clang API Documentation
00001 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This contains code to emit Stmt nodes as LLVM code. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "CodeGenFunction.h" 00015 #include "CGDebugInfo.h" 00016 #include "CodeGenModule.h" 00017 #include "TargetInfo.h" 00018 #include "clang/AST/StmtVisitor.h" 00019 #include "clang/Basic/PrettyStackTrace.h" 00020 #include "clang/Basic