clang API Documentation

AnalysisBasedWarnings.cpp
Go to the documentation of this file.
00001 //=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file defines analysis_warnings::[Policy,Executor].
00011 // Together they are used by Sema to issue warnings based on inexpensive
00012 // static analysis algorithms in libAnalysis.
00013 //
00014 //===----------------------------------------------------------------------===//
00015 
00016 #include "clang/Sema/AnalysisBasedWarnings.h"
00017 #include "clang/AST/DeclCXX.h"
00018 #include "clang/AST/DeclObjC.h"
00019 #include "clang/AST/EvaluatedExprVisitor.h"
00020 #include "clang/AST/ExprCXX.h"
00021 #include "clang/AST/ExprObjC.h"
00022 #include "clang/AST/ParentMap.h"
00023 #include "clang/AST/RecursiveASTVisitor.h"
00024 #include "clang/AST/StmtCXX.h"
00025 #include "clang/AST/StmtObjC.h"
00026 #include "clang/AST/StmtVisitor.h"
00027 #include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
00028 #include "clang/Analysis/Analyses/Consumed.h"
00029 #include "clang/Analysis/Analyses/ReachableCode.h"
00030 #include "clang/Analysis/Analyses/ThreadSafety.h"
00031 #include "clang/Analysis/Analyses/UninitializedValues.h"
00032 #include "clang/Analysis/AnalysisContext.h"
00033 #include "clang/Analysis/CFG.h"
00034 #include "clang/Analysis/CFGStmtMap.h"
00035 #include "clang/Basic/SourceLocation.h"
00036 #include "clang/Basic/SourceManager.h"
00037 #include "clang/Lex/Lexer.h"
00038 #include "clang/Lex/Preprocessor.h"
00039 #include "clang/Sema/ScopeInfo.h"
00040 #include "clang/Sema/SemaInternal.h"
00041 #include "llvm/ADT/ArrayRef.h"
00042 #include "llvm/ADT/BitVector.h"
00043 #include "llvm/ADT/FoldingSet.h"
00044 #include "llvm/ADT/ImmutableMap.h"
00045 #include "llvm/ADT/MapVector.h"
00046 #include "llvm/ADT/PostOrderIterator.h"
00047 #include "llvm/ADT/SmallString.h"
00048 #include "llvm/ADT/SmallVector.h"
00049 #include "llvm/ADT/StringRef.h"
00050 #include "llvm/Support/Casting.h"
00051 #include <algorithm>
00052 #include <deque>
00053 #include <iterator>
00054 #include <vector>
00055 
00056 using namespace clang;
00057 
00058 //===----------------------------------------------------------------------===//
00059 // Unreachable code analysis.
00060 //===----------------------------------------------------------------------===//
00061 
00062 namespace {
00063   class UnreachableCodeHandler : public reachable_code::Callback {
00064     Sema &S;
00065   public:
00066     UnreachableCodeHandler(Sema &s) : S(s) {}
00067 
00068     void HandleUnreachable(reachable_code::UnreachableKind UK,
00069                            SourceLocation L,
00070                            SourceRange SilenceableCondVal,
00071                            SourceRange R1,
00072                            SourceRange R2) override {
00073       unsigned diag = diag::warn_unreachable;
00074       switch (UK) {
00075         case reachable_code::UK_Break:
00076           diag = diag::warn_unreachable_break;
00077           break;
00078         case reachable_code::UK_Return:
00079           diag = diag::warn_unreachable_return;
00080           break;
00081         case reachable_code::UK_Loop_Increment:
00082           diag = diag::warn_unreachable_loop_increment;
00083           break;
00084         case reachable_code::UK_Other:
00085           break;
00086       }
00087 
00088       S.Diag(L, diag) << R1 << R2;
00089       
00090       SourceLocation Open = SilenceableCondVal.getBegin();
00091       if (Open.isValid()) {
00092         SourceLocation Close = SilenceableCondVal.getEnd();
00093         Close = S.getLocForEndOfToken(Close);
00094         if (Close.isValid()) {
00095           S.Diag(Open, diag::note_unreachable_silence)
00096             << FixItHint::CreateInsertion(Open, "/* DISABLES CODE */ (")
00097             << FixItHint::CreateInsertion(Close, ")");
00098         }
00099       }
00100     }
00101   };
00102 }
00103 
00104 /// CheckUnreachable - Check for unreachable code.
00105 static void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) {
00106   // As a heuristic prune all diagnostics not in the main file.  Currently
00107   // the majority of warnings in headers are false positives.  These
00108   // are largely caused by configuration state, e.g. preprocessor
00109   // defined code, etc.
00110   //
00111   // Note that this is also a performance optimization.  Analyzing
00112   // headers many times can be expensive.
00113   if (!S.getSourceManager().isInMainFile(AC.getDecl()->getLocStart()))
00114     return;
00115 
00116   UnreachableCodeHandler UC(S);
00117   reachable_code::FindUnreachableCode(AC, S.getPreprocessor(), UC);
00118 }
00119 
00120 /// \brief Warn on logical operator errors in CFGBuilder
00121 class LogicalErrorHandler : public CFGCallback {
00122   Sema &S;
00123 
00124 public:
00125   LogicalErrorHandler(Sema &S) : CFGCallback(), S(S) {}
00126 
00127   static bool HasMacroID(const Expr *E) {
00128     if (E->getExprLoc().isMacroID())
00129       return true;
00130 
00131     // Recurse to children.
00132     for (ConstStmtRange SubStmts = E->children(); SubStmts; ++SubStmts)
00133       if (*SubStmts)
00134         if (const Expr *SubExpr = dyn_cast<Expr>(*SubStmts))
00135           if (HasMacroID(SubExpr))
00136             return true;
00137 
00138     return false;
00139   }
00140 
00141   void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) {
00142     if (HasMacroID(B))
00143       return;
00144 
00145     SourceRange DiagRange = B->getSourceRange();
00146     S.Diag(B->getExprLoc(), diag::warn_tautological_overlap_comparison)
00147         << DiagRange << isAlwaysTrue;
00148   }
00149 
00150   void compareBitwiseEquality(const BinaryOperator *B, bool isAlwaysTrue) {
00151     if (HasMacroID(B))
00152       return;
00153 
00154     SourceRange DiagRange = B->getSourceRange();
00155     S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_always)
00156         << DiagRange << isAlwaysTrue;
00157   }
00158 };
00159 
00160 
00161 //===----------------------------------------------------------------------===//
00162 // Check for infinite self-recursion in functions
00163 //===----------------------------------------------------------------------===//
00164 
00165 // All blocks are in one of three states.  States are ordered so that blocks
00166 // can only move to higher states.
00167 enum RecursiveState {
00168   FoundNoPath,
00169   FoundPath,
00170   FoundPathWithNoRecursiveCall
00171 };
00172 
00173 static void checkForFunctionCall(Sema &S, const FunctionDecl *FD,
00174                                  CFGBlock &Block, unsigned ExitID,
00175                                  llvm::SmallVectorImpl<RecursiveState> &States,
00176                                  RecursiveState State) {
00177   unsigned ID = Block.getBlockID();
00178 
00179   // A block's state can only move to a higher state.
00180   if (States[ID] >= State)
00181     return;
00182 
00183   States[ID] = State;
00184 
00185   // Found a path to the exit node without a recursive call.
00186   if (ID == ExitID && State == FoundPathWithNoRecursiveCall)
00187     return;
00188 
00189   if (State == FoundPathWithNoRecursiveCall) {
00190     // If the current state is FoundPathWithNoRecursiveCall, the successors
00191     // will be either FoundPathWithNoRecursiveCall or FoundPath.  To determine
00192     // which, process all the Stmt's in this block to find any recursive calls.
00193     for (const auto &B : Block) {
00194       if (B.getKind() != CFGElement::Statement)
00195         continue;
00196 
00197       const CallExpr *CE = dyn_cast<CallExpr>(B.getAs<CFGStmt>()->getStmt());
00198       if (CE && CE->getCalleeDecl() &&
00199           CE->getCalleeDecl()->getCanonicalDecl() == FD) {
00200 
00201         // Skip function calls which are qualified with a templated class.
00202         if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(
00203                 CE->getCallee()->IgnoreParenImpCasts())) {
00204           if (NestedNameSpecifier *NNS = DRE->getQualifier()) {
00205             if (NNS->getKind() == NestedNameSpecifier::TypeSpec &&
00206                 isa<TemplateSpecializationType>(NNS->getAsType())) {
00207                continue;
00208             }
00209           }
00210         }
00211 
00212         if (const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE)) {
00213           if (isa<CXXThisExpr>(MCE->getImplicitObjectArgument()) ||
00214               !MCE->getMethodDecl()->isVirtual()) {
00215             State = FoundPath;
00216             break;
00217           }
00218         } else {
00219           State = FoundPath;
00220           break;
00221         }
00222       }
00223     }
00224   }
00225 
00226   for (CFGBlock::succ_iterator I = Block.succ_begin(), E = Block.succ_end();
00227        I != E; ++I)
00228     if (*I)
00229       checkForFunctionCall(S, FD, **I, ExitID, States, State);
00230 }
00231 
00232 static void checkRecursiveFunction(Sema &S, const FunctionDecl *FD,
00233                                    const Stmt *Body,
00234                                    AnalysisDeclContext &AC) {
00235   FD = FD->getCanonicalDecl();
00236 
00237   // Only run on non-templated functions and non-templated members of
00238   // templated classes.
00239   if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate &&
00240       FD->getTemplatedKind() != FunctionDecl::TK_MemberSpecialization)
00241     return;
00242 
00243   CFG *cfg = AC.getCFG();
00244   if (!cfg) return;
00245 
00246   // If the exit block is unreachable, skip processing the function.
00247   if (cfg->getExit().pred_empty())
00248     return;
00249 
00250   // Mark all nodes as FoundNoPath, then begin processing the entry block.
00251   llvm::SmallVector<RecursiveState, 16> states(cfg->getNumBlockIDs(),
00252                                                FoundNoPath);
00253   checkForFunctionCall(S, FD, cfg->getEntry(), cfg->getExit().getBlockID(),
00254                        states, FoundPathWithNoRecursiveCall);
00255 
00256   // Check that the exit block is reachable.  This prevents triggering the
00257   // warning on functions that do not terminate.
00258   if (states[cfg->getExit().getBlockID()] == FoundPath)
00259     S.Diag(Body->getLocStart(), diag::warn_infinite_recursive_function);
00260 }
00261 
00262 //===----------------------------------------------------------------------===//
00263 // Check for missing return value.
