Caffe2 - Python API
A deep learning, cross platform ML framework
Public Member Functions | Public Attributes | List of all members
layer_model_helper.LayerModelHelper Class Reference
Inheritance diagram for layer_model_helper.LayerModelHelper:
model_helper.ModelHelperBase

Public Member Functions

def __init__ (self, name, input_feature_schema, trainer_extra_schema)
 
def add_metric_field (self, name, value)
 
def add_global_constant (self, name, array=None, dtype=None, initializer=None)
 
def create_init_net (self, name)
 
def next_layer_name (self, prefix)
 
def add_layer (self, layer)
 
def get_parameter_blobs (self)
 
def default_optimizer (self)
 
def default_optimizer (self, optimizer)
 
def input_feature_schema (self)
 
def trainer_extra_schema (self)
 
def metrics_schema (self)
 
def output_schema (self)
 
def output_schema (self, schema)
 
def loss (self)
 
def loss (self, loss)
 
def __getattr__ (self, layer)
 
def layers (self)
 
def apply_optimizers (self, train_net, train_init_net, grad_map)
 
def NoOptim (self, args, kwargs)
 
- Public Member Functions inherited from model_helper.ModelHelperBase
def __init__ (self, name=None, init_params=True, allow_not_known_ops=True, skip_sparse_optim=False, param_model=None)
 
def get_name (self)
 
def add_param (self, param, key=None, shape=None, length=None)
 
def param_info (self, grad_type=None, id=None)
 
def GetParams (self, namescope=None, top_scope=False)
 
def Proto (self)
 
def InitProto (self)
 
def RunAllOnGPU (self, args, kwargs)
 
def CreateDB (self, blob_out, db, db_type, kwargs)
 
def AddGradientOperators (self, args, kwargs)
 
def get_param_to_grad (self, params)
 
def GetOptimizationPairs (self, params=None)
 
def GetComputedParams (self, namescope=None)
 
def GetAllParams (self, namescope=None)
 
def TensorProtosDBInput (self, unused_blob_in, blob_out, batch_size, db, db_type, kwargs)
 
def AddOperator (self, op_type, inputs, parameters, args, kwargs)
 
def GetDevices (self)
 
def __getattr__ (self, op_type)
 

Public Attributes

 param_to_optim
 
 param_init_net
 
 global_constants
 
 global_constant_initializers
 
- Public Attributes inherited from model_helper.ModelHelperBase
 name
 
 net
 
 param_init_net
 
 param_to_grad
 
 params
 
 computed_params
 
 gradient_ops_added
 
 init_params
 
 allow_not_known_ops
 
 skip_sparse_optim
 
 weights
 
 biases
 
 grad_map
 

Detailed Description

Model helper for building models on top of layers abstractions.

Each layer is the abstraction that is higher level than Operator. Layer
is responsible for ownership of it's own parameters and can easily be
instantiated in multiple nets possible with different sets of ops.
As an example: one can easily instantiate predict and train nets from
the same set of layers, where predict net will have subset of the
operators from train net.

Definition at line 16 of file layer_model_helper.py.

Member Function Documentation

◆ metrics_schema()

def layer_model_helper.LayerModelHelper.metrics_schema (   self)
Returns the schema that represents model output that should be used for
metric reporting.

During the training/evaluation this schema will be appended to the
schema that represents model output.

Definition at line 167 of file layer_model_helper.py.


The documentation for this class was generated from the following file: