The client application first instantiates the RConnectionMonitor class.
Then it can access all API methods. If the client application wants to listen
to notifications, it must implement the MConnectionMonitorObserver class
and register an instance of it to the API. Most of the API calls are asynchronous
and can be cancelled.
For simplicity, the instance of RConnectionMonitor is
an automatic variable in the example below. When the instance of RConnectionMonitor is
a member variable, ConnectL() should be called when constructing
the object and Close() should be called when destructing.
#include <rconnmon.h> RConnectionMonitor monitor; // Open RConnectionMonitor object monitor.ConnectL(); // ... // Close RConnectionMonitor object when it is not needed any more monitor.Close();
The following example shows how to retrieve various connection level information.
#include <rconnmon.h>
RConnectionMonitor monitor;
TRequestStatus status;
TUint connectionCount( 0 );
TUint subConnectionCount( 0 );
TUint connectionId( 0 );
monitor.ConnectL(); // Open RConnectionMonitor object
// Get connection count
monitor.GetConnectionCount(
connectionCount,
status );
User::WaitForRequest( status );
if ( status.Int() != KErrNone ) { /* Error */ }
if ( connectionCount == 0 ) { /* No connection */ }
// Get connection info (1st connection)
TInt error = monitor.GetConnectionInfo(
1,
connectionId,
subConnectionCount );
if ( error != KErrNone ) { // Error }
TBuf<KConnMonMaxStringAttributeLength> iapName;
TUint iapId = 0;
TUint downlinkData = 0;
TUint uplinkData = 0;
TInt signalStrength = 0;
TBool connectionActivity = EFalse;
TInt bearer = 0;
TBuf<CConnMonWlanNetwork::KMaxNameLength> ssid;
TUint transmitPower = 0;
TInt networkMode = 0;
TInt securityMode = 0;
TBuf<KConnMonMaxStringAttributeLength> apName;
// Get connection IAP name
monitor.GetStringAttribute(
connectionId,
0,
KIAPName,
iapName,
status );
User::WaitForRequest( status );
if ( status.Int() != KErrNone ) { /* Error */ }
// Get connection IAP ID
monitor.GetUintAttribute(
connectionId,
0,
KIAPId,
iapId,
status );
User::WaitForRequest( status );
if ( status.Int() != KErrNone ) { /* Error */ }
// Get connection downlink data (in bytes)
monitor.GetUintAttribute(
connectionId,
0,
KDownlinkData,
downlinkData,
status );
User::WaitForRequest( status );
if ( status.Int() != KErrNone ) { /* Error */ }
// Get connection uplink data (in bytes)
monitor.GetUintAttribute(
connectionId,
0,
KUplinkData,
uplinkData,
status );
User::WaitForRequest( status );
if ( status.Int() != KErrNone ) { /* Error */ }
// Get the signal strength (in mW)
monitor.GetIntAttribute(
connectionId,
0,
KSignalStrength,
signalStrength,
status );
User::WaitForRequest( status );
if ( status.Int() != KErrNone ) { /* Error */ }
// Get the current connection activity
monitor.GetBoolAttribute(
connectionId,
0,
KConnectionActive,
connectionActivity,
status );
User::WaitForRequest( status );
if ( status.Int() != KErrNone ) { /* Error */ }
// Get the connection bearer
monitor.GetIntAttribute(
connectionId,
0,
KBearer,
bearer,
status );
User::WaitForRequest( status );
if ( status.Int() != KErrNone ) { /* Error */ }
if ( bearer == EBearerWLAN )
{
// Get ssid name
monitor.GetStringAttribute(
connectionId,
0,
KNetworkName,
ssid,
status );
User::WaitForRequest( status );
if ( status.Int() != KErrNone ) { /* Error */ }
// Get WLAN transmit power
monitor.GetUintAttribute(
connectionId,
0,
KTransmitPower,
transmitPower,
status );
User::WaitForRequest( status );
if ( status.Int() != KErrNone ) { /* Error */ }
// Get network mode
monitor.GetIntAttribute(
connectionId,
0,
KNetworkMode,
networkMode,
status );
User::WaitForRequest( status );
if ( status.Int() != KErrNone ) { /* Error */ }
// Get security mode
monitor.GetIntAttribute(
connectionId,
0,
KSecurityMode,
securityMode,
status );
User::WaitForRequest( status );
if ( status.Int() != KErrNone ) { /* Error */ }
}
else
{
// Get access point name
monitor.GetStringAttribute(
connectionId,
0,
KAccessPointName,
apName,
status );
User::WaitForRequest( status );
if ( status.Int() != KErrNone ) { /* Error */ }
}
monitor.Close(); // Close RConnectionMonitor object
The following example shows how to cancel an outstanding ConnMon request.
#include <rconnmon.h>
RConnectionMonitor monitor;
TRequestStatus status;
TInt error( KErrNone );
monitor.ConnectL(); // Open RConnectionMonitor object
// Buffer for WLAN information
CConnMonWlanNetworksPtrArrayPckg* wlanBuf =
new( ELeave ) CConnMonWlanNetworksPtrArrayPckg( 2048 );
TPtr wlanPtr( wlanBuf->Buf()->Des() );
// Set a 120 second WLAN scan delay
TUint scanDelay = 120;
error = monitor.SetUintAttribute(
EBearerIdWLAN,
0,
KWlanScanMaxDelay,
scanDelay );
if ( error != KErrNone ) { /* Error */ }
// Request a WLAN scan. Scan will complete in 2 minutes, or sooner if some
// other process initiates a WLAN scan.
monitor.GetPckgAttribute(
EBearerIdWLAN,
0,
KWlanNetworks,
wlanPtr,
status );
// To cancel the WLAN scan request:
monitor.CancelAsyncRequest( EConnMonGetPckgAttribute );
User::WaitForRequest( status ); // Should return immediately
error = status.Int();
if ( error == KErrNone ) { /* Request was completed before cancel */ }
else if ( error == KErrCancel ) { /* Request has been cancelled */ }
else { /* Error */ }
delete wlanBuf;
monitor.Close(); // Close RConnectionMonitor object
The following example shows how to close a connection using ConnMon API.
// To close a specific connection:
// (requires NetworkServices and NetworkControl capabilities)
TInt error = monitor.SetBoolAttribute(
connectionId,
0,
KConnectionStop,
ETrue );
if ( error != KErrNone ) { /* Error */ }
// To close all connections:
// (requires NetworkServices and NetworkControl capabilities)
TInt error = monitor.SetBoolAttribute(
EBearerIdAll,
0,
KConnectionStopAll,
ETrue );
if ( error != KErrNone ) { /* Error */ }
The following example shows how to register as an event listener for ConnMon
events. Most events are sent to registered listeners by default, but some
events are disabled by default because they are heavier and cause extra processing.
If the client is interested in these special events, the relevant threshold
values need to be set before calling NotifyEventL(). See Section 3.5.1 for a list of these events.
#include <rconnmon.h>
RConnectionMonitor monitor;
TRequestStatus status;
TUint connectionCount( 0 );
TUint subConnectionCount( 0 );
TUint connectionId( 0 );
monitor.ConnectL(); // Open RConnectionMonitor object
// Get connection count
monitor.GetConnectionCount(
connectionCount,
status );
User::WaitForRequest( status );
if ( status.Int() != KErrNone ) { /* Error */ }
if ( connectionCount == 0 ) { /* No connection */ }
// Get connection info (1st connection)
TInt error = monitor.GetConnectionInfo(
1,
connectionId,
subConnectionCount );
if ( error != KErrNone ) { /* Error */ }
// Some events are not sent by default. To receive them, relevant threshold
// values need to be set before registering the event listener.
// To receive EConnMonConnectionActivityChange events for a specific connection
error = monitor.SetUintAttribute( connectionId, 0, KActivityTimeThreshold, 10 );
if ( error != KErrNone ) { /* Error */ }
// To receive EConnMonDownlinkDataThreshold events for a specific connection
error = monitor.SetUintAttribute( connectionId, 0, KDownlinkDataThreshold, 32768 );
if ( error != KErrNone ) { /* Error */ }
// To receive EConnMonUplinkDataThreshold events for a specific connection
error = monitor.SetUintAttribute( connectionId, 0, KUplinkDataThreshold, 16384 );
if ( error != KErrNone ) { /* Error */ }
// To receive EConnMonBearerAvailabilityChange events
error = monitor.SetUintAttribute( EBearerIdAll, 0, KBearerAvailabilityThreshold, 1 );
if ( error != KErrNone ) { /* Error */ }
// To receive EConnMonSignalStrengthChange events
error = monitor.SetUintAttribute( EBearerIdAll, 0, KSignalStrengthThreshold, 1 );
if ( error != KErrNone ) { /* Error */ }
// To receive EConnMonBearerInfoChange and EConnMonBearerGroupChange events
// instead of the more limited EConnMonBearerChange event
error = monitor.SetUintAttribute( EBearerIdAll, 0, KBearerGroupThreshold, 1 );
if ( error != KErrNone ) { /* Error */ }
// Register for events. iObserver is an instance of the class that implements
// the event handler. In this example it’s an instance of MyClass (See next
// use case)
CMyConnMonObserver* iObserver = new( ELeave ) CMyConnMonObserver();
error = monitor.NotifyEventL( *iObserver );
if ( error != KErrNone ) { /* Error */ }
// ...
// Events must be cancelled and RConnectionMonitor object closed when not
// needed any more.
monitor.CancelNotifications();
delete iObserver;
iObserver = NULL;
monitor.Close(); // Close RConnectionMonitor object
The following events are disabled by default. For a client to receive these events, the corresponding threshold variable needs to be set.
Enabled
with TUint attribute KDownlinkDataThreshold.
Enabled
with TUint attribute KUplinkDataThreshold.
EConnMonConnectionActivityChange
Enabled
with TUint attribute KActivityTimeThreshold.
Enabled
with TUint attribute KSignalStrengthThreshold.
EConnMonBearerAvailabilityChange
Enabled
with TUint attribute KBearerAvailabilityThreshold.
Enabled
with TUint attribute KBearerGroupThreshold.
Will also enable EConnMonBearerGroupChange events
and disable EConnMonBearerChange events.
Enabled
with TUint attribute KBearerGroupThreshold.
Will also enable EConnMonBearerInfoChange events
and disable EConnMonBearerChange events.
The following example shows an example implementation of a ConnMon event handler. Normally a client is only interested in a limited set of ConnMon events and ignores the rest.
class CMyConnMonObserver : public CBase, public MConnectionMonitorObserver
{
private:
void EventL( const CConnMonEventBase& aEvent );
};
void CMyConnMonObserver::EventL( const CConnMonEventBase& aEvent )
{
switch( aEvent.EventType() )
{
case EConnMonCreateConnection:
{
CConnMonCreateConnection* realEvent;
realEvent = ( CConnMonCreateConnection* ) &aEvent;
TUint connectionId = realEvent->ConnectionId();
}
break;
case EConnMonDeleteConnection:
{
CConnMonDeleteConnection* realEvent;
realEvent = ( CConnMonDeleteConnection* ) &aEvent;
TUint connectionId = realEvent->ConnectionId();
TUint downlinkData = realEvent->DownlinkData();
TUint uplinkData = realEvent->UplinkData();
TBool authoritativeDelete = realEvent->AuthoritativeDelete();
}
break;
case EConnMonCreateSubConnection:
{
CConnMonCreateSubConnection* realEvent;
realEvent = ( CConnMonCreateSubConnection* ) &aEvent;
TUint connectionId = realEvent->ConnectionId();
TUint subConnectionId = realEvent->SubConnectionId();
}
break;
case EConnMonDeleteSubConnection:
{
CConnMonDeleteSubConnection* realEvent;
realEvent = ( CConnMonDeleteSubConnection* ) &aEvent;
TUint connectionId = realEvent->ConnectionId();
TUint subConnectionId = realEvent->SubConnectionId();
TUint downlinkData = realEvent->DownlinkData();
TUint uplinkData = realEvent->UplinkData();
TBool authoritativeDelete = realEvent->AuthoritativeDelete();
}
break;
case EConnMonDownlinkDataThreshold:
{
CConnMonDownlinkDataThreshold* realEvent;
realEvent = ( CConnMonDownlinkDataThreshold* ) &aEvent;
TUint connectionId = realEvent->ConnectionId();
TUint subConnectionId = realEvent->SubConnectionId();
TUint downlinkData = realEvent->DownlinkData();
}
break;
case EConnMonUplinkDataThreshold:
{
CConnMonUplinkDataThreshold* realEvent;
realEvent = ( CConnMonUplinkDataThreshold* ) &aEvent;
TUint connectionId = realEvent->ConnectionId();
TUint subConnectionId = realEvent->SubConnectionId();
TUint uplinkData = realEvent->UplinkData();
}
break;
case EConnMonNetworkStatusChange:
{
CConnMonNetworkStatusChange* realEvent;
realEvent = ( CConnMonNetworkStatusChange* ) &aEvent;
TUint connectionId = realEvent->ConnectionId(); // generic
// TConnMonNetworkStatus
TInt networkStatus = realEvent->NetworkStatus();
}
break;
case EConnMonConnectionStatusChange:
{
CConnMonConnectionStatusChange* realEvent;
realEvent = ( CConnMonConnectionStatusChange* ) &aEvent;
TUint connectionId = realEvent->ConnectionId();
TUint subConnectionId = realEvent->SubConnectionId();
TInt connectionStatus = realEvent->ConnectionStatus();
// See nifvar.h for details on connection status values
}
break;
case EConnMonConnectionActivityChange:
{
CConnMonConnectionActivityChange* realEvent;
realEvent = ( CConnMonConnectionActivityChange* ) &aEvent;
TUint connectionId = realEvent->ConnectionId();
TUint subConnectionId = realEvent->SubConnectionId();
TBool connectionActivity = realEvent->ConnectionActivity();
}
break;
case EConnMonNetworkRegistrationChange:
{
CConnMonNetworkRegistrationChange* realEvent;
realEvent = ( CConnMonNetworkRegistrationChange* ) &aEvent;
TUint connectionId = realEvent->ConnectionId(); // generic
// TConnMonNetworkRegistration
TInt networkRegistrationStatus = realEvent->RegistrationStatus();
}
break;
case EConnMonBearerChange:
{
CConnMonBearerChange* realEvent;
realEvent = ( CConnMonBearerChange* ) &aEvent;
TUint connectionId = realEvent->ConnectionId(); // generic
TInt bearerChange = realEvent->Bearer();
}
break;
case EConnMonSignalStrengthChange:
{
CConnMonSignalStrengthChange* realEvent;
realEvent = ( CConnMonSignalStrengthChange* ) &aEvent;
TUint connectionId = realEvent->ConnectionId(); // generic
TInt signalStrengthChange = realEvent->SignalStrength();
}
break;
case EConnMonBearerAvailabilityChange:
{
CConnMonBearerAvailabilityChange* realEvent;
realEvent = ( CConnMonBearerAvailabilityChange* ) &aEvent;
TUint connectionId = realEvent->ConnectionId(); // generic
TBool bearerAvailability = realEvent->Availability();
}
break;
case EConnMonIapAvailabilityChange:
{
CConnMonIapAvailabilityChange* realEvent;
realEvent = ( CConnMonIapAvailabilityChange* ) &aEvent;
TUint connectionId = realEvent->ConnectionId(); // generic
TConnMonIapInfo iaps = realEvent->IapAvailability();
for ( TUint i = 0; i < iaps.Count(); i++ )
{
TUint iapId = iaps.iIap[i].iIapId;
}
}
break;
case EConnMonTransmitPowerChange:
{
CConnMonTransmitPowerChange* realEvent;
realEvent = (CConnMonTransmitPowerChange* ) &aEvent;
TUint connectionId = realEvent->ConnectionId();
TUint txPwrNow = realEvent->TransmitPower();
}
break;
case EConnMonSNAPsAvailabilityChange:
{
CConnMonSNAPsAvailabilityChange* realEvent;
realEvent = ( CConnMonSNAPsAvailabilityChange* ) &aEvent;
TUint connectionId = realEvent->ConnectionId(); // generic
TUint snapCount = realEvent->SNAPsAvailabile();
TConnMonSNAPInfo snaps = realEvent->SNAPAvailability();
for ( TUint i = 0; i < snaps.Count(); i++ )
{
TUint snapId = snaps.iSNAP[i].iSNAPId;
}
}
break;
case EConnMonNewWLANNetworkDetected:
{
CConnMonNewWLANNetworkDetected* realEvent;
realEvent = ( CConnMonNewWLANNetworkDetected* ) &aEvent;
TUint connectionId = realEvent->ConnectionId(); // generic
}
break;
case EConnMonOldWLANNetworkLost:
{
CConnMonOldWLANNetworkLost* realEvent;
realEvent = ( CConnMonOldWLANNetworkLost* ) &aEvent;
TUint connectionId = realEvent->ConnectionId(); // generic
}
break;
case EConnMonPacketDataAvailable:
{
CConnMonPacketDataAvailable* realEvent;
realEvent = ( CConnMonPacketDataAvailable* ) &aEvent;
TUint connectionId = realEvent->ConnectionId(); // generic
}
break;
case EConnMonPacketDataUnavailable:
{
CConnMonPacketDataUnavailable* realEvent;
realEvent = ( CConnMonPacketDataUnavailable* ) &aEvent;
TUint connectionId = realEvent->ConnectionId(); // generic
}
break;
case EConnMonBearerInfoChange:
{
CConnMonBearerInfoChange* realEvent;
realEvent = ( CConnMonBearerInfoChange* ) &aEvent;
TUint connectionId = realEvent->ConnectionId();
TInt bearerInfo = realEvent->BearerInfo(); // TConnMonBearerInfo
}
break;
case EConnMonBearerGroupChange:
{
CConnMonBearerGroupChange* realEvent;
realEvent = ( CConnMonBearerGroupChange* ) &aEvent;
TUint connectionId = realEvent->ConnectionId();
TBool bearerGroupInternal = realEvent->Internal();
TUint bearerGroups1 = 0;
TUint bearerGroups2 = 0;
// TConnMonBearerGroup
realEvent->BearerGroups( bearerGroups1, bearerGroups2 );
}
break;
default:
// For future events, unrecognized events must not crash the application
break;
}
}
This event is triggered when a new connection has been created. The connection ID passed in the event is a new ID number ConnMon assigned to the new connection.