00264 //===----------------------------------------------------------------------===//
00265 
00266 enum ControlFlowKind {
00267   UnknownFallThrough,
00268   NeverFallThrough,
00269   MaybeFallThrough,
00270   AlwaysFallThrough,
00271   NeverFallThroughOrReturn
00272 };
00273 
00274 /// CheckFallThrough - Check that we don't fall off the end of a
00275 /// Statement that should return a value.
00276 ///
00277 /// \returns AlwaysFallThrough iff we always fall off the end of the statement,
00278 /// MaybeFallThrough iff we might or might not fall off the end,
00279 /// NeverFallThroughOrReturn iff we never fall off the end of the statement or
00280 /// return.  We assume NeverFallThrough iff we never fall off the end of the
00281 /// statement but we may return.  We assume that functions not marked noreturn
00282 /// will return.
00283 static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) {
00284   CFG *cfg = AC.getCFG();
00285   if (!cfg) return UnknownFallThrough;
00286 
00287   // The CFG leaves in dead things, and we don't want the dead code paths to
00288   // confuse us, so we mark all live things first.
00289   llvm::BitVector live(cfg->getNumBlockIDs());
00290   unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
00291                                                           live);
00292 
00293   bool AddEHEdges = AC.getAddEHEdges();
00294   if (!AddEHEdges && count != cfg->getNumBlockIDs())
00295     // When there are things remaining dead, and we didn't add EH edges
00296     // from CallExprs to the catch clauses, we have to go back and
00297     // mark them as live.
00298     for (const auto *B : *cfg) {
00299       if (!live[B->getBlockID()]) {
00300         if (B->pred_begin() == B->pred_end()) {
00301           if (B->getTerminator() && isa<CXXTryStmt>(B->getTerminator()))
00302             // When not adding EH edges from calls, catch clauses
00303             // can otherwise seem dead.  Avoid noting them as dead.
00304             count += reachable_code::ScanReachableFromBlock(B, live);
00305           continue;
00306         }
00307       }
00308     }
00309 
00310   // Now we know what is live, we check the live precessors of the exit block
00311   // and look for fall through paths, being careful to ignore normal returns,
00312   // and exceptional paths.
00313   bool HasLiveReturn = false;
00314   bool HasFakeEdge = false;
00315   bool HasPlainEdge = false;
00316   bool HasAbnormalEdge = false;
00317 
00318   // Ignore default cases that aren't likely to be reachable because all
00319   // enums in a switch(X) have explicit case statements.
00320   CFGBlock::FilterOptions FO;
00321   FO.IgnoreDefaultsWithCoveredEnums = 1;
00322 
00323   for (CFGBlock::filtered_pred_iterator
00324    I = cfg->getExit().filtered_pred_start_end(FO); I.hasMore(); ++I) {
00325     const CFGBlock& B = **I;
00326     if (!live[B.getBlockID()])
00327       continue;
00328 
00329     // Skip blocks which contain an element marked as no-return. They don't
00330     // represent actually viable edges into the exit block, so mark them as
00331     // abnormal.
00332     if (B.hasNoReturnElement()) {
00333       HasAbnormalEdge = true;
00334       continue;
00335     }
00336 
00337     // Destructors can appear after the 'return' in the CFG.  This is
00338     // normal.  We need to look pass the destructors for the return
00339     // statement (if it exists).
00340     CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
00341 
00342     for ( ; ri != re ; ++ri)
00343       if (ri->getAs<CFGStmt>())
00344         break;
00345 
00346     // No more CFGElements in the block?
00347     if (ri == re) {
00348       if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) {
00349         HasAbnormalEdge = true;
00350         continue;
00351       }
00352       // A labeled empty statement, or the entry block...
00353       HasPlainEdge = true;
00354       continue;
00355     }
00356 
00357     CFGStmt CS = ri->castAs<CFGStmt>();
00358     const Stmt *S = CS.getStmt();
00359     if (isa<ReturnStmt>(S)) {
00360       HasLiveReturn = true;
00361       continue;
00362     }
00363     if (isa<ObjCAtThrowStmt>(S)) {
00364       HasFakeEdge = true;
00365       continue;
00366     }
00367     if (isa<CXXThrowExpr>(S)) {
00368       HasFakeEdge = true;
00369       continue;
00370     }
00371     if (isa<MSAsmStmt>(S)) {
00372       // TODO: Verify this is correct.
00373       HasFakeEdge = true;
00374       HasLiveReturn = true;
00375       continue;
00376     }
00377     if (isa<CXXTryStmt>(S)) {
00378       HasAbnormalEdge = true;
00379       continue;
00380     }
00381     if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit())
00382         == B.succ_end()) {
00383       HasAbnormalEdge = true;
00384       continue;
00385     }
00386 
00387     HasPlainEdge = true;
00388   }
00389   if (!HasPlainEdge) {
00390     if (HasLiveReturn)
00391       return NeverFallThrough;
00392     return NeverFallThroughOrReturn;
00393   }
00394   if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
00395     return MaybeFallThrough;
00396   // This says AlwaysFallThrough for calls to functions that are not marked
00397   // noreturn, that don't return.  If people would like this warning to be more
00398   // accurate, such functions should be marked as noreturn.
00399   return AlwaysFallThrough;
00400 }
00401 
00402 namespace {
00403 
00404 struct CheckFallThroughDiagnostics {
00405   unsigned diag_MaybeFallThrough_HasNoReturn;
00406   unsigned diag_MaybeFallThrough_ReturnsNonVoid;
00407   unsigned diag_AlwaysFallThrough_HasNoReturn;
00408   unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
00409   unsigned diag_NeverFallThroughOrReturn;
00410   enum { Function, Block, Lambda } funMode;
00411   SourceLocation FuncLoc;
00412 
00413   static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
00414     CheckFallThroughDiagnostics D;
00415     D.FuncLoc = Func->getLocation();
00416     D.diag_MaybeFallThrough_HasNoReturn =
00417       diag::warn_falloff_noreturn_function;
00418     D.diag_MaybeFallThrough_ReturnsNonVoid =
00419       diag::warn_maybe_falloff_nonvoid_function;
00420     D.diag_AlwaysFallThrough_HasNoReturn =
00421       diag::warn_falloff_noreturn_function;
00422     D.diag_AlwaysFallThrough_ReturnsNonVoid =
00423       diag::warn_falloff_nonvoid_function;
00424 
00425     // Don't suggest that virtual functions be marked "noreturn", since they
00426     // might be overridden by non-noreturn functions.
00427     bool isVirtualMethod = false;
00428     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
00429       isVirtualMethod = Method->isVirtual();
00430     
00431     // Don't suggest that template instantiations be marked "noreturn"
00432     bool isTemplateInstantiation = false;
00433     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func))
00434       isTemplateInstantiation = Function->isTemplateInstantiation();
00435         
00436     if (!isVirtualMethod && !isTemplateInstantiation)
00437       D.diag_NeverFallThroughOrReturn =
00438         diag::warn_suggest_noreturn_function;
00439     else
00440       D.diag_NeverFallThroughOrReturn = 0;
00441     
00442     D.funMode = Function;
00443     return D;
00444   }
00445 
00446   static CheckFallThroughDiagnostics MakeForBlock() {
00447     CheckFallThroughDiagnostics D;
00448     D.diag_MaybeFallThrough_HasNoReturn =
00449       diag::err_noreturn_block_has_return_expr;
00450     D.diag_MaybeFallThrough_ReturnsNonVoid =
00451       diag::err_maybe_falloff_nonvoid_block;
00452     D.diag_AlwaysFallThrough_HasNoReturn =
00453       diag::err_noreturn_block_has_return_expr;
00454     D.diag_AlwaysFallThrough_ReturnsNonVoid =
00455       diag::err_falloff_nonvoid_block;
00456     D.diag_NeverFallThroughOrReturn = 0;
00457     D.funMode = Block;
00458     return D;
00459   }
00460 
00461   static CheckFallThroughDiagnostics MakeForLambda() {
00462     CheckFallThroughDiagnostics D;
00463     D.diag_MaybeFallThrough_HasNoReturn =
00464       diag::err_noreturn_lambda_has_return_expr;
00465     D.diag_MaybeFallThrough_ReturnsNonVoid =
00466       diag::warn_maybe_falloff_nonvoid_lambda;
00467     D.diag_AlwaysFallThrough_HasNoReturn =
00468       diag::err_noreturn_lambda_has_return_expr;
00469     D.diag_AlwaysFallThrough_ReturnsNonVoid =
00470       diag::warn_falloff_nonvoid_lambda;
00471     D.diag_NeverFallThroughOrReturn = 0;
00472     D.funMode = Lambda;
00473     return D;
00474   }
00475 
00476   bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid,
00477                         bool HasNoReturn) const {
00478     if (funMode == Function) {
00479       return (ReturnsVoid ||
00480               D.isIgnored(diag::warn_maybe_falloff_nonvoid_function,
00481                           FuncLoc)) &&
00482              (!HasNoReturn ||
00483               D.isIgnored(diag::warn_noreturn_function_has_return_expr,
00484                           FuncLoc)) &&
00485              (!ReturnsVoid ||
00486               D.isIgnored(diag::warn_suggest_noreturn_block, FuncLoc));
00487     }
00488 
00489     // For blocks / lambdas.
00490     return ReturnsVoid && !HasNoReturn;
00491   }
00492 };
00493 
00494 }
00495 
00496 /// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
00497 /// function that should return a value.  Check that we don't fall off the end
00498 /// of a noreturn function.  We assume that functions and blocks not marked
00499 /// noreturn will return.
00500 static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
00501                                     const BlockExpr *blkExpr,
00502                                     const CheckFallThroughDiagnostics& CD,
00503                                     AnalysisDeclContext &AC) {
00504 
00505   bool ReturnsVoid = false;
00506   bool HasNoReturn = false;
00507 
00508   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
00509     ReturnsVoid = FD->getReturnType()->isVoidType();
00510     HasNoReturn = FD->isNoReturn();
00511   }
00512   else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
00513     ReturnsVoid = MD->getReturnType()->isVoidType();
00514     HasNoReturn = MD->hasAttr<NoReturnAttr>();
00515   }
00516   else if (isa<BlockDecl>(D)) {
00517     QualType BlockTy = blkExpr->getType();
00518     if (const FunctionType *FT =
00519           BlockTy->getPointeeType()->getAs<FunctionType>()) {
00520       if (FT->getReturnType()->isVoidType())
00521         ReturnsVoid = true;
00522       if (FT->getNoReturnAttr())
00523         HasNoReturn = true;
00524     }
00525   }
00526 
00527   DiagnosticsEngine &Diags = S.getDiagnostics();
00528 
00529   // Short circuit for compilation speed.
00530   if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
00531       return;
00532 
00533   SourceLocation LBrace = Body->getLocStart(), RBrace = Body->getLocEnd();
00534   // Either in a function body compound statement, or a function-try-block.
