that is specific to that component
itself.
Specifying all aliases where the bean is actually defined is not
always adequate, however. It is sometimes desirable to introduce an
alias for a bean that is defined elsewhere. This is commonly the case
in large systems where configuration is split amongst each subsystem,
each subsystem having its own set of object defintions. In XML-based
configuration metadata, you can use of the
<alias/>
element to accomplish this.
<alias name="fromName" alias="toName"/>
In this case, a bean in the same container which is named
fromName
, may also after the use of this alias
definition, be referred to as toName
.
For example, the configuration metadata for subsystem A may refer to a DataSource via the name 'subsystemA-dataSource. The configuration metadata for subsystem B may refer to a DataSource via the name 'subsystemB-dataSource'. When composing the main application that uses both these subsystems the main application refers to the DattaSource via the name 'myApp-dataSource'. To have all three names refer to the same object you add to the MyApp configuration metadata the following aliases definitions:
<alias name="subsystemA-dataSource" alias="subsystemB-dataSource"/> <alias name="subsystemA-dataSource" alias="myApp-dataSource" />
Now each component and the main application can refer to the dataSource through a name that is unique and guaranteed not to clash with any other definition (effectively creating a namespace), yet they refer to the same bean.
A bean definition essentially is a recipe for creating one or more objects. The container looks at the recipe for a named bean when asked, and uses the configuration metadata encapsulated by that bean definition to create (or acquire) an actual object.
If you use XML-based configuration metadata, you specify the type
(or class) of object that is to be instantiated in the
class
attribute of the
<bean/>
element. This class
attribute, which internally is a Class
property
on a BeanDefinition
instance, is usually
mandatory. (For exceptions, see Section 3.3.2.3, “Instantiation using an instance factory method” and Section 3.7, “Bean definition inheritance”.) You use the
Class
property in one of two ways:
Typically, to specify the bean class to be constructed in
the case where the container itself directly creates the bean by
calling its constructor reflectively, somewhat equivalent to Java
code using the new
operator.
To specify the actual class containing the
static
factory method that will be invoked to
create the object, in the less common case where the container
invokes a static
, factory
method on a class to create the bean. The object type returned from
the invocation of the static
factory method may
be the same class or another class entirely.
When you create a bean by the constructor approach, all normal classes are usable by and compatible with Spring. That is, the class being developed does not need to implement any specific interfaces or to be coded in a specific fashion. Simply specifying the bean class should suffice. However, depending on what type of IoC you use for that specific bean, you may need a default (empty) constructor.
The Spring IoC container can manage virtually any class you want it to manage; it is not limited to managing true JavaBeans. Most Spring users prefer actual JavaBeans with only a default (no-argument) constructor and appropriate setters and getters modeled after the properties in the container. You can also have more exotic non-bean-style classes in your container. If, for example, you need to use a legacy connection pool that absolutely does not adhere to the JavaBean specification, Spring can manage it as well.
With XML-based configuration metadata you can specify your bean class as follows:
<bean id="exampleBean" class="examples.ExampleBean"/> <bean name="anotherExample" class="examples.ExampleBeanTwo"/>
For details about the mechanism for supplying arguments to the constructor (if required) and setting object instance properties after the object is constructed, see Injecting Dependencies.
When defining a bean that you create with a static factory
method, you use the class
attribute to specify the
class containing the static
factory method and an
attribute named factory-method
to specify the name
of the factory method itself. You should be able to call this method
(with optional arguments as described later) and return a live object,
which subsequently is treated as if it had been created through a
constructor. One use for such a bean definition is to call
static
factories in legacy code.
The following bean definition specifies that the bean will be
created by calling a factory-method. The definition does not specify
the type (class) of the returned object, only the class containing the
factory method. In this example, the
createInstance()
method must be a
static method.
<bean id="exampleBean" class="examples.ExampleBean2" factory-method="createInstance"/>
For details about the mechanism for supplying (optional) arguments to the factory method and setting object instance properties after the object is returned from the factory, see Dependencies and configuration in detail.
Similar to instantiation through a static factory
method, instantiation with an instance factory method invokes a
non-static method of an existing bean from the container to create a
new bean. To use this mechanism, leave the class
attribute empty, and in the factory-bean
attribute, specify the name of a bean in the current (or
parent/ancestor) container that contains the instance method that is
to be invoked to create the object. Set the name of the factory method
itself with the factory-method
attribute.
<!-- the factory bean, which contains a method called createInstance() --> <bean id="serviceLocator" class="com.foo.DefaultServiceLocator"> <!-- inject any dependencies required by this locator bean --> </bean> <!-- the bean to be created via the factory bean --> <bean id="exampleBean" factory-bean="serviceLocator" factory-method="createInstance"/>
This approach shows that the factory bean itself can be managed and configured through dependency injection (DI). See Dependencies and configuration in detail.
Note | |
---|---|
In Spring documentation, factory bean
refers to a bean that is configured in the Spring container that
will create objects through an instance
or static
factory method. By contrast,
|