This event is triggered when a connection has been deleted. The connection ID passed in the event is the connection ID of the deleted connection.
This event is triggered when a new subconnection has been created. Subconnections are not supported currently.
This event is triggered when a subconnection has been deleted. Subconnections are not supported currently.
This event is triggered when there is a sufficient change in the volume
of downlink data for a specific connection. The event is sent each time a
client specified amount (KDownlinkDataThreshold) of new data
has been sent. If another ConnMon client has requested for these events for
the same connection, the smallest threshold value is used globally. If KDownlinkDataThreshold is
0 (default), events are not sent for that connection. To prevent rapid flooding
of these events, different bearers have appropriate minimum threshold values
which is used to override too small thresholds when necessary.
See TUint attributes KDownlinkData and KDownlinkDataThreshold.
This event is triggered when there is a sufficient change in the volume
of uplink data for a specific connection. The event is sent each time a client
specified amount (KUplinkDataThreshold) of new data has been
received. If another ConnMon client has requested for these events for the
same connection, the smallest threshold value will be used globally. If KUplinkDataThreshold is
0 (default), events are not sent for that connection. To prevent rapid flooding
of these events, different bearers have appropriate minimum threshold values
which are used to override too small thresholds when necessary.
See TUint attributes KUplinkData and KUplinkDataThreshold.
This event is triggered when network status changes for some packet data
connection. The connection ID passed in the event is a bearer specific connection
ID (see TConnMonBearerId). The same information can be retrieved
with TInt attribute KNetworkStatus.
See TInt attribute KNetworkStatus.
This event is triggered when the status of some connection changes. The
same information can be retrieved with TInt attribute KConnectionStatus.
Connection status values are defined in nifvar.h.
See TInt attribute KConnectionStatus.
This event is triggered when some connection changes from active to idle
or vice versa. The client must set KActivityTimeThreshold to
receive these events. KActivityTimeThreshold defines the
period (in seconds) for checking whether the connection is active or not.
The minimum allowed value is 5 seconds. The connection is considered active,
if data has been passed during the last period, otherwise it is considered
inactive. The same information can be retrieved with TBool attribute KConnectionActive.
See TUint attribute KActivityTimeThreshold and
TBool attribute KConnectionActive.
This event is triggered when network registration status (GSM/GPRS/WCDMA)
changes. The connection ID passed in the event is a bearer specific connection
ID (see TConnMonBearerId). The same information can be retrieved
with TInt attribute KNetworkRegistration. Network registration
values are defined in TConnMonNetworkRegistration.
See TInt attribute KNetworkRegistration.
This event is triggered when bearer type (GPRS/EdgeGPRS/WCDMA) changes.
The connection ID passed in the event is a bearer specific connection ID,
either EBearerIdGPRS or EBearerIdWCDMA (see TConnMonBearerId).
The new bearer passed in the event can be EBearerGPRS, EBearerEdgeGPRS or EBearerWCDMA (see TConnMonBearerType). The same information can be retrieved with
TInt attribute KBearer.
Note: If TUint attribute KBearerGroupThreshold is set,
these events are disabled and events EConnMonBearerInfoChange and EConnMonBearerGroupChange are
used instead. Use these events, for example, if HSDPA related information
is required.
See TInt attribute KBearer and
TUint attribute KBearerGroupThreshold.
This event is triggered when signal strength changes. The connection ID
passed in the event is a bearer specific connection ID (see TConnMonBearerId).
This event is valid only for cellular (GPRS, WCDMA, etc.) bearers and not
for other bearers, e.g. WLAN. The client must set KSignalStrengthThreshold to
1 to receive these events.
See TInt attribute KSignalStrength and
TUint attribute KSignalStrengthThreshold.
This event is triggered when the availability of some bearer changes. The
connection ID passed in the event is a bearer specific connection ID (see TConnMonBearerId).
The client must set KBearerAvailabilityThreshold to 1 to
receive these events. Using this event for detecting changes in WLAN availability
requires WLAN background scanning to be enabled.
See TUint attribute KBearerAvailabilityThreshold and
TBool attribute KBearerAvailability.
This event is triggered when IAP availability changes. The connection ID
passed in the event is the generic connection ID EBearerIdAll.
The ID numbers of available IAPs are included in the event (see TConnMonIapInfo).
The same information can be retrieved with packaged attribute KIapAvailability.
See packaged attribute KIapAvailability.
This event is triggered when the used WLAN transmit power changes. The
connection ID passed in the event is the bearer specific connection ID EBearerIdWLAN.
Transmit power is given in milliwatts (mW). The same information can be retrieved
with TUint attribute KTransmitPower.
See TUint attribute KTransmitPower.
This event is triggered when SNAP availability changes. The connection
ID passed in the event is the generic connection ID EBearerIdAll.
The ID numbers of available SNAPs are included in the event (see TConnMonSNAPInfo).
The same information can be retrieved with packaged attributes KSNAPsAvailability and KAvailableSNAPsIds.
See packaged attributes KSNAPsAvailability and KAvailableSNAPsIds.
This event is triggered when new WLAN networks are detected during a WLAN
scan. The connection ID passed in the event is the bearer specific connection
ID EBearerIdWLAN. To receive these events, WLAN background
scanning must be enabled, or some other mechanism must be used to trigger
the necessary WLAN scans.
This event is triggered when one or more WLAN networks have been lost since
the last WLAN scan. The connection ID passed in the event is the bearer specific
connection ID EBearerIdWLAN. To receive these events, WLAN
background scanning must be enabled, or some other mechanism must be used
to trigger the necessary WLAN scans.
This event is triggered when GPRS or WCDMA bearer availability changes,
a phone call is started, or a phone call ends. The connection ID passed in
the event is a bearer specific connection ID, either EBearerIdGPRS or EBearerIdWCDMA (see TConnMonBearerId).
EConnMonPacketDataAvailable and EConnMonPacketDataUnavailable events
form a pair. Two events are always sent, one with connection ID EBearerIdGPRS for
2G network, and one with connection ID EBearerIdWCDMA for
3G network. The event for the network that the phone is not registered to
is always of type EConnMonPacketDataUnavailable. If the phone
does not support dual transfer mode and a call is started, a GPRS or WCDMA
packet data connection is put on hold. In this scenario, both are of type EConnMonPacketDataUnavailable.
The same information can be retrieved with TBool attribute KPacketDataAvailability.
See TBool attribute KPacketDataAvailability.
This event is triggered when GPRS or WCDMA bearer availability changes,
a phone call is started, or a phone call ends. The connection ID passed in
the event is a bearer specific connection ID, either EBearerIdGPRS or EBearerIdWCDMA (see TConnMonBearerId).
EConnMonPacketDataUnavailable and EConnMonPacketDataAvailable events
form a pair. Two events are always sent, one with connection ID EBearerIdGPRS for
2G network, and one with connection ID EBearerIdWCDMA for
3G network. The event for the network that the phone is not registered to
is always of type EConnMonPacketDataUnavailable. If the phone
does not support dual transfer mode and a call is started, a GPRS or WCDMA
packet data connection is put on hold. In this scenario, both are of type EConnMonPacketDataUnavailable.
The same information can be retrieved with TBool attribute KPacketDataAvailability.
See TBool attribute KPacketDataAvailability.
This event is triggered when there is a change in bearer information for
an existing connection, or if the network mode changes e.g. from 2G to 3G.
For connection specific events, the connection ID passed in the event is the
respective connection specific ID, and for network level events, the connection
ID is EBearerIdAll. The same connection level information
can be retrieved with TInt attribute KBearerInfo. The bearer
info values are defined in TConnMonBearerInfo.
Note: The client needs to set the TUint attribute KBearerGroupThreshold in
order to receive these events. This also disables the EConnMonBearerChange events.
See TInt attribute KBearerInfo,
TUint attribute KBearerGroupThreshold and EConnMonBearerChange event.
This event is triggered when there is a change in bearer group information
for an existing connection. The connection ID passed in the event is the respective
connection specific ID. The same information can be retrieved with packaged
attribute KBearerGroupInfo. The bearer group bitmask is defined
in TConnMonBearerGroup.
Note: The client needs to set the TUint attribute KBearerGroupThreshold in
order to receive these events. This also disables EConnMonBearerChange events.
See packaged attribute KBearerGroupInfo,
TUint attribute KBearerGroupThreshold and EConnMonBearerChange event.
These attributes are used with RConnectionMonitor and RConnectionMonitor methods.
Used with GetIntAttribute(). Parameter aConnectionId must
be a valid connection ID for an existing connection, or the bearer specific
connection ID EBearerIdGPRS.
This attribute is used to retrieve the bearer of a connection. If the bearer
specific connection ID EBearerIdGPRS is used as connection
ID parameter, ConnMon checks if EDGE is in use. If yes, EBearerEdgeGPRS is
returned, if not, EBearerGPRS is returned. Connection bearer
types are defined in TConnMonBearerType.
See the EConnMonBearerChange event.
Used with GetIntAttribute(). Parameter aConnectionId must
be a valid connection ID for an existing connection, or a bearer specific
connection ID. Supported bearer specific connection IDs are:
EBearerIdGPRS
EBearerIdWCDMA
This attribute is used to retrieve the current network status of the phone.
Network status values are defined in TConnMonNetworkStatus.
See the EConnMonNetworkStatusChange event.
Used with GetIntAttribute(). Parameter aConnectionId must
be a valid connection ID for an existing connection.
This attribute is used to retrieve the current status/progress information of a connection. Connection status values are defined in nifvar.h.
See the EConnMonConnectionStatusChange event.
Used with GetIntAttribute(). Parameter aConnectionId must
be a valid connection ID for an existing connection.
This attribute is used to retrieve the protocol type (type of PDP) of a
connection. Protocol types are defined in TConnMonProtocolType.
Used with GetIntAttribute(). Parameter aConnectionId must
be a valid connection ID for an existing connection, or a bearer specific
connection ID. Supported bearer specific connection IDs are:
EBearerIdCSD
EBearerIdGSM
EBearerIdGPRS
EBearerIdWCDMA
EBearerIdWcdmaCSD
This attribute is used to retrieve the current network registration status
of the phone. Network registration values are defined in TConnMonNetworkRegistration.
See the EConnMonNetworkRegistrationChange event.
Used with GetIntAttribute(). Parameter aConnectionId must
be a valid connection ID for an existing connection, or a bearer specific
connection ID. Supported bearer specific connection IDs are:
EBearerIdCSD
EBearerIdGSM
EBearerIdGPRS
EBearerIdWCDMA
EBearerIdWcdmaCSD
EBearerIdWLAN
This attribute is used to retrieve the current signal strength. For WLAN, if an active WLAN connection is present, the signal strength of that connection is returned. Otherwise a WLAN scan is performed and the signal strength of the strongest network found is returned.
See the EConnMonSignalStrengthChange event.
Used with GetIntAttribute(). Parameter aConnectionId must
be a valid connection ID for an existing WLAN connection.
This attribute is used to retrieve the network mode of an active WLAN connection.
WLAN network modes are defined in TConnMonNetworkMode.
Used with GetIntAttribute(). Parameter aConnectionId must
be a valid connection ID for an existing WLAN connection.
This attribute is used to retrieve the security mode of an active WLAN
connection. WLAN connection security modes are defined in TConnMonSecurityMode.
Used with GetIntAttribute(). Parameter aConnectionId must
be a valid connection ID for an existing connection.
This attribute is used to retrieve the current bearer information for an
existing connection. Bearer information values are defined in TConnMonBearerInfo.
See the EConnMonBearerInfoChange event.
Used with GetIntAttribute() and SetIntAttribute().
Parameter aConnectionId must be a valid connection ID for
an existing WLAN connection, or the bearer specific connection ID EBearerIdWLAN.
This attribute is used to control the behaviour of WLAN scanning together
with TUint attribute KWlanScanMaxDelay. These attributes
are client specific, and do not directly affect other ConnMon clients. KWlanScanCacheLifetime represents
the age (in seconds) of WLAN scan results that the client is willing to accept.
The valid value range is 0-60 seconds. Greater values are automatically set
to the maximum allowed value. The value -1 represents the device specific
default value (usually 7 seconds). The bigger this value is, the more likely
it is there will be a suitable WLAN scan result in cache when a WLAN scan
request is made. This leads to faster completion of WLAN scan requests and
also less frequent WLAN scanning performed by the device, which in turn leads
to longer battery life.
Note: KWlanScanCacheLifetime attribute is ignored unless
TUint attribute KWlanScanMaxDelay is set to 0.
See TUint attribute KWlanScanMaxDelay.
These attributes are used with the RConnectionMonitor and RConnectionMonitor methods.
Used with GetUintAttribute(). Parameter aConnectionId must
be a valid connection ID for an existing connection.
This attribute is used to retrieve the amount of data in bytes transferred by this connection from the remote endpoint.
Used with GetUintAttribute(). Parameter aConnectionId must
be a valid connection ID for an existing connection.
This attribute is used to retrieve the amount of data in bytes transferred by this connection to the remote endpoint.
Used with GetUintAttribute(). Parameter aConnectionId must
be a valid connection ID for an existing connection.
This attribute is used to retrieve the IAP ID of an active connection.
Used with GetUintAttribute(). Parameter aConnectionId must
be a valid connection ID for an existing connection.
This attribute is used to retrieve the network ID of an active connection.
Used with GetUintAttribute(). Parameter aConnectionId must
be a valid connection ID for an existing WLAN connection.
This attribute is used to retrieve the transmit power of an active WLAN connection.
See the EConnMonTransmitPowerChange event.
Used with GetUintAttribute(). Parameter aConnectionId is
not used with this attribute.
This attribute is used to retrieve the current phone network mode. The
network modes are defined in TConnMonMobilePhoneNetworkMode.
See the EConnMonBearerChange and EConnMonBearerInfoChange events.
Used with GetUintAttribute() and SetUintAttribute().
Parameter aConnectionId must be a valid connection ID for
an existing connection.
This attribute controls connection activity monitoring for a connection.
It defines the period (in seconds) for checking whether the connection is
active or not. The minimum allowed value is 5 seconds. The default value 0
means monitoring is disabled and EConnMonConnectionActivityChange events
are not sent for this connection. If set to a value in between these, the
minimum allowed value is used.
See the EConnMonConnectionActivityChange event.
Used with GetUintAttribute() and SetUintAttribute().
Parameter aConnectionId must be a valid connection ID for
an existing connection.
This attribute controls downlink data amount monitoring for a connection.
It defines the amount of data (in bytes) that needs to be received by a connection
before a new EConnMonDownlinkDataThreshold event is generated.
The minimum allowed value is 4096 bytes, but this can be higher depending
on the bearer of the connection. This is to prevent event flooding on higher
bandwidth networks. The default value 0 means monitoring is disabled and the EConnMonDownlinkDataThreshold events
are not sent for this connection.
The bearer specific minimum values are:
Normal: 4096 bytes.
2G network: 20480 bytes.
3G network: 51200 bytes.
WLAN network: 102400 bytes.
See the EConnMonDownlinkDataThreshold event.