00535   switch (CheckFallThrough(AC)) {
00536     case UnknownFallThrough:
00537       break;
00538 
00539     case MaybeFallThrough:
00540       if (HasNoReturn)
00541         S.Diag(RBrace, CD.diag_MaybeFallThrough_HasNoReturn);
00542       else if (!ReturnsVoid)
00543         S.Diag(RBrace, CD.diag_MaybeFallThrough_ReturnsNonVoid);
00544       break;
00545     case AlwaysFallThrough:
00546       if (HasNoReturn)
00547         S.Diag(RBrace, CD.diag_AlwaysFallThrough_HasNoReturn);
00548       else if (!ReturnsVoid)
00549         S.Diag(RBrace, CD.diag_AlwaysFallThrough_ReturnsNonVoid);
00550       break;
00551     case NeverFallThroughOrReturn:
00552       if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
00553         if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
00554           S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 0 << FD;
00555         } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
00556           S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 1 << MD;
00557         } else {
00558           S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn);
00559         }
00560       }
00561       break;
00562     case NeverFallThrough:
00563       break;
00564   }
00565 }
00566 
00567 //===----------------------------------------------------------------------===//
00568 // -Wuninitialized
00569 //===----------------------------------------------------------------------===//
00570 
00571 namespace {
00572 /// ContainsReference - A visitor class to search for references to
00573 /// a particular declaration (the needle) within any evaluated component of an
00574 /// expression (recursively).
00575 class ContainsReference : public EvaluatedExprVisitor<ContainsReference> {
00576   bool FoundReference;
00577   const DeclRefExpr *Needle;
00578 
00579 public:
00580   ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
00581     : EvaluatedExprVisitor<ContainsReference>(Context),
00582       FoundReference(false), Needle(Needle) {}
00583 
00584   void VisitExpr(Expr *E) {
00585     // Stop evaluating if we already have a reference.
00586     if (FoundReference)
00587       return;
00588 
00589     EvaluatedExprVisitor<ContainsReference>::VisitExpr(E);
00590   }
00591 
00592   void VisitDeclRefExpr(DeclRefExpr *E) {
00593     if (E == Needle)
00594       FoundReference = true;
00595     else
00596       EvaluatedExprVisitor<ContainsReference>::VisitDeclRefExpr(E);
00597   }
00598 
00599   bool doesContainReference() const { return FoundReference; }
00600 };
00601 }
00602 
00603 static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
00604   QualType VariableTy = VD->getType().getCanonicalType();
00605   if (VariableTy->isBlockPointerType() &&
00606       !VD->hasAttr<BlocksAttr>()) {
00607     S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization)
00608         << VD->getDeclName()
00609         << FixItHint::CreateInsertion(VD->getLocation(), "__block ");
00610     return true;
00611   }
00612 
00613   // Don't issue a fixit if there is already an initializer.
00614   if (VD->getInit())
00615     return false;
00616 
00617   // Don't suggest a fixit inside macros.
00618   if (VD->getLocEnd().isMacroID())
00619     return false;
00620 
00621   SourceLocation Loc = S.getLocForEndOfToken(VD->getLocEnd());
00622 
00623   // Suggest possible initialization (if any).
00624   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
00625   if (Init.empty())
00626     return false;
00627 
00628   S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName()
00629     << FixItHint::CreateInsertion(Loc, Init);
00630   return true;
00631 }
00632 
00633 /// Create a fixit to remove an if-like statement, on the assumption that its
00634 /// condition is CondVal.
00635 static void CreateIfFixit(Sema &S, const Stmt *If, const Stmt *Then,
00636                           const Stmt *Else, bool CondVal,
00637                           FixItHint &Fixit1, FixItHint &Fixit2) {
00638   if (CondVal) {
00639     // If condition is always true, remove all but the 'then'.
00640     Fixit1 = FixItHint::CreateRemoval(
00641         CharSourceRange::getCharRange(If->getLocStart(),
00642                                       Then->getLocStart()));
00643     if (Else) {
00644       SourceLocation ElseKwLoc = Lexer::getLocForEndOfToken(
00645           Then->getLocEnd(), 0, S.getSourceManager(), S.getLangOpts());
00646       Fixit2 = FixItHint::CreateRemoval(
00647           SourceRange(ElseKwLoc, Else->getLocEnd()));
00648     }
00649   } else {
00650     // If condition is always false, remove all but the 'else'.
00651     if (Else)
00652       Fixit1 = FixItHint::CreateRemoval(
00653           CharSourceRange::getCharRange(If->getLocStart(),
00654                                         Else->getLocStart()));
00655     else
00656       Fixit1 = FixItHint::CreateRemoval(If->getSourceRange());
00657   }
00658 }
00659 
00660 /// DiagUninitUse -- Helper function to produce a diagnostic for an
00661 /// uninitialized use of a variable.
00662 static void DiagUninitUse(Sema &S, const VarDecl *VD, const UninitUse &Use,
00663                           bool IsCapturedByBlock) {
00664   bool Diagnosed = false;
00665 
00666   switch (Use.getKind()) {
00667   case UninitUse::Always:
00668     S.Diag(Use.getUser()->getLocStart(), diag::warn_uninit_var)
00669         << VD->getDeclName() << IsCapturedByBlock
00670         << Use.getUser()->getSourceRange();
00671     return;
00672 
00673   case UninitUse::AfterDecl:
00674   case UninitUse::AfterCall:
00675     S.Diag(VD->getLocation(), diag::warn_sometimes_uninit_var)
00676       << VD->getDeclName() << IsCapturedByBlock
00677       << (Use.getKind() == UninitUse::AfterDecl ? 4 : 5)
00678       << const_cast<DeclContext*>(VD->getLexicalDeclContext())
00679       << VD->getSourceRange();
00680     S.Diag(Use.getUser()->getLocStart(), diag::note_uninit_var_use)
00681       << IsCapturedByBlock << Use.getUser()->getSourceRange();
00682     return;
00683 
00684   case UninitUse::Maybe:
00685   case UninitUse::Sometimes:
00686     // Carry on to report sometimes-uninitialized branches, if possible,
00687     // or a 'may be used uninitialized' diagnostic otherwise.
00688     break;
00689   }
00690 
00691   // Diagnose each branch which leads to a sometimes-uninitialized use.
00692   for (UninitUse::branch_iterator I = Use.branch_begin(), E = Use.branch_end();
00693        I != E; ++I) {
00694     assert(Use.getKind() == UninitUse::Sometimes);
00695 
00696     const Expr *User = Use.getUser();
00697     const Stmt *Term = I->Terminator;
00698 
00699     // Information used when building the diagnostic.
00700     unsigned DiagKind;
00701     StringRef Str;
00702     SourceRange Range;
00703 
00704     // FixIts to suppress the diagnostic by removing the dead condition.
00705     // For all binary terminators, branch 0 is taken if the condition is true,
00706     // and branch 1 is taken if the condition is false.
00707     int RemoveDiagKind = -1;
00708     const char *FixitStr =
00709         S.getLangOpts().CPlusPlus ? (I->Output ? "true" : "false")
00710                                   : (I->Output ? "1" : "0");
00711     FixItHint Fixit1, Fixit2;
00712 
00713     switch (Term ? Term->getStmtClass() : Stmt::DeclStmtClass) {
00714     default:
00715       // Don't know how to report this. Just fall back to 'may be used
00716       // uninitialized'. FIXME: Can this happen?
00717       continue;
00718 
00719     // "condition is true / condition is false".
00720     case Stmt::IfStmtClass: {
00721       const IfStmt *IS = cast<IfStmt>(Term);
00722       DiagKind = 0;
00723       Str = "if";
00724       Range = IS->getCond()->getSourceRange();
00725       RemoveDiagKind = 0;
00726       CreateIfFixit(S, IS, IS->getThen(), IS->getElse(),
00727                     I->Output, Fixit1, Fixit2);
00728       break;
00729     }
00730     case Stmt::ConditionalOperatorClass: {
00731       const ConditionalOperator *CO = cast<ConditionalOperator>(Term);
00732       DiagKind = 0;
00733       Str = "?:";
00734       Range = CO->getCond()->getSourceRange();
00735       RemoveDiagKind = 0;
00736       CreateIfFixit(S, CO, CO->getTrueExpr(), CO->getFalseExpr(),
00737                     I->Output, Fixit1, Fixit2);
00738       break;
00739     }
00740     case Stmt::BinaryOperatorClass: {
00741       const BinaryOperator *BO = cast<BinaryOperator>(Term);
00742       if (!BO->isLogicalOp())
00743         continue;
00744       DiagKind = 0;
00745       Str = BO->getOpcodeStr();
00746       Range = BO->getLHS()->getSourceRange();
00747       RemoveDiagKind = 0;
00748       if ((BO->getOpcode() == BO_LAnd && I->Output) ||
00749           (BO->getOpcode() == BO_LOr && !I->Output))
00750         // true && y -> y, false || y -> y.
00751         Fixit1 = FixItHint::CreateRemoval(SourceRange(BO->getLocStart(),
00752                                                       BO->getOperatorLoc()));
00753       else
00754         // false && y -> false, true || y -> true.
00755         Fixit1 = FixItHint::CreateReplacement(BO->getSourceRange(), FixitStr);
00756       break;
00757     }
00758 
00759     // "loop is entered / loop is exited".
00760     case Stmt::WhileStmtClass:
00761       DiagKind = 1;
00762       Str = "while";
00763       Range = cast<WhileStmt>(Term)->getCond()->getSourceRange();
00764       RemoveDiagKind = 1;
00765       Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
00766       break;
00767     case Stmt::ForStmtClass:
00768       DiagKind = 1;
00769       Str = "for";
00770       Range = cast<ForStmt>(Term)->getCond()->getSourceRange();
00771       RemoveDiagKind = 1;
00772       if (I->Output)
00773         Fixit1 = FixItHint::CreateRemoval(Range);
00774       else
00775         Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
00776       break;
00777     case Stmt::CXXForRangeStmtClass:
00778       if (I->Output == 1) {
00779         // The use occurs if a range-based for loop's body never executes.
00780         // That may be impossible, and there's no syntactic fix for this,
00781         // so treat it as a 'may be uninitialized' case.
00782         continue;
00783       }
00784       DiagKind = 1;
00785       Str = "for";
00786       Range = cast<CXXForRangeStmt>(Term)->getRangeInit()->getSourceRange();
00787       break;
00788 
00789     // "condition is true / loop is exited".
00790     case Stmt::DoStmtClass:
00791       DiagKind = 2;
00792       Str = "do";
00793       Range = cast<DoStmt>(Term)->getCond()->getSourceRange();
00794       RemoveDiagKind = 1;
00795       Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
00796       break;
00797 
00798     // "switch case is taken".
00799     case Stmt::CaseStmtClass:
00800       DiagKind = 3;
00801       Str = "case";
00802       Range = cast<CaseStmt>(Term)->getLHS()->getSourceRange();
00803       break;
00804     case Stmt::DefaultStmtClass:
00805       DiagKind = 3;
00806       Str = "default";
00807       Range = cast<DefaultStmt>(Term)->getDefaultLoc();
00808       break;
00809     }
00810 
00811     S.Diag(Range.getBegin(), diag::warn_sometimes_uninit_var)
00812       << VD->getDeclName() << IsCapturedByBlock << DiagKind
00813       << Str << I->Output << Range;
00814     S.Diag(User->getLocStart(), diag::note_uninit_var_use)
00815       << IsCapturedByBlock << User->getSourceRange();
00816     if (RemoveDiagKind != -1)
00817       S.Diag(Fixit1.RemoveRange.getBegin(), diag::note_uninit_fixit_remove_cond)
00818         << RemoveDiagKind << Str << I->Output << Fixit1 << Fixit2;
00819 
00820     Diagnosed = true;
00821   }
00822 
00823   if (!Diagnosed)
00824     S.Diag(Use.getUser()->getLocStart(), diag::warn_maybe_uninit_var)
00825         << VD->getDeclName() << IsCapturedByBlock
00826         << Use.getUser()->getSourceRange();
00827 }
00828 
00829 /// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
00830 /// uninitialized variable. This manages the different forms of diagnostic
00831 /// emitted for particular types of uses. Returns true if the use was diagnosed
00832 /// as a warning. If a particular use is one we omit warnings for, returns
00833 /// false.
00834 static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
00835                                      const UninitUse &Use,
00836                                      bool alwaysReportSelfInit = false) {
00837 
00838   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Use.getUser())) {
00839     // Inspect the initializer of the variable declaration which is
00840     // being referenced prior to its initialization. We emit
00841     // specialized diagnostics for self-initialization, and we
00842     // specifically avoid warning about self references which take the
00843     // form of:
00844     //
00845     //   int x = x;
00846     //
00847     // This is used to indicate to GCC that 'x' is intentionally left
00848     // uninitialized. Proven code paths which access 'x' in
00849     // an uninitialized state after this will still warn.
00850     if (const Expr *Initializer = VD->getInit()) {
00851       if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts())
00852         return false;
00853 
00854       ContainsReference CR(S.Context, DRE);
00855       CR.Visit(const_cast<Expr*>(Initializer));
00856       if (CR.doesContainReference()) {
00857         S.Diag(DRE->getLocStart(),
00858                diag::warn_uninit_self_reference_in_init)
00859           << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
00860         return true;
00861       }
00862     }
00863 
00864     DiagUninitUse(S, VD, Use, false);
00865   } else {
00866     const BlockExpr *BE = cast<BlockExpr>(Use.getUser());
00867     if (VD->getType()->isBlockPointerType() && !VD->hasAttr<BlocksAttr>())
00868       S.Diag(BE->getLocStart(),
00869              diag::warn_uninit_byref_blockvar_captured_by_block)
00870         << VD->getDeclName();
00871     else
00872       DiagUninitUse(S, VD, Use, true);
00873   }
00874 
00875   // Report where the variable was declared when the use wasn't within
00876   // the initializer of that declaration & we didn't already suggest
00877   // an initialization fixit.
00878   if (!SuggestInitializationFixit(S, VD))
00879     S.Diag(VD->getLocStart(), diag::note_uninit_var_def)
00880       << VD->getDeclName();
00881 
00882   return true;
00883 }
00884 
00885 namespace {
00886   class FallthroughMapper : public RecursiveASTVisitor<FallthroughMapper> {
00887   public:
00888     FallthroughMapper(Sema &S)
00889       : FoundSwitchStatements(false),
00890         S(S) {
00891     }
00892 
00893     bool foundSwitchStatements() const { return FoundSwitchStatements; }
00894 
00895     void markFallthroughVisited(const AttributedStmt *Stmt) {
00896       bool Found = FallthroughStmts.erase(Stmt);
00897       assert(Found);
00898       (void)Found;
00899     }
00900 
00901     typedef llvm::SmallPtrSet<const AttributedStmt*, 8> AttrStmts;
00902 
00903     const AttrStmts &getFallthroughStmts() const {
00904       return FallthroughStmts;
00905     }
00906 
00907     void fillReachableBlocks(CFG *Cfg) {
00908       assert(ReachableBlocks.empty() && "ReachableBlocks already filled");
00909       std::deque<const CFGBlock *> BlockQueue;
00910 
00911       ReachableBlocks.insert(&Cfg->getEntry());
00912       BlockQueue.push_back(&Cfg->getEntry());
00913       // Mark all case blocks reachable to avoid problems with switching on
00914       // constants, covered enums, etc.
00915       // These blocks can contain fall-through annotations, and we don't want to
00916       // issue a warn_fallthrough_attr_unreachable for them.
00917       for (const auto *B : *Cfg) {
00918         const Stmt *L = B->getLabel();
00919         if (L && isa<SwitchCase>(L) && ReachableBlocks.insert(B))
00920           BlockQueue.push_back(B);
00921       }
00922 
00923       while (!BlockQueue.empty()) {
00924         const CFGBlock *P = BlockQueue.front();
00925         BlockQueue.pop_front();
00926         for (CFGBlock::const_succ_iterator I = P->succ_begin(),
00927                                            E = P->succ_end();
00928              I != E; ++I) {
00929           if (*I && ReachableBlocks.insert(*I))
00930             BlockQueue.push_back(*I);
00931         }
00932       }
00933     }
00934 
00935     bool checkFallThroughIntoBlock(const CFGBlock &B, int &AnnotatedCnt) {
00936       assert(!ReachableBlocks.empty() && "ReachableBlocks empty");
00937 
00938       int UnannotatedCnt = 0;
00939       AnnotatedCnt = 0;
00940 
00941       std::deque<const CFGBlock*> BlockQueue(B.pred_begin(), B.pred_end());
00942       while (!BlockQueue.empty()) {
00943         const CFGBlock *P = BlockQueue.front();
00944         BlockQueue.pop_front();
00945         if (!P) continue;
00946 
00947         const Stmt *Term = P->getTerminator();
00948         if (Term && isa<SwitchStmt>(Term))
00949           continue; // Switch statement, good.
00950 
00951         const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(P->getLabel());
00952         if (SW && SW->getSubStmt() == B.getLabel() && P->begin() == P->end())
00953           continue; // Previous case label has no statements, good.
00954 
00955         const LabelStmt *L = dyn_cast_or_null<LabelStmt>(P->getLabel());
00956         if (L && L->getSubStmt() == B.getLabel() && P->begin() == P->end())
00957           continue; // Case label is preceded with a normal label, good.
00958 
00959         if (!ReachableBlocks.count(P)) {
00960           for (CFGBlock::const_reverse_iterator ElemIt = P->rbegin(),
00961                                                 ElemEnd = P->rend();
00962                ElemIt != ElemEnd; ++ElemIt) {
00963             if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>()) {
00964               if (const AttributedStmt *AS = asFallThroughAttr(CS->getStmt())) {
00965                 S.Diag(AS->getLocStart(),
00966                        diag::warn_fallthrough_attr_unreachable);
00967                 markFallthroughVisited(AS);
00968                 ++AnnotatedCnt;
00969                 break;
00970               }
00971               // Don't care about other unreachable statements.
00972             }
00973           }
00974           // If there are no unreachable statements, this may be a special
00975           // case in CFG:
00976           // case X: {
00977           //    A a;  // A has a destructor.
00978           //    break;
00979           // }
00980           // // <<<< This place is represented by a 'hanging' CFG block.
00981           // case Y:
00982           continue;
00983         }
00984 
00985         const Stmt *LastStmt = getLastStmt(*P);
00986         if (const AttributedStmt *AS = asFallThroughAttr(LastStmt)) {
00987           markFallthroughVisited(AS);
00988           ++AnnotatedCnt;
00989           continue; // Fallthrough annotation, good.
00990         }
00991 
00992         if (!LastStmt) { // This block contains no executable statements.
00993           // Traverse its predecessors.
00994           std::copy(P->pred_begin(), P->pred_end(),
00995                     std::back_inserter(BlockQueue));
00996           continue;
00997         }
00998 
00999         ++UnannotatedCnt;
01000       }
01001       return !!UnannotatedCnt;
01002     }
01003 
01004     // RecursiveASTVisitor setup.
01005     bool shouldWalkTypesOfTypeLocs() const { return false; }
01006 
01007     bool VisitAttributedStmt(AttributedStmt *S) {
01008       if (asFallThroughAttr(S))
01009         FallthroughStmts.insert(S);
01010       return true;
01011     }
01012 
01013     bool VisitSwitchStmt(SwitchStmt *S) {
01014       FoundSwitchStatements = true;
01015       return true;
01016     }
01017 
01018     // We don't want to traverse local type declarations. We analyze their
01019     // methods separately.
01020     bool TraverseDecl(Decl *D) { return true; }
01021 
01022     // We analyze lambda bodies separately. Skip them here.
01023     bool TraverseLambdaBody(LambdaExpr *LE) { return true; }
01024 
01025   private:
01026 
01027     static const AttributedStmt *asFallThroughAttr(const Stmt *S) {
01028       if (const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(S)) {
01029         if (hasSpecificAttr<FallThroughAttr>(AS->getAttrs()))
01030           return AS;
01031       }
01032       return nullptr;
01033     }
01034 
01035     static const Stmt *getLastStmt(const CFGBlock &B) {
01036       if (const Stmt *Term = B.getTerminator())
01037         return Term;
01038       for (CFGBlock::const_reverse_iterator ElemIt = B.rbegin(),
01039                                             ElemEnd = B.rend();
01040                                             ElemIt != ElemEnd; ++ElemIt) {
01041         if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>())
01042           return CS->getStmt();
01043       }
01044       // Workaround to detect a statement thrown out by CFGBuilder:
01045       //   case X: {} case Y:
01046       //   case X: ; case Y:
01047       if (const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(B.getLabel()))
01048         if (!isa<SwitchCase>(SW->getSubStmt()))
01049           return SW->getSubStmt();
01050 
01051       return nullptr;
01052     }
01053 
01054     bool FoundSwitchStatements;
01055     AttrStmts FallthroughStmts;
01056     Sema &S;
01057     llvm::SmallPtrSet<const CFGBlock *, 16> ReachableBlocks;
01058   };
01059 }
01060 
01061 static void DiagnoseSwitchLabelsFallthrough(Sema &S, AnalysisDeclContext &AC,
01062                                             bool PerFunction) {
01063   // Only perform this analysis when using C++11.  There is no good workflow
01064   // for this warning when not using C++11.  There is no good way to silence
01065   // the warning (no attribute is available) unless we are using C++11's support
01066   // for generalized attributes.  Once could use pragmas to silence the warning,
01067   // but as a general solution that is gross and not in the spirit of this
01068   // warning.