Used with GetUintAttribute() and SetUintAttribute().
Parameter aConnectionId must be a valid connection ID for
an existing connection.
This attribute controls uplink data amount monitoring for a connection.
It defines the amount of data (in bytes) that needs to be sent by a connection
before a new EConnMonUplinkDataThreshold event is generated.
The minimum allowed value is 4096 bytes, but this can be higher depending
on the bearer of the connection. This is to prevent event flooding on higher
bandwidth networks. The default value 0 means monitoring is disabled and the EConnMonUplinkDataThreshold events
are not sent for this connection.
The bearer specific minimum values are:
Normal: 4096 bytes.
2G network: 20480 bytes.
3G network: 51200 bytes.
WLAN network: 102400 bytes.
See the EConnMonUplinkDataThreshold event.
Used with GetUintAttribute() and SetUintAttribute().
Parameter aConnectionId is not used with this attribute.
This attribute controls bearer availability monitoring. Set to 1 to receive
notifications from ConnMon when bearer availability changes. The default value
0 means monitoring is disabled and the EConnMonBearerAvailabilityChange events
are not sent.
See the EConnMonBearerAvailabilityChange event.
Used with GetUintAttribute() and SetUintAttribute().
Parameter aConnectionId is not used with this attribute.
This attribute controls cellular network signal strength monitoring. Set
to 1 to receive notifications from ConnMon when cellular network signal strength
changes. The default value 0 means monitoring is disabled and the EConnMonSignalStrengthChange events
are not sent.
See the EConnMonSignalStrengthChange event.
Used with GetUintAttribute() and SetUintAttribute().
Parameter aConnectionId is not used with this attribute.
This attribute controls whether ConnMon is sending a client EConnMonBearerChange events,
or EConnMonBearerInfoChange and EConnMonBearerGroupChange events.
The new EConnMonBearerChange and EConnMonBearerInfoChange events
are more up to date, and designed to be extendable. Set to 1 to take them
into use. The default value 0 means EConnMonBearerChange events
are used instead, and EConnMonBearerInfoChange and EConnMonBearerGroupChange are
not sent.
See the EConnMonBearerChange, EConnMonBearerInfoChange and EConnMonBearerGroupChange events.
Used with GetUintAttribute() and SetUintAttribute().
Parameter aConnectionId must be a valid connection ID for
an existing WLAN connection, or the bearer specific connection ID EBearerIdWLAN.
This attribute is used to control the behaviour of WLAN scanning together
with TInt attribute KWlanScanCacheLifetime. These attributes
are client specific, and do not directly affect other ConnMon clients. KWlanScanMaxDelay represents
the time (in seconds) the client is willing to wait for WLAN scan results.
These WLAN scan results will be up to date, and thus the device is forced
to perform a WLAN scan. The valid value range is 0-1200 seconds. Greater values
are automatically set to the maximum allowed value. If another process triggers
a WLAN scan while a scan request is waiting for this delay, the request is
completed early with the fresh scan results.
Note: When KWlanScanMaxDelay is set to 0 (the default
value), cached WLAN scan results may be used instead. TInt attribute KWlanScanCacheLifetime can
be used to control the maximum allowed age of these cached WLAN scan results.
See the TInt attribute KWlanScanCacheLifetime.
These attributes are used with the RConnectionMonitor and RConnectionMonitor methods.
Used with GetBoolAttribute(). Parameter aConnectionId must
be a valid connection ID for an existing connection.
This attribute is used to check if a connection is active or not. If EConnMonConnectionActivityChange events
are enabled for this connection, ConnMon returns the current cached information
immediately. If these events are not enabled (default), ConnMon completes
this request in approximately 1 second. The connection is considered active,
if data has been passed during this time, otherwise it is considered inactive.
See the EConnMonConnectionActivityChange event.
Used with GetBoolAttribute(). Parameter aConnectionId must
be a valid connection ID for an existing connection, or a bearer specific
connection ID. Supported bearer specific connection IDs are:
EBearerIdCSD
EBearerIdGPRS
EBearerIdWCDMA
EBearerIdWcdmaCSD
EBearerIdWLAN
This attribute is used to find out if a bearer is currently available. To check for a specific bearer, the given connection ID should be one of the bearer specific connection IDs. If the given connection ID belongs to a valid connection, the availability of the bearer used by that connection is checked.
See the EConnMonBearerAvailabilityChange event.
Used with GetBoolAttribute(). Parameter aConnectionId must
be a bearer specific connection ID. Supported bearer specific connection IDs
are:
EBearerIdGPRSEBearerIdWCDMAThis attribute is used to retrieve the packet data availability status for a 2G or 3G network. The status is false if the bearer is not available, or the phone does not support dual transfer mode and a phone call is currently active.
See the EConnMonPacketDataAvailable and EConnMonPacketDataUnavailable events.
Used with SetBoolAttribute(). Parameter aConnectionId must
be a valid connection ID for an existing connection.
By setting this attribute to ETrue, the connection referred
to by the connection ID is closed.
Note: The client must have the NetworkServices and NetworkControl capabilities
to use this attribute.
Used with SetBoolAttribute(). Parameter aConnectionId is
not used with this attribute.
By setting this attribute to ETrue, all connections on
the device are closed.
Note: The client must have the NetworkServices and NetworkControl capabilities
to use this attribute.
These attributes are used with the RConnectionMonitor and RConnectionMonitor methods.
Used with GetStringAttribute(). Parameter aConnectionId must
be a valid connection ID for an existing connection.
This attribute is used to retrieve the IAP name a connection is connected through.
Used with GetStringAttribute(). Parameter aConnectionId must
be a valid connection ID for an existing connection.
This attribute is used to retrieve the access point name from the IAP the connection is connected through.
Used with GetStringAttribute(). Parameter aConnectionId must
be a valid connection ID for an existing connection.
This attribute is used to retrieve the used telephone number for a connection, when applicable.
Used with GetStringAttribute(). Parameter aConnectionId must
be a valid connection ID for an existing WLAN connection.
This attribute is used to retrieve the network name (SSID) of the WLAN that a connection is connected to. A WLAN name can be up to 32 characters long.
Used with GetStringAttribute() and SetStringAttribute().
Parameter aConnectionId must be a valid connection ID for
an existing WLAN connection, or the bearer specific connection ID EBearerIdWLAN.
This attribute is used to set the SSID value to be used when performing a WLAN scan for networks with a specific SSID.
See the packaged attribute KWlanSsidNetworks.
These attributes are used with the RConnectionMonitor method.
Used with GetPckgAttribute(). Parameter aConnectionId must
be a valid connection ID for an existing connection.
This attribute is used to retrieve a connections start time. The information
is transferred through a package (see TConnMonTimeBuf).
#include <rconnmon.h>
RConnectionMonitor monitor;
TRequestStatus status;
TUint connectionCount( 0 );
TUint subConnectionCount( 0 );
TUint connectionId( 0 );
monitor.ConnectL(); // Open RConnectionMonitor object
// Get connection count
monitor.GetConnectionCount(
connectionCount,
status );
User::WaitForRequest( status );
if ( status.Int() != KErrNone ) { /* Error */ }
if ( connectionCount == 0 ) { /* No connection */ }
// Get connection info (1st connection)
TInt error = monitor.GetConnectionInfo(
1,
connectionId,
subConnectionCount );
if ( error != KErrNone ) { /* Error */ }
// Get connection duration (1st connection)
TConnMonTimeBuf timeBuffer;
monitor.GetPckgAttribute(
connectionId,
0,
KStartTime,
timeBuffer,
status );
User::WaitForRequest( status );
if ( status.Int() != KErrNone ) { /* Error */ }
TTimeIntervalSeconds connectionDurationInSecs;
TTime now;
now.UniversalTime();
now.SecondsFrom( timeBuffer(), connectionDurationInSecs );
monitor.Close(); // Close RConnectionMonitor object
Used with GetPckgAttribute(). Parameter aConnectionId must
be a valid connection ID for an existing connection.
This attribute is used to retrieve the client UID for all clients using
a specific connection. ConnMon does not include itself in the results. The
information is transferred through a package (see TConnMonClientEnumBuf).
The package class has a fixed size array and is limited to a maximum of 10
(KConnMonMaxClientUids) UIDs.