01069   //
01070   // NOTE: This an intermediate solution.  There are on-going discussions on
01071   // how to properly support this warning outside of C++11 with an annotation.
01072   if (!AC.getASTContext().getLangOpts().CPlusPlus11)
01073     return;
01074 
01075   FallthroughMapper FM(S);
01076   FM.TraverseStmt(AC.getBody());
01077 
01078   if (!FM.foundSwitchStatements())
01079     return;
01080 
01081   if (PerFunction && FM.getFallthroughStmts().empty())
01082     return;
01083 
01084   CFG *Cfg = AC.getCFG();
01085 
01086   if (!Cfg)
01087     return;
01088 
01089   FM.fillReachableBlocks(Cfg);
01090 
01091   for (CFG::reverse_iterator I = Cfg->rbegin(), E = Cfg->rend(); I != E; ++I) {
01092     const CFGBlock *B = *I;
01093     const Stmt *Label = B->getLabel();
01094 
01095     if (!Label || !isa<SwitchCase>(Label))
01096       continue;
01097 
01098     int AnnotatedCnt;
01099 
01100     if (!FM.checkFallThroughIntoBlock(*B, AnnotatedCnt))
01101       continue;
01102 
01103     S.Diag(Label->getLocStart(),
01104         PerFunction ? diag::warn_unannotated_fallthrough_per_function
01105                     : diag::warn_unannotated_fallthrough);
01106 
01107     if (!AnnotatedCnt) {
01108       SourceLocation L = Label->getLocStart();
01109       if (L.isMacroID())
01110         continue;
01111       if (S.getLangOpts().CPlusPlus11) {
01112         const Stmt *Term = B->getTerminator();
01113         // Skip empty cases.
01114         while (B->empty() && !Term && B->succ_size() == 1) {
01115           B = *B->succ_begin();
01116           Term = B->getTerminator();
01117         }
01118         if (!(B->empty() && Term && isa<BreakStmt>(Term))) {
01119           Preprocessor &PP = S.getPreprocessor();
01120           TokenValue Tokens[] = {
01121             tok::l_square, tok::l_square, PP.getIdentifierInfo("clang"),
01122             tok::coloncolon, PP.getIdentifierInfo("fallthrough"),
01123             tok::r_square, tok::r_square
01124           };
01125           StringRef AnnotationSpelling = "[[clang::fallthrough]]";
01126           StringRef MacroName = PP.getLastMacroWithSpelling(L, Tokens);
01127           if (!MacroName.empty())
01128             AnnotationSpelling = MacroName;
01129           SmallString<64> TextToInsert(AnnotationSpelling);
01130           TextToInsert += "; ";
01131           S.Diag(L, diag::note_insert_fallthrough_fixit) <<
01132               AnnotationSpelling <<
01133               FixItHint::CreateInsertion(L, TextToInsert);
01134         }
01135       }
01136       S.Diag(L, diag::note_insert_break_fixit) <<
01137         FixItHint::CreateInsertion(L, "break; ");
01138     }
01139   }
01140 
01141   for (const auto *F : FM.getFallthroughStmts())
01142     S.Diag(F->getLocStart(), diag::warn_fallthrough_attr_invalid_placement);
01143 }
01144 
01145 static bool isInLoop(const ASTContext &Ctx, const ParentMap &PM,
01146                      const Stmt *S) {
01147   assert(S);
01148 
01149   do {
01150     switch (S->getStmtClass()) {
01151     case Stmt::ForStmtClass:
01152     case Stmt::WhileStmtClass:
01153     case Stmt::CXXForRangeStmtClass:
01154     case Stmt::ObjCForCollectionStmtClass:
01155       return true;
01156     case Stmt::DoStmtClass: {
01157       const Expr *Cond = cast<DoStmt>(S)->getCond();
01158       llvm::APSInt Val;
01159       if (!Cond->EvaluateAsInt(Val, Ctx))
01160         return true;
01161       return Val.getBoolValue();
01162     }
01163     default:
01164       break;
01165     }
01166   } while ((S = PM.getParent(S)));
01167 
01168   return false;
01169 }
01170 
01171 
01172 static void diagnoseRepeatedUseOfWeak(Sema &S,
01173                                       const sema::FunctionScopeInfo *CurFn,
01174                                       const Decl *D,
01175                                       const ParentMap &PM) {
01176   typedef sema::FunctionScopeInfo::WeakObjectProfileTy WeakObjectProfileTy;
01177   typedef sema::FunctionScopeInfo::WeakObjectUseMap WeakObjectUseMap;
01178   typedef sema::FunctionScopeInfo::WeakUseVector WeakUseVector;
01179   typedef std::pair<const Stmt *, WeakObjectUseMap::const_iterator>
01180   StmtUsesPair;
01181 
01182   ASTContext &Ctx = S.getASTContext();
01183 
01184   const WeakObjectUseMap &WeakMap = CurFn->getWeakObjectUses();
01185 
01186   // Extract all weak objects that are referenced more than once.
01187   SmallVector<StmtUsesPair, 8> UsesByStmt;
01188   for (WeakObjectUseMap::const_iterator I = WeakMap.begin(), E = WeakMap.end();
01189        I != E; ++I) {
01190     const WeakUseVector &Uses = I->second;
01191 
01192     // Find the first read of the weak object.
01193     WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end();
01194     for ( ; UI != UE; ++UI) {
01195       if (UI->isUnsafe())
01196         break;
01197     }
01198 
01199     // If there were only writes to this object, don't warn.
01200     if (UI == UE)
01201       continue;
01202 
01203     // If there was only one read, followed by any number of writes, and the
01204     // read is not within a loop, don't warn. Additionally, don't warn in a
01205     // loop if the base object is a local variable -- local variables are often
01206     // changed in loops.
01207     if (UI == Uses.begin()) {
01208       WeakUseVector::const_iterator UI2 = UI;
01209       for (++UI2; UI2 != UE; ++UI2)
01210         if (UI2->isUnsafe())
01211           break;
01212 
01213       if (UI2 == UE) {
01214         if (!isInLoop(Ctx, PM, UI->getUseExpr()))
01215           continue;
01216 
01217         const WeakObjectProfileTy &Profile = I->first;
01218         if (!Profile.isExactProfile())
01219           continue;
01220 
01221         const NamedDecl *Base = Profile.getBase();
01222         if (!Base)
01223           Base = Profile.getProperty();
01224         assert(Base && "A profile always has a base or property.");
01225 
01226         if (const VarDecl *BaseVar = dyn_cast<VarDecl>(Base))
01227           if (BaseVar->hasLocalStorage() && !isa<ParmVarDecl>(Base))
01228             continue;
01229       }
01230     }
01231 
01232     UsesByStmt.push_back(StmtUsesPair(UI->getUseExpr(), I));
01233   }
01234 
01235   if (UsesByStmt.empty())
01236     return;
01237 
01238   // Sort by first use so that we emit the warnings in a deterministic order.
01239   SourceManager &SM = S.getSourceManager();
01240   std::sort(UsesByStmt.begin(), UsesByStmt.end(),
01241             [&SM](const StmtUsesPair &LHS, const StmtUsesPair &RHS) {
01242     return SM.isBeforeInTranslationUnit(LHS.first->getLocStart(),
01243                                         RHS.first->getLocStart());
01244   });
01245 
01246   // Classify the current code body for better warning text.
01247   // This enum should stay in sync with the cases in
01248   // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
01249   // FIXME: Should we use a common classification enum and the same set of
01250   // possibilities all throughout Sema?
01251   enum {
01252     Function,
01253     Method,
01254     Block,
01255     Lambda
01256   } FunctionKind;
01257 
01258   if (isa<sema::BlockScopeInfo>(CurFn))
01259     FunctionKind = Block;
01260   else if (isa<sema::LambdaScopeInfo>(CurFn))
01261     FunctionKind = Lambda;
01262   else if (isa<ObjCMethodDecl>(D))
01263     FunctionKind = Method;
01264   else
01265     FunctionKind = Function;
01266 
01267   // Iterate through the sorted problems and emit warnings for each.
01268   for (const auto &P : UsesByStmt) {
01269     const Stmt *FirstRead = P.first;
01270     const WeakObjectProfileTy &Key = P.second->first;
01271     const WeakUseVector &Uses = P.second->second;
01272 
01273     // For complicated expressions like 'a.b.c' and 'x.b.c', WeakObjectProfileTy
01274     // may not contain enough information to determine that these are different
01275     // properties. We can only be 100% sure of a repeated use in certain cases,
01276     // and we adjust the diagnostic kind accordingly so that the less certain
01277     // case can be turned off if it is too noisy.
01278     unsigned DiagKind;
01279     if (Key.isExactProfile())
01280       DiagKind = diag::warn_arc_repeated_use_of_weak;
01281     else
01282       DiagKind = diag::warn_arc_possible_repeated_use_of_weak;
01283 
01284     // Classify the weak object being accessed for better warning text.
01285     // This enum should stay in sync with the cases in
01286     // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
01287     enum {
01288       Variable,
01289       Property,
01290       ImplicitProperty,
01291       Ivar
01292     } ObjectKind;
01293 
01294     const NamedDecl *D = Key.getProperty();
01295     if (isa<VarDecl>(D))
01296       ObjectKind = Variable;
01297     else if (isa<ObjCPropertyDecl>(D))
01298       ObjectKind = Property;
01299     else if (isa<ObjCMethodDecl>(D))
01300       ObjectKind = ImplicitProperty;
01301     else if (isa<ObjCIvarDecl>(D))
01302       ObjectKind = Ivar;
01303     else
01304       llvm_unreachable("Unexpected weak object kind!");
01305 
01306     // Show the first time the object was read.
01307     S.Diag(FirstRead->getLocStart(), DiagKind)
01308       << int(ObjectKind) << D << int(FunctionKind)
01309       << FirstRead->getSourceRange();
01310 
01311     // Print all the other accesses as notes.
01312     for (const auto &Use : Uses) {
01313       if (Use.getUseExpr() == FirstRead)
01314         continue;
01315       S.Diag(Use.getUseExpr()->getLocStart(),
01316              diag::note_arc_weak_also_accessed_here)
01317           << Use.getUseExpr()->getSourceRange();
01318     }
01319   }
01320 }
01321 
01322 namespace {
01323 class UninitValsDiagReporter : public UninitVariablesHandler {
01324   Sema &S;
01325   typedef SmallVector<UninitUse, 2> UsesVec;
01326   typedef llvm::PointerIntPair<UsesVec *, 1, bool> MappedType;
01327   // Prefer using MapVector to DenseMap, so that iteration order will be
01328   // the same as insertion order. This is needed to obtain a deterministic
01329   // order of diagnostics when calling flushDiagnostics().
01330   typedef llvm::MapVector<const VarDecl *, MappedType> UsesMap;
01331   UsesMap *uses;
01332   
01333 public:
01334   UninitValsDiagReporter(Sema &S) : S(S), uses(nullptr) {}
01335   ~UninitValsDiagReporter() { 
01336     flushDiagnostics();
01337   }
01338 
01339   MappedType &getUses(const VarDecl *vd) {
01340     if (!uses)
01341       uses = new UsesMap();
01342 
01343     MappedType &V = (*uses)[vd];
01344     if (!V.getPointer())
01345       V.setPointer(new UsesVec());
01346     
01347     return V;
01348   }
01349 
01350   void handleUseOfUninitVariable(const VarDecl *vd,
01351                                  const UninitUse &use) override {
01352     getUses(vd).getPointer()->push_back(use);
01353   }
01354   
01355   void handleSelfInit(const VarDecl *vd) override {
01356     getUses(vd).setInt(true);
01357   }
01358   
01359   void flushDiagnostics() {
01360     if (!uses)
01361       return;
01362 
01363     for (const auto &P : *uses) {
01364       const VarDecl *vd = P.first;
01365       const MappedType &V = P.second;
01366 
01367       UsesVec *vec = V.getPointer();
01368       bool hasSelfInit = V.getInt();
01369 
01370       // Specially handle the case where we have uses of an uninitialized 
01371       // variable, but the root cause is an idiomatic self-init.  We want
01372       // to report the diagnostic at the self-init since that is the root cause.
01373       if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
01374         DiagnoseUninitializedUse(S, vd,
01375                                  UninitUse(vd->getInit()->IgnoreParenCasts(),
01376                                            /* isAlwaysUninit */ true),
01377                                  /* alwaysReportSelfInit */ true);
01378       else {
01379         // Sort the uses by their SourceLocations.  While not strictly
01380         // guaranteed to produce them in line/column order, this will provide
01381         // a stable ordering.
01382         std::sort(vec->begin(), vec->end(),
01383                   [](const UninitUse &a, const UninitUse &b) {
01384           // Prefer a more confident report over a less confident one.
01385           if (a.getKind() != b.getKind())
01386             return a.getKind() > b.getKind();
01387           return a.getUser()->getLocStart() < b.getUser()->getLocStart();
01388         });
01389 
01390         for (const auto &U : *vec) {
01391           // If we have self-init, downgrade all uses to 'may be uninitialized'.
01392           UninitUse Use = hasSelfInit ? UninitUse(U.getUser(), false) : U;
01393 
01394           if (DiagnoseUninitializedUse(S, vd, Use))
01395             // Skip further diagnostics for this variable. We try to warn only
01396             // on the first point at which a variable is used uninitialized.
01397             break;
01398         }
01399       }
01400       
01401       // Release the uses vector.
01402       delete vec;
01403     }
01404     delete uses;
01405   }
01406 
01407 private:
01408   static bool hasAlwaysUninitializedUse(const UsesVec* vec) {
01409     return std::any_of(vec->begin(), vec->end(), [](const UninitUse &U) {
01410       return U.getKind() == UninitUse::Always ||
01411              U.getKind() == UninitUse::AfterCall ||
01412              U.getKind() == UninitUse::AfterDecl;
01413     });
01414   }
01415 };
01416 }
01417 
01418 namespace clang {
01419 namespace {
01420 typedef SmallVector<PartialDiagnosticAt, 1> OptionalNotes;
01421 typedef std::pair<PartialDiagnosticAt, OptionalNotes> DelayedDiag;
01422 typedef std::list<DelayedDiag> DiagList;
01423 
01424 struct SortDiagBySourceLocation {
01425   SourceManager &SM;
01426   SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {}
01427 
01428   bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
01429     // Although this call will be slow, this is only called when outputting
01430     // multiple warnings.
01431     return SM.isBeforeInTranslationUnit(left.first.first, right.first.first);
01432   }
01433 };
01434 }}
01435 
01436 //===----------------------------------------------------------------------===//
01437 // -Wthread-safety
01438 //===----------------------------------------------------------------------===//
01439 namespace clang {
01440 namespace threadSafety {
01441 
01442 class ThreadSafetyReporter : public clang::threadSafety::ThreadSafetyHandler {
01443   Sema &S;
01444   DiagList Warnings;
01445   SourceLocation FunLocation, FunEndLocation;
01446 
01447   const FunctionDecl *CurrentFunction;
01448   bool Verbose;
01449 
01450   OptionalNotes getNotes() const {
01451     if (Verbose && CurrentFunction) {
01452       PartialDiagnosticAt FNote(CurrentFunction->getBody()->getLocStart(),
01453                                 S.PDiag(diag::note_thread_warning_in_fun)
01454                                     << CurrentFunction->getNameAsString());
01455       return OptionalNotes(1, FNote);
01456     }
01457     return OptionalNotes();
01458   }
01459 
01460   OptionalNotes getNotes(const PartialDiagnosticAt &Note) const {
01461     OptionalNotes ONS(1, Note);
01462     if (Verbose && CurrentFunction) {
01463       PartialDiagnosticAt FNote(CurrentFunction->getBody()->getLocStart(),
01464                                 S.PDiag(diag::note_thread_warning_in_fun)
01465                                     << CurrentFunction->getNameAsString());
01466       ONS.push_back(FNote);
01467     }
01468     return ONS;
01469   }
01470 
01471   OptionalNotes getNotes(const PartialDiagnosticAt &Note1,
01472                          const PartialDiagnosticAt &Note2) const {
01473     OptionalNotes ONS;
01474     ONS.push_back(Note1);
01475     ONS.push_back(Note2);
01476     if (Verbose && CurrentFunction) {
01477       PartialDiagnosticAt FNote(CurrentFunction->getBody()->getLocStart(),
01478                                 S.PDiag(diag::note_thread_warning_in_fun)
01479                                     << CurrentFunction->getNameAsString());
01480       ONS.push_back(FNote);
01481     }
01482     return ONS;
01483   }
01484 
01485   // Helper functions
01486   void warnLockMismatch(unsigned DiagID, StringRef Kind, Name LockName,
01487                         SourceLocation Loc) {
01488     // Gracefully handle rare cases when the analysis can't get a more
01489     // precise source location.
01490     if (!Loc.isValid())
01491       Loc = FunLocation;
01492     PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind << LockName);
01493     Warnings.push_back(DelayedDiag(Warning, getNotes()));
01494   }
01495 
01496  public:
01497   ThreadSafetyReporter(Sema &S, SourceLocation FL, SourceLocation FEL)
01498     : S(S), FunLocation(FL), FunEndLocation(FEL),
01499       CurrentFunction(nullptr), Verbose(false) {}
01500 
01501   void setVerbose(bool b) { Verbose = b; }
01502 
01503   /// \brief Emit all buffered diagnostics in order of sourcelocation.
01504   /// We need to output diagnostics produced while iterating through
01505   /// the lockset in deterministic order, so this function orders diagnostics
01506   /// and outputs them.
01507   void emitDiagnostics() {
01508     Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
01509     for (const auto &Diag : Warnings) {
01510       S.Diag(Diag.first.first, Diag.first.second);
01511       for (const auto &Note : Diag.second)
01512         S.Diag(Note.first, Note.second);
01513     }
01514   }
01515 
01516   void handleInvalidLockExp(StringRef Kind, SourceLocation Loc) override {
01517     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_cannot_resolve_lock)
01518                                          << Loc);
01519     Warnings.push_back(DelayedDiag(Warning, getNotes()));
01520   }
01521 
01522   void handleUnmatchedUnlock(StringRef Kind, Name LockName,
01523                              SourceLocation Loc) override {
01524     warnLockMismatch(diag::warn_unlock_but_no_lock, Kind, LockName, Loc);
01525   }
01526 
01527   void handleIncorrectUnlockKind(StringRef Kind, Name LockName,
01528                                  LockKind Expected, LockKind Received,
01529                                  SourceLocation Loc) override {
01530     if (Loc.isInvalid())
01531       Loc = FunLocation;
01532     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_unlock_kind_mismatch)
01533                                          << Kind << LockName << Received
01534                                          << Expected);
01535     Warnings.push_back(DelayedDiag(Warning, getNotes()));
01536   }
01537 
01538   void handleDoubleLock(StringRef Kind, Name LockName, SourceLocation Loc) override {
01539     warnLockMismatch(diag::warn_double_lock, Kind, LockName, Loc);
01540   }
01541 
01542   void handleMutexHeldEndOfScope(StringRef Kind, Name LockName,
01543                                  SourceLocation LocLocked,
01544                                  SourceLocation LocEndOfScope,
01545                                  LockErrorKind LEK) override {
01546     unsigned DiagID = 0;
01547     switch (LEK) {
01548       case LEK_LockedSomePredecessors:
01549         DiagID = diag::warn_lock_some_predecessors;
01550         break;
01551       case LEK_LockedSomeLoopIterations:
01552         DiagID = diag::warn_expecting_lock_held_on_loop;
01553         break;
01554       case LEK_LockedAtEndOfFunction:
01555         DiagID = diag::warn_no_unlock;
01556         break;
01557       case LEK_NotLockedAtEndOfFunction:
01558         DiagID = diag::warn_expecting_locked;
01559         break;
01560     }
01561     if (LocEndOfScope.isInvalid())
01562       LocEndOfScope = FunEndLocation;
01563 
01564     PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID) << Kind
01565                                                                << LockName);
01566     if (LocLocked.isValid()) {
01567       PartialDiagnosticAt Note(LocLocked, S.PDiag(diag::note_locked_here)
01568                                               << Kind);
01569       Warnings.push_back(DelayedDiag(Warning, getNotes(Note)));
01570       return;
01571     }
01572     Warnings.push_back(DelayedDiag(Warning, getNotes()));
01573   }
01574 
01575   void handleExclusiveAndShared(StringRef Kind, Name LockName,
01576                                 SourceLocation Loc1,
01577                                 SourceLocation Loc2) override {
01578     PartialDiagnosticAt Warning(Loc1,
01579                                 S.PDiag(diag::warn_lock_exclusive_and_shared)
01580                                     << Kind << LockName);
01581     PartialDiagnosticAt Note(Loc2, S.PDiag(diag::note_lock_exclusive_and_shared)
01582                                        << Kind << LockName);
01583     Warnings.push_back(DelayedDiag(Warning, getNotes(Note)));
01584   }
01585 
01586   void handleNoMutexHeld(StringRef Kind, const NamedDecl *D,
01587                          ProtectedOperationKind POK, AccessKind AK,
01588                          SourceLocation Loc) override {
01589     assert((POK == POK_VarAccess || POK == POK_VarDereference) &&
01590            "Only works for variables");
01591     unsigned DiagID = POK == POK_VarAccess?