#include <rconnmon.h>
RConnectionMonitor monitor;
TRequestStatus status;
TUint connectionCount( 0 );
TUint subConnectionCount( 0 );
TUint connectionId( 0 );
monitor.ConnectL(); // Open RConnectionMonitor object
// Get connection count
monitor.GetConnectionCount(
connectionCount,
status );
User::WaitForRequest( status );
if ( status.Int() != KErrNone ) { /* Error */ }
if ( connectionCount == 0 ) { /* No connection */ }
// Get connection info (1st connection)
TInt error = monitor.GetConnectionInfo(
1,
connectionId,
subConnectionCount );
if ( error != KErrNone ) { /* Error */}
// Get connection client info
TConnMonClientEnumBuf buf;
monitor.GetPckgAttribute(
connectionId,
0,
KClientInfo,
buf,
status );
User::WaitForRequest( status );
if ( status.Int() != KErrNone ) { /* Error */ }
TUint clientCount = buf().iCount;
for ( TInt i = 0; i < clientCount; i++ )
{
TInt32 clientUid = buf().iUid[i].iUid;
// ...
}
monitor.Close(); // Close RConnectionMonitor object
Used with GetPckgAttribute(). Parameter aConnectionId must
be a valid connection ID for an existing WLAN connection, or the bearer specific
connection ID EBearerIdWLAN.
This attribute is used to retrieve information about available WLANs. This
includes the network name (SSID), signal strength and mode (see TConnMonNetworkMode).
A WLAN scan is performed to obtain this information. The networks are sorted
according to signal strength, strongest network first. The information is
transferred through a package (see TConnMonNetworkNamesBuf).
The package class has a fixed size array and is limited to a maximum of 10
(KConnMonMaxNetworkCount) network information objects.
#include <rconnmon.h>
RConnectionMonitor monitor;
TRequestStatus status;
monitor.ConnectL(); // Open RConnectionMonitor object
// Buffer for basic WLAN information (max. 10 networks)
TConnMonNetworkNamesBuf buf;
monitor.GetPckgAttribute(
EBearerIdWLAN,
0,
KNetworkNames,
buf,
status );
User::WaitForRequest( status );
if ( status.Int() != KErrNone ) { /* Error */ }
TInt wlanCount = buf().Count();
TBuf<CConnMonWlanNetwork::KMaxNameLength> wlanName;
TInt wlanSignalStrength = 0;
TInt wlanMode = 0; // TConnMonNetworkMode
for ( TInt i = 0; i < wlanCount; i++ )
{
wlanName.Copy( buf().iNetwork[i].iName );
wlanSignalStrength = buf().iNetwork[i].iSignalStrength;
wlanMode = buf().iNetwork[i].iType;
// ...
}
monitor.Close(); // Close RConnectionMonitor object
Used with GetPckgAttribute(). Parameter aConnectionId must
be a bearer specific connection ID. Supported bearer specific connection IDs
are:
EBearerIdAll
EBearerIdGPRS
EBearerIdWCDMA
EBearerIdCSD
EBearerIdWcdmaCSD
EBearerIdLAN
EBearerIdWLAN
EBearerIdVirtualVPN
This attribute is used to retrieve bearer specific available IAP IDs, or
all available IAP IDs, depending on the given connection ID. The information
is transferred through a package (see TConnMonIapInfoBuf).
The package class has a fixed size array and is limited to a maximum of 25
(KConnMonMaxIAPCount) IDs.
See the EConnMonIapAvailabilityChange event.
#include <rconnmon.h>
RConnectionMonitor monitor;
TRequestStatus status;
monitor.ConnectL(); // Open RConnectionMonitor object
// Buffer for IAP info
TConnMonIapInfoBuf iapBuffer;
monitor.GetPckgAttribute(
EBearerIdAll,
0,
KIapAvailability,
iapBuffer,
status );
User::WaitForRequest( status );
if ( status.Int() != KErrNone ) { /* Error */ }
TUint iapCount = iapBuffer().Count();
for ( TInt i = 0; i < iapCount; i++ )
{
TUint iapId = iapBuffer().iIap[i].iIapId;
// ...
}
monitor.Close(); // Close RConnectionMonitor object
Used with GetPckgAttribute(). Parameter aConnectionId is
not used with this attribute.
This attribute is used to retrieve available SNAP IDs. The information
is transferred through a package (see TConnMonSNAPInfoBuf).
The package class has a fixed size array and is limited to a maximum of 25
(KConnMonMaxSNAPsCount) IDs.
See the EConnMonSNAPsAvailabilityChange event.
#include <rconnmon.h>
RConnectionMonitor monitor;
TRequestStatus status;
monitor.ConnectL(); // Open RConnectionMonitor object
// Buffer for SNAP information
TConnMonSNAPInfoBuf snapBuffer;
monitor.GetPckgAttribute(
EBearerIdAll,
0,
KSNAPsAvailability,
snapBuffer,
status );
User::WaitForRequest( status );
if ( status.Int() != KErrNone ) { /* Error */ }
TUint snapCount = snapBuffer().Count();
for ( TInt i = 0; i < snapCount; i++ )
{
TUint snapId = snapBuffer().iSNAP[i].iSNAPId;
// ...
}
monitor.Close(); // Close RConnectionMonitor object
Used with GetPckgAttribute(). Parameter aConnectionId is
not used with this attribute.
This attribute is used to retrieve available SNAP IDs. The information
is transferred through a package (see ConnMonIdsArrayPckg).
The package class has a buffer that the client needs to allocate memory for,
thus the size is not limited. The buffer also contains the total amount of
available SNAPs and how many of those fit inside the buffer.
See the EConnMonSNAPsAvailabilityChange event.
#include <rconnmon.h>
RConnectionMonitor monitor;
TRequestStatus status;
monitor.ConnectL(); // Open RConnectionMonitor object
// Buffer for SNAP information
ConnMonIdsArrayPckg idBuffer( 32 ); // Buffer size 32
TPtr idBufferPtr( idBuffer.Buf()->Des() );
monitor.GetPckgAttribute(
EBearerIdAll,
0,
KAvailableSNAPsIds,
idBufferPtr,
status );
User::WaitForRequest( status );
if ( status.Int() != KErrNone ) { /* Error */ }
// Amount of available SNAP IDs on the phone
TUint totalAmount = idBuffer.Buf()->Des()[0];
// Amount of available SNAP IDs that fit inside the buffer
TUint bufferAmount = idBuffer.Buf()->Des()[1];
if ( bufferAmount != totalAmount )
{
// Buffer was too small, all IDs did not fit.
// Minimum space needed is ( totalAmount * 2 ) + 2
}
// Unpack buffer to an RArray<TConnMonId>
RConnMonIdsArray idArray;
idBuffer.UnpackToL( idArray );
for ( TInt i = 0; i < idArray.Count(); i++ )
{
TConnMonId id = idArray[i];
TUint idNumber = id.Id();
// ...
}
idArray.Close();
monitor.Close(); // Close RConnectionMonitor object
Used with GetPckgAttribute(). Parameter aConnectionId must
be a valid connection ID for an existing WLAN connection, or the bearer specific
connection ID EBearerIdWLAN.
This attribute is used to perform a broadcast WLAN scan. The information
is transferred through a package (see CConnMonWlanNetworksPtrArrayPckg).
The package class has a buffer that the client needs to allocate memory for.
The buffer is filled with WLANs sorted by signal strength, strongest network
first. The buffer also contains the total amount of available WLANs and how
many of those fit inside the buffer.
Note: TInt attribute KWlanScanCacheLifetime and TUint
attribute KWlanScanMaxDelay can be used to control the timing
and age of the actual scan results.
See the EConnMonNewWLANNetworkDetected and EConnMonOldWLANNetworkLost events,
TInt attribute KWlanScanCacheLifetime and
TUint attribute KWlanScanMaxDelay.
Example how to perform a normal WLAN scan:
#include <rconnmon.h>
RConnectionMonitor monitor;
TRequestStatus status;
monitor.ConnectL(); // Open RConnectionMonitor object
// Buffer for WLAN information
CConnMonWlanNetworksPtrArrayPckg* wlanBuf =
new( ELeave ) CConnMonWlanNetworksPtrArrayPckg( 2048 );
TPtr wlanPtr( wlanBuf->Buf()->Des() );
monitor.GetPckgAttribute(
EBearerIdWLAN,
0,
KWlanNetworks,
wlanPtr,
status );
User::WaitForRequest( status );
if ( status.Int() != KErrNone ) { /* Error */ }
RConnMonWlanNetworksPtrArray wlanPtrArray;
wlanBuf->UnpackToL( wlanPtrArray );
// Amount of WLANs found
TUint totalAmount = wlanBuf->Buf()->Des()[0];
// Amount of WLANs that fit inside the buffer
TUint bufferAmount = wlanBuf->Buf()->Des()[1];
for ( TInt i = 0; i < wlanPtrArray.Count(); i++ )
{
TBuf<CConnMonWlanNetwork::KMaxNameLength> wlanName = wlanPtrArray[i]->Name();
TBuf8<CConnMonWlanNetwork::KWlanBssId> wlanBssid = wlanPtrArray[i]->WlanBssid();
TUint wlanConnectionMode = wlanPtrArray[i]->ConnectionMode();
TUint wlanSignalStrength = wlanPtrArray[i]->SignalStrength();
TUint wlanSecurityMode = wlanPtrArray[i]->SecurityMode();
// ...
delete wlanPtrArray[i];
}
wlanPtrArray.Close();
delete wlanBuf;
monitor.Close(); // Close RConnectionMonitor object
Example how to perform a WLAN scan with some voluntary delay added:
#include <rconnmon.h>
RConnectionMonitor monitor;
TRequestStatus status;
monitor.ConnectL(); // Open RConnectionMonitor object
// Buffer for WLAN information
CConnMonWlanNetworksPtrArrayPckg* wlanBuf =
new( ELeave ) CConnMonWlanNetworksPtrArrayPckg( 2048 );
TPtr wlanPtr( wlanBuf->Buf()->Des() );
// Set a 120 second WLAN scan delay
TUint scanDelay = 120;
TInt error = monitor.SetUintAttribute(
EBearerIdWLAN,
0,
KWlanScanMaxDelay,
scanDelay );
if ( error != KErrNone ) { /* Error */ }
// Request a WLAN scan. Scan will complete in 2 minutes, or sooner if some
// other process initiates a WLAN scan.
monitor.GetPckgAttribute(
EBearerIdWLAN,
0,
KWlanNetworks,
wlanPtr,
status );
User::WaitForRequest( status ); // Will take up to 2 minutes
if ( status.Int() != KErrNone ) { /* Error */ }
RConnMonWlanNetworksPtrArray wlanPtrArray;
wlanBuf->UnpackToL( wlanPtrArray );
// Amount of WLANs found
TUint totalAmount = wlanBuf->Buf()->Des()[0];
// Amount of WLANs that fit inside the buffer
TUint bufferAmount = wlanBuf->Buf()->Des()[1];
for ( TInt i = 0; i < wlanPtrArray.Count(); i++ )
{
TBuf<CConnMonWlanNetwork::KMaxNameLength> wlanName = wlanPtrArray[i]->Name();
TBuf8<CConnMonWlanNetwork::KWlanBssId> wlanBssid = wlanPtrArray[i]->WlanBssid();
TUint wlanConnectionMode = wlanPtrArray[i]->ConnectionMode();
TUint wlanSignalStrength = wlanPtrArray[i]->SignalStrength();
TUint wlanSecurityMode = wlanPtrArray[i]->SecurityMode();
// ...
delete wlanPtrArray[i];
}
wlanPtrArray.Close();
delete wlanBuf;
monitor.Close(); // Close RConnectionMonitor object
Used with GetPckgAttribute(). Parameter aConnectionId must
be a valid connection ID for an existing connection.
This attribute is used to retrieve bearer group information for a connection.
The bearer group information is a bitmask containing bearer type related information.
The bitmask is defined in TConnMonBearerGroup. The information
is transferred through a package (see TConnMonBearerGroupInfoBuf).
See the EConnMonBearerGroupChange event.
#include <rconnmon.h>
RConnectionMonitor monitor;
TRequestStatus status;
TUint connectionCount( 0 );
TUint subConnectionCount( 0 );
TUint connectionId( 0 );
monitor.ConnectL(); // Open RConnectionMonitor object
// Get connection count
monitor.GetConnectionCount(
connectionCount,
status );
User::WaitForRequest( status );
if ( status.Int() != KErrNone ) { /* Error */ }
if ( connectionCount == 0 ) { /* No connection */ }
// Get connection info (1st connection)
TInt error = monitor.GetConnectionInfo(
1,
connectionId,
subConnectionCount );
if ( error != KErrNone ) { /* Error */ }
// Get bearer group info
TConnMonBearerGroupInfoBuf bearerGroupInfoBuf;
monitor.GetPckgAttribute(
connectionId,
0,
KBearerGroupInfo,
bearerGroupInfoBuf,
status );
User::WaitForRequest( status );
if ( status.Int() != KErrNone ) { /* Error */ }
TBool internal = bearerGroupInfoBuf().iInternal;
TUint bearerGroupMask = bearerGroupInfoBuf().iBearerGroups;
monitor.Close(); // Close RConnectionMonitor object
Used with GetPckgAttribute(). Parameter aConnectionId must
be a valid connection ID for an existing WLAN connection, or the bearer specific
connection ID EBearerIdWLAN.
This attribute is used to perform a WLAN scan for networks with a specific
SSID. The SSID is set with the string attribute KWlanSsid.
If the SSID is empty (default), a normal broadcast scan is made. The request
works the same way as package attribute KWlanNetworks, but
multiple simultaneous SSID scan requests from one client are not allowed.
Any extra concurrent requests are completed with error code KErrInUse.
The information is transferred through a package (see CConnMonWlanNetworksPtrArrayPckg).
The package class has a buffer that the client needs to allocate memory for.
The buffer is filled with WLANs sorted by signal strength, strongest network
first. The buffer also contains the total amount of available WLANs and how
many of those fit inside the buffer.
See string attribute KWlanSsid and
packaged attribute KWlanNetworks.
#include <rconnmon.h>
RConnectionMonitor monitor;
TRequestStatus status;
monitor.ConnectL(); // Open RConnectionMonitor object
// Buffer for WLAN information
CConnMonWlanNetworksPtrArrayPckg* wlanBuf =
new( ELeave ) CConnMonWlanNetworksPtrArrayPckg( 1024 );
TPtr wlanPtr( wlanBuf->Buf()->Des() );
// String attribute for SSID scan
TBuf<32> ssidString;
ssidString.Copy( _L("MyWlan") );
TInt error = monitor.SetStringAttribute(
EBearerIdWLAN,
0,
KWlanSsid,
ssidString );
if ( error != KErrNone ) { /* error */ }
monitor.GetPckgAttribute(
EBearerIdWLAN,
0,
KWlanSsidNetworks,
wlanPtr,
status );
User::WaitForRequest( status );
if ( status.Int() != KErrNone ) { /* Error */ }
RConnMonWlanNetworksPtrArray wlanPtrArray;
wlanBuf->UnpackToL( wlanPtrArray );
// Amount of WLANs found
TUint totalAmount = wlanBuf->Buf()->Des()[0];
// Amount of WLANs that fit inside the buffer
TUint bufferAmount = wlanBuf->Buf()->Des()[1];
for ( TInt i = 0; i < wlanPtrArray.Count(); i++ )
{
TBuf<CConnMonWlanNetwork::KMaxNameLength> wlanName = wlanPtrArray[i]->Name();
TBuf8<CConnMonWlanNetwork::KWlanBssId> wlanBssid = wlanPtrArray[i]->WlanBssid();
TUint wlanConnectionMode = wlanPtrArray[i]->ConnectionMode();
TUint wlanSignalStrength = wlanPtrArray[i]->SignalStrength();
TUint wlanSecurityMode = wlanPtrArray[i]->SecurityMode();
// ...
delete wlanPtrArray[i];
}
wlanPtrArray.Close();
delete wlanBuf;
monitor.Close(); // Close RConnectionMonitor object
Used with GetPckgAttribute(). Parameter aConnectionId must
be a valid connection ID for an existing WLAN connection, or the bearer specific
connection ID EBearerIdWLAN.
This attribute is used to retrieve information about the currently used
WLAN. The request works the same way as package attribute KWlanNetworks.
The information is transferred through a package (see CConnMonWlanNetworksPtrArrayPckg).
The package class has a buffer that the client needs to allocate memory for,
but it only needs enough memory to contain one WLAN object. If the connection
ID given as parameter is for an existing connection, the request succeeds
only if that connection is using WLAN bearer. In case the connection ID is
invalid or the connection bearer is not WLAN, the request is completed with KErrArgument.
If the connection ID given as parameter is EBearerIdWLAN,
the request succeeds if there is a WLAN connection active. If not, the request
is completed with KErrNotFound.
See packaged attribute KWlanNetworks.