01592                         diag::warn_variable_requires_any_lock:
01593                         diag::warn_var_deref_requires_any_lock;
01594     PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
01595       << D->getNameAsString() << getLockKindFromAccessKind(AK));
01596     Warnings.push_back(DelayedDiag(Warning, getNotes()));
01597   }
01598 
01599   void handleMutexNotHeld(StringRef Kind, const NamedDecl *D,
01600                           ProtectedOperationKind POK, Name LockName,
01601                           LockKind LK, SourceLocation Loc,
01602                           Name *PossibleMatch) override {
01603     unsigned DiagID = 0;
01604     if (PossibleMatch) {
01605       switch (POK) {
01606         case POK_VarAccess:
01607           DiagID = diag::warn_variable_requires_lock_precise;
01608           break;
01609         case POK_VarDereference:
01610           DiagID = diag::warn_var_deref_requires_lock_precise;
01611           break;
01612         case POK_FunctionCall:
01613           DiagID = diag::warn_fun_requires_lock_precise;
01614           break;
01615         case POK_PassByRef:
01616           DiagID = diag::warn_guarded_pass_by_reference;
01617           break;
01618         case POK_PtPassByRef:
01619           DiagID = diag::warn_pt_guarded_pass_by_reference;
01620           break;
01621       }
01622       PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
01623                                                        << D->getNameAsString()
01624                                                        << LockName << LK);
01625       PartialDiagnosticAt Note(Loc, S.PDiag(diag::note_found_mutex_near_match)
01626                                         << *PossibleMatch);
01627       if (Verbose && POK == POK_VarAccess) {
01628         PartialDiagnosticAt VNote(D->getLocation(),
01629                                  S.PDiag(diag::note_guarded_by_declared_here)
01630                                      << D->getNameAsString());
01631         Warnings.push_back(DelayedDiag(Warning, getNotes(Note, VNote)));
01632       } else
01633         Warnings.push_back(DelayedDiag(Warning, getNotes(Note)));
01634     } else {
01635       switch (POK) {
01636         case POK_VarAccess:
01637           DiagID = diag::warn_variable_requires_lock;
01638           break;
01639         case POK_VarDereference:
01640           DiagID = diag::warn_var_deref_requires_lock;
01641           break;
01642         case POK_FunctionCall:
01643           DiagID = diag::warn_fun_requires_lock;
01644           break;
01645         case POK_PassByRef:
01646           DiagID = diag::warn_guarded_pass_by_reference;
01647           break;
01648         case POK_PtPassByRef:
01649           DiagID = diag::warn_pt_guarded_pass_by_reference;
01650           break;
01651       }
01652       PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
01653                                                        << D->getNameAsString()
01654                                                        << LockName << LK);
01655       if (Verbose && POK == POK_VarAccess) {
01656         PartialDiagnosticAt Note(D->getLocation(),
01657                                  S.PDiag(diag::note_guarded_by_declared_here)
01658                                      << D->getNameAsString());
01659         Warnings.push_back(DelayedDiag(Warning, getNotes(Note)));
01660       } else
01661         Warnings.push_back(DelayedDiag(Warning, getNotes()));
01662     }
01663   }
01664 
01665 
01666   virtual void handleNegativeNotHeld(StringRef Kind, Name LockName, Name Neg,
01667                                      SourceLocation Loc) override {
01668     PartialDiagnosticAt Warning(Loc,
01669         S.PDiag(diag::warn_acquire_requires_negative_cap)
01670         << Kind << LockName << Neg);
01671     Warnings.push_back(DelayedDiag(Warning, getNotes()));
01672   }
01673 
01674 
01675   void handleFunExcludesLock(StringRef Kind, Name FunName, Name LockName,
01676                              SourceLocation Loc) override {
01677     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_fun_excludes_mutex)
01678                                          << Kind << FunName << LockName);
01679     Warnings.push_back(DelayedDiag(Warning, getNotes()));
01680   }
01681 
01682   void enterFunction(const FunctionDecl* FD) override {
01683     CurrentFunction = FD;
01684   }
01685 
01686   void leaveFunction(const FunctionDecl* FD) override {
01687     CurrentFunction = 0;
01688   }
01689 };
01690 
01691 }
01692 }
01693 
01694 //===----------------------------------------------------------------------===//
01695 // -Wconsumed
01696 //===----------------------------------------------------------------------===//
01697 
01698 namespace clang {
01699 namespace consumed {
01700 namespace {
01701 class ConsumedWarningsHandler : public ConsumedWarningsHandlerBase {
01702   
01703   Sema &S;
01704   DiagList Warnings;
01705   
01706 public:
01707   
01708   ConsumedWarningsHandler(Sema &S) : S(S) {}
01709 
01710   void emitDiagnostics() override {
01711     Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
01712     for (const auto &Diag : Warnings) {
01713       S.Diag(Diag.first.first, Diag.first.second);
01714       for (const auto &Note : Diag.second)
01715         S.Diag(Note.first, Note.second);
01716     }
01717   }
01718 
01719   void warnLoopStateMismatch(SourceLocation Loc,
01720                              StringRef VariableName) override {
01721     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_loop_state_mismatch) <<
01722       VariableName);
01723     
01724     Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
01725   }
01726   
01727   void warnParamReturnTypestateMismatch(SourceLocation Loc,
01728                                         StringRef VariableName,
01729                                         StringRef ExpectedState,
01730                                         StringRef ObservedState) override {
01731     
01732     PartialDiagnosticAt Warning(Loc, S.PDiag(
01733       diag::warn_param_return_typestate_mismatch) << VariableName <<
01734         ExpectedState << ObservedState);
01735     
01736     Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
01737   }
01738   
01739   void warnParamTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
01740                                   StringRef ObservedState) override {
01741     
01742     PartialDiagnosticAt Warning(Loc, S.PDiag(
01743       diag::warn_param_typestate_mismatch) << ExpectedState << ObservedState);
01744     
01745     Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
01746   }
01747   
01748   void warnReturnTypestateForUnconsumableType(SourceLocation Loc,
01749                                               StringRef TypeName) override {
01750     PartialDiagnosticAt Warning(Loc, S.PDiag(
01751       diag::warn_return_typestate_for_unconsumable_type) << TypeName);
01752     
01753     Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
01754   }
01755   
01756   void warnReturnTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
01757                                    StringRef ObservedState) override {
01758                                     
01759     PartialDiagnosticAt Warning(Loc, S.PDiag(
01760       diag::warn_return_typestate_mismatch) << ExpectedState << ObservedState);
01761     
01762     Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
01763   }
01764   
01765   void warnUseOfTempInInvalidState(StringRef MethodName, StringRef State,
01766                                    SourceLocation Loc) override {
01767                                                     
01768     PartialDiagnosticAt Warning(Loc, S.PDiag(
01769       diag::warn_use_of_temp_in_invalid_state) << MethodName << State);
01770     
01771     Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
01772   }
01773   
01774   void warnUseInInvalidState(StringRef MethodName, StringRef VariableName,
01775                              StringRef State, SourceLocation Loc) override {
01776   
01777     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_use_in_invalid_state) <<
01778                                 MethodName << VariableName << State);
01779     
01780     Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
01781   }
01782 };
01783 }}}
01784 
01785 //===----------------------------------------------------------------------===//
01786 // AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
01787 //  warnings on a function, method, or block.
01788 //===----------------------------------------------------------------------===//
01789 
01790 clang::sema::AnalysisBasedWarnings::Policy::Policy() {
01791   enableCheckFallThrough = 1;
01792   enableCheckUnreachable = 0;
01793   enableThreadSafetyAnalysis = 0;
01794   enableConsumedAnalysis = 0;
01795 }
01796 
01797 static unsigned isEnabled(DiagnosticsEngine &D, unsigned diag) {
01798   return (unsigned)!D.isIgnored(diag, SourceLocation());
01799 }
01800 
01801 clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
01802   : S(s),
01803     NumFunctionsAnalyzed(0),
01804     NumFunctionsWithBadCFGs(0),
01805     NumCFGBlocks(0),
01806     MaxCFGBlocksPerFunction(0),
01807     NumUninitAnalysisFunctions(0),
01808     NumUninitAnalysisVariables(0),
01809     MaxUninitAnalysisVariablesPerFunction(0),
01810     NumUninitAnalysisBlockVisits(0),
01811     MaxUninitAnalysisBlockVisitsPerFunction(0) {
01812 
01813   using namespace diag;
01814   DiagnosticsEngine &D = S.getDiagnostics();
01815 
01816   DefaultPolicy.enableCheckUnreachable =
01817     isEnabled(D, warn_unreachable) ||
01818     isEnabled(D, warn_unreachable_break) ||
01819     isEnabled(D, warn_unreachable_return) ||
01820     isEnabled(D, warn_unreachable_loop_increment);
01821 
01822   DefaultPolicy.enableThreadSafetyAnalysis =
01823     isEnabled(D, warn_double_lock);
01824 
01825   DefaultPolicy.enableConsumedAnalysis =
01826     isEnabled(D, warn_use_in_invalid_state);
01827 }
01828 
01829 static void flushDiagnostics(Sema &S, const sema::FunctionScopeInfo *fscope) {
01830   for (const auto &D : fscope->PossiblyUnreachableDiags)
01831     S.Diag(D.Loc, D.PD);
01832 }
01833 
01834 void clang::sema::
01835 AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P,
01836                                      sema::FunctionScopeInfo *fscope,
01837                                      const Decl *D, const BlockExpr *blkExpr) {
01838 
01839   // We avoid doing analysis-based warnings when there are errors for
01840   // two reasons:
01841   // (1) The CFGs often can't be constructed (if the body is invalid), so
01842   //     don't bother trying.
01843   // (2) The code already has problems; running the analysis just takes more
01844   //     time.
01845   DiagnosticsEngine &Diags = S.getDiagnostics();
01846 
01847   // Do not do any analysis for declarations in system headers if we are
01848   // going to just ignore them.
01849   if (Diags.getSuppressSystemWarnings() &&
01850       S.SourceMgr.isInSystemHeader(D->getLocation()))
01851     return;
01852 
01853   // For code in dependent contexts, we'll do this at instantiation time.
01854   if (cast<DeclContext>(D)->isDependentContext())
01855     return;
01856 
01857   if (Diags.hasUncompilableErrorOccurred() || Diags.hasFatalErrorOccurred()) {
01858     // Flush out any possibly unreachable diagnostics.
01859     flushDiagnostics(S, fscope);
01860     return;
01861   }
01862   
01863   const Stmt *Body = D->getBody();
01864   assert(Body);
01865 
01866   // Construct the analysis context with the specified CFG build options.
01867   AnalysisDeclContext AC(/* AnalysisDeclContextManager */ nullptr, D);
01868 
01869   // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
01870   // explosion for destructors that can result and the compile time hit.
01871   AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
01872   AC.getCFGBuildOptions().AddEHEdges = false;
01873   AC.getCFGBuildOptions().AddInitializers = true;
01874   AC.getCFGBuildOptions().AddImplicitDtors = true;
01875   AC.getCFGBuildOptions().AddTemporaryDtors = true;
01876   AC.getCFGBuildOptions().AddCXXNewAllocator = false;
01877 
01878   // Force that certain expressions appear as CFGElements in the CFG.  This
01879   // is used to speed up various analyses.
01880   // FIXME: This isn't the right factoring.  This is here for initial
01881   // prototyping, but we need a way for analyses to say what expressions they
01882   // expect to always be CFGElements and then fill in the BuildOptions
01883   // appropriately.  This is essentially a layering violation.
01884   if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis ||
01885       P.enableConsumedAnalysis) {
01886     // Unreachable code analysis and thread safety require a linearized CFG.
01887     AC.getCFGBuildOptions().setAllAlwaysAdd();
01888   }
01889   else {
01890     AC.getCFGBuildOptions()
01891       .setAlwaysAdd(Stmt::BinaryOperatorClass)
01892       .setAlwaysAdd(Stmt::CompoundAssignOperatorClass)
01893       .setAlwaysAdd(Stmt::BlockExprClass)
01894       .setAlwaysAdd(Stmt::CStyleCastExprClass)
01895       .setAlwaysAdd(Stmt::DeclRefExprClass)
01896       .setAlwaysAdd(Stmt::ImplicitCastExprClass)
01897       .setAlwaysAdd(Stmt::UnaryOperatorClass)
01898       .setAlwaysAdd(Stmt::AttributedStmtClass);
01899   }
01900 
01901   // Install the logical handler for -Wtautological-overlap-compare
01902   std::unique_ptr<LogicalErrorHandler> LEH;
01903   if (!Diags.isIgnored(diag::warn_tautological_overlap_comparison,
01904                        D->getLocStart())) {
01905     LEH.reset(new LogicalErrorHandler(S));
01906     AC.getCFGBuildOptions().Observer = LEH.get();
01907   }
01908 
01909   // Emit delayed diagnostics.
01910   if (!fscope->PossiblyUnreachableDiags.empty()) {
01911     bool analyzed = false;
01912 
01913     // Register the expressions with the CFGBuilder.
01914     for (const auto &D : fscope->PossiblyUnreachableDiags) {
01915       if (D.stmt)
01916         AC.registerForcedBlockExpression(D.stmt);
01917     }
01918 
01919     if (AC.getCFG()) {
01920       analyzed = true;
01921       for (const auto &D : fscope->PossiblyUnreachableDiags) {
01922         bool processed = false;
01923         if (D.stmt) {
01924           const CFGBlock *block = AC.getBlockForRegisteredExpression(D.stmt);
01925           CFGReverseBlockReachabilityAnalysis *cra =
01926               AC.getCFGReachablityAnalysis();
01927           // FIXME: We should be able to assert that block is non-null, but
01928           // the CFG analysis can skip potentially-evaluated expressions in
01929           // edge cases; see test/Sema/vla-2.c.
01930           if (block && cra) {
01931             // Can this block be reached from the entrance?
01932             if (cra->isReachable(&AC.getCFG()->getEntry(), block))
01933               S.Diag(D.Loc, D.PD);
01934             processed = true;
01935           }
01936         }
01937         if (!processed) {
01938           // Emit the warning anyway if we cannot map to a basic block.
01939           S.Diag(D.Loc, D.PD);
01940         }
01941       }
01942     }
01943 
01944     if (!analyzed)
01945       flushDiagnostics(S, fscope);
01946   }
01947   
01948   
01949   // Warning: check missing 'return'
01950   if (P.enableCheckFallThrough) {
01951     const CheckFallThroughDiagnostics &CD =
01952       (isa<BlockDecl>(D) ? CheckFallThroughDiagnostics::MakeForBlock()
01953        : (isa<CXXMethodDecl>(D) &&
01954           cast<CXXMethodDecl>(D)->getOverloadedOperator() == OO_Call &&
01955           cast<CXXMethodDecl>(D)->getParent()->isLambda())
01956             ? CheckFallThroughDiagnostics::MakeForLambda()
01957             : CheckFallThroughDiagnostics::MakeForFunction(D));
01958     CheckFallThroughForBody(S, D, Body, blkExpr, CD, AC);
01959   }
01960 
01961   // Warning: check for unreachable code
01962   if (P.enableCheckUnreachable) {
01963     // Only check for unreachable code on non-template instantiations.
01964     // Different template instantiations can effectively change the control-flow
01965     // and it is very difficult to prove that a snippet of code in a template
01966     // is unreachable for all instantiations.
01967     bool isTemplateInstantiation = false;
01968     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
01969       isTemplateInstantiation = Function->isTemplateInstantiation();
01970     if (!isTemplateInstantiation)
01971       CheckUnreachable(S, AC);
01972   }
01973 
01974   // Check for thread safety violations
01975   if (P.enableThreadSafetyAnalysis) {
01976     SourceLocation FL = AC.getDecl()->getLocation();
01977     SourceLocation FEL = AC.getDecl()->getLocEnd();
01978     threadSafety::ThreadSafetyReporter Reporter(S, FL, FEL);
01979     if (!Diags.isIgnored(diag::warn_thread_safety_beta, D->getLocStart()))
01980       Reporter.setIssueBetaWarnings(true);
01981     if (!Diags.isIgnored(diag::warn_thread_safety_verbose, D->getLocStart()))
01982       Reporter.setVerbose(true);
01983 
01984     threadSafety::runThreadSafetyAnalysis(AC, Reporter);
01985     Reporter.emitDiagnostics();
01986   }
01987 
01988   // Check for violations of consumed properties.
01989   if (P.enableConsumedAnalysis) {
01990     consumed::ConsumedWarningsHandler WarningHandler(S);
01991     consumed::ConsumedAnalyzer Analyzer(WarningHandler);
01992     Analyzer.run(AC);
01993   }
01994 
01995   if (!Diags.isIgnored(diag::warn_uninit_var, D->getLocStart()) ||
01996       !Diags.isIgnored(diag::warn_sometimes_uninit_var, D->getLocStart()) ||
01997       !Diags.isIgnored(diag::warn_maybe_uninit_var, D->getLocStart())) {
01998     if (CFG *cfg = AC.getCFG()) {
01999       UninitValsDiagReporter reporter(S);
02000       UninitVariablesAnalysisStats stats;
02001       std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
02002       runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
02003                                         reporter, stats);
02004 
02005       if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
02006         ++NumUninitAnalysisFunctions;
02007         NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
02008         NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
02009         MaxUninitAnalysisVariablesPerFunction =
02010             std::max(MaxUninitAnalysisVariablesPerFunction,
02011                      stats.NumVariablesAnalyzed);
02012         MaxUninitAnalysisBlockVisitsPerFunction =
02013             std::max(MaxUninitAnalysisBlockVisitsPerFunction,
02014                      stats.NumBlockVisits);
02015       }
02016     }
02017   }
02018 
02019   bool FallThroughDiagFull =
02020       !Diags.isIgnored(diag::warn_unannotated_fallthrough, D->getLocStart());
02021   bool FallThroughDiagPerFunction = !Diags.isIgnored(
02022       diag::warn_unannotated_fallthrough_per_function, D->getLocStart());
02023   if (FallThroughDiagFull || FallThroughDiagPerFunction) {
02024     DiagnoseSwitchLabelsFallthrough(S, AC, !FallThroughDiagFull);
02025   }
02026 
02027   if (S.getLangOpts().ObjCARCWeak &&
02028       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, D->getLocStart()))
02029     diagnoseRepeatedUseOfWeak(S, fscope, D, AC.getParentMap());
02030 
02031 
02032   // Check for infinite self-recursion in functions
02033   if (!Diags.isIgnored(diag::warn_infinite_recursive_function,
02034                        D->getLocStart())) {
02035     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
02036       checkRecursiveFunction(S, FD, Body, AC);
02037     }
02038   }
02039 
02040   // If none of the previous checks caused a CFG build, trigger one here
02041   // for -Wtautological-overlap-compare
02042   if (!Diags.isIgnored(diag::warn_tautological_overlap_comparison,
02043                                D->getLocStart())) {
02044     AC.getCFG();
02045   }
02046 
02047   // Collect statistics about the CFG if it was built.
02048   if (S.CollectStats && AC.isCFGBuilt()) {
02049     ++NumFunctionsAnalyzed;
02050     if (CFG *cfg = AC.getCFG()) {
02051       // If we successfully built a CFG for this context, record some more
02052       // detail information about it.
02053       NumCFGBlocks += cfg->getNumBlockIDs();
02054       MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
02055                                          cfg->getNumBlockIDs());
02056     } else {
02057       ++NumFunctionsWithBadCFGs;
02058     }
02059   }
02060 }
02061 
02062 void clang::sema::AnalysisBasedWarnings::PrintStats() const {
02063   llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
02064 
02065   unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
02066   unsigned AvgCFGBlocksPerFunction =
02067       !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
02068   llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
02069                << NumFunctionsWithBadCFGs << " w/o CFGs).\n"
02070                << "  " << NumCFGBlocks << " CFG blocks built.\n"
02071                << "  " << AvgCFGBlocksPerFunction
02072                << " average CFG blocks per function.\n"
02073                << "  " << MaxCFGBlocksPerFunction
02074                << " max CFG blocks per function.\n";
02075 
02076   unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
02077       : NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
02078   unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
02079       : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
02080   llvm::errs() << NumUninitAnalysisFunctions
02081                << " functions analyzed for uninitialiazed variables\n"
02082                << "  " << NumUninitAnalysisVariables << " variables analyzed.\n"
02083                << "  " << AvgUninitVariablesPerFunction
02084                << " average variables per function.\n"
02085                << "  " << MaxUninitAnalysisVariablesPerFunction
02086                << " max variables per function.\n"
02087                << "  " << NumUninitAnalysisBlockVisits << " block visits.\n"
02088                << "  " << AvgUninitBlockVisitsPerFunction
02089                << " average block visits per function.\n"
02090                << "  " << MaxUninitAnalysisBlockVisitsPerFunction
02091                << " max block visits per function.\n";
02092 }