Retrieving information about currently used WLAN using the bearer specific connection ID:
#include <rconnmon.h>
RConnectionMonitor monitor;
TRequestStatus status;
monitor.ConnectL(); // Open RConnectionMonitor object
// Buffer for WLAN information
CConnMonWlanNetworksPtrArrayPckg* currentWlanBuf =
new( ELeave ) CConnMonWlanNetworksPtrArrayPckg( 80 );
TPtr currentWlanPtr( currentWlanBuf->Buf()->Des() );
// Get info for currently used WLAN
monitor.GetPckgAttribute(
EBearerIdWLAN,
0,
KWlanCurrentNetwork,
currentWlanPtr,
status );
User::WaitForRequest( status );
if ( status.Int() == KErrNotFound ) { /* No WLAN connection active */ }
else if ( status.Int() != KErrNone ) { /* Error */ }
else
{
// Process the results
RConnMonWlanNetworksPtrArray currentWlan;
currentWlanBuf->UnpackToL( currentWlan );
// With KWlanCurrentNetwork and no errors, both should be 1
TUint totalAmount = currentWlanBuf->Buf()->Des()[0];
TUint bufferAmount = currentWlanBuf->Buf()->Des()[1];
for ( TInt i = 0; i < currentWlan.Count(); i++ )
{
TBuf<CConnMonWlanNetwork::KMaxNameLength> name = currentWlan[i]->Name();
TBuf8<CConnMonWlanNetwork::KWlanBssId> bssid = currentWlan[i]->WlanBssid();
TUint connectionMode = currentWlan[i]->ConnectionMode();
TUint signalStrength = currentWlan[i]->SignalStrength();
TUint securityMode = currentWlan[i]->SecurityMode();
// ...
delete currentWlan[i];
}
currentWlan.Close();
}
delete currentWlanBuf;
monitor.Close(); // Close RConnectionMonitor object
Retrieving information about currently used WLAN using a connection specific connection ID:
#include <rconnmon.h>
RConnectionMonitor monitor;
TRequestStatus status;
TUint connectionCount( 0 );
TUint subConnectionCount( 0 );
TUint connectionId( 0 );
monitor.ConnectL(); // Open RConnectionMonitor object
// Get connection count
monitor.GetConnectionCount(
connectionCount,
status );
User::WaitForRequest( status );
if ( status.Int() != KErrNone ) { /* Error */ }
if ( connectionCount == 0 ) { /* No connection */ }
// Get connection info (1st connection)
TInt error = monitor.GetConnectionInfo(
1,
connectionId,
subConnectionCount );
if ( error != KErrNone ) { /* Error */ }
// Buffer for WLAN information, need space for only 1 WLAN
CConnMonWlanNetworksPtrArrayPckg* currentWlanBuf =
new( ELeave ) CConnMonWlanNetworksPtrArrayPckg( 80 );
TPtr currentWlanPtr( currentWlanBuf->Buf()->Des() );
// Get info for currently used WLAN
monitor.GetPckgAttribute(
connectionId,
0,
KWlanCurrentNetwork,
currentWlanPtr,
status );
User::WaitForRequest( status );
if ( status.Int() == KErrArgument ) { /* Bad connection ID or bearer was not WLAN */ }
else if ( status.Int() != KErrNone ) { /* Error */ }
else
{
// Process the results
RConnMonWlanNetworksPtrArray currentWlan;
currentWlanBuf->UnpackToL( currentWlan );
// With KWlanCurrentNetwork and no errors, both should be 1
TUint totalAmount = currentWlanBuf->Buf()->Des()[0];
TUint bufferAmount = currentWlanBuf->Buf()->Des()[1];
if ( bufferAmount == 1 )
{
TBuf<CConnMonWlanNetwork::KMaxNameLength> name = currentWlan[0]->Name();
TBuf8<CConnMonWlanNetwork::KWlanBssId> bssid = currentWlan[0]->WlanBssid();
TUint connectionMode = currentWlan[0]->ConnectionMode();
TUint signalStrength = currentWlan[0]->SignalStrength();
TUint securityMode = currentWlan[0]->SecurityMode();
// ...
delete currentWlan[0];
}
currentWlan.Close();
}
delete currentWlanBuf;
monitor.Close(); // Close RConnectionMonitor object
Used with GetPckgAttribute(). Parameter aConnectionId must
be a valid connection ID for an existing WLAN connection, or the bearer specific
connection ID EBearerIdWLAN.
This attribute is used to perform a broadcast WLAN scan and retrieve the
beacon frames for found WLANs. The information is transferred through a package
(see CConnMonWlanProbeRawBuffersPckg). The package class
has a buffer that the client needs to allocate memory for. The buffer is filled
with WLAN beacon frames in no specific order, until all frames are entered,
or the buffer runs out of space. The buffer also contains the total amount
of available WLANs and the amount of beacon frames that fit inside the buffer.
The size of a beacon frame is usually somewhere between 60 and 300 bytes.
It consists of a fixed length header and a variable length body.
The beacon frame header structure:
2 bytes: Frame control.
2 bytes: Duration.
6 bytes: Destination address.
6 bytes: Source address.
6 bytes: BSSID.
2 bytes: Sequence control.
8 bytes: Timestamp.
2 bytes: Beacon interval.
2 bytes: Capability information.
Body.
This gives 36 bytes and body.
The beacon frame body consists of a sequence of information elements (IE).
The IE structure:
1 byte: Information element ID.
1 byte: Information element length x (in bytes, max. 255, can be 0).
x bytes: Information element data.
This gives x+2 bytes per IE.
#include <rconnmon.h>
RConnectionMonitor monitor;
TRequestStatus status;
monitor.ConnectL(); // Open RConnectionMonitor object
// Buffer for WLAN beacon frame information
CConnMonWlanProbeRawBuffersPckg* wlanBeaconsBuf =
new( ELeave ) CConnMonWlanProbeRawBuffersPckg( 4096 );
TPtr8 wlanBeaconsPtr( wlanBeaconsBuf->Buf()->Des() );
monitor.GetPckgAttribute(
EBearerIdWLAN,
0,
KWlanProbeRawBuffers,
wlanBeaconsPtr,
status );
User::WaitForRequest( status );
if ( status.Int() != KErrNone ) { /* Error */ }
// Amount of WLAN networks found
TUint totalAmount = wlanBeaconsBuf->Total();
// Amount of beacon frames that fit inside the buffer
TUint bufferAmount = wlanBeaconsBuf->Count();
RConnMonWlanProbeRawBuffersPtrArray wlanBeaconsPtrArray;
wlanBeaconsBuf->UnpackToL( wlanBeaconsPtrArray );
for ( TInt i = 0; i < wlanBeaconsPtrArray.Count(); i++ )
{
CConnMonWlanProbeRawBuffer* beacon( wlanBeaconsPtrArray[i] );
TInt beaconLength = beacon->RawBuffer()->Length();
TInt ieCount = 0; // Number if IEs
TInt ieId = 0;
TInt ieLength = 0;
// Header is 36 bytes, body (Information Elements) starts at position 36
TInt index = 36;
while ( index < beaconLength )
{
ieCount++;
ieId = beacon->RawBuffer()->Des()[index++];
ieLength = beacon->RawBuffer()->Des()[index++];
index += ieLength;
// ...
}
if ( index != beaconLength ) { /* error */ }
// ...
delete beacon;
}
wlanBeaconsPtrArray.Close();
delete wlanBeaconsBuf;
monitor.Close(); // Close RConnectionMonitor object
Connection Monitor Server may return Symbian OS generic error codes, and it uses them according to the Symbian OS conventions. The following table contains the most common ConnMon error codes and a likely explanation of the cause.
| Error code | Likely explanation |
KErrNotFound |
A request was made with an invalid connection ID parameter, or the connection has already closed. |
KErrCancel |
A request has been cancelled by the client, and ConnMon completed it
with KErrCancel.
|
KErrNoMemory |
There was not enough free memory in the system to complete an operation. |
KErrNotSupported |
The requested functionality is not supported by ConnMon. |
KErrArgument |
A request was made with a bad attribute/connection ID combination. |
The memory overhead caused by the usage of the interface is negligible. It is highest when using WLAN scanning related functionality, about 16 Kbytes at its peak.
Connection Monitor Server API has been designed to be extensible with new query attributes and notifications without breaking the binary compatibility in clients. However, it requires that the clients can handle the unrecognized notifications. That can be done, for example, by ignoring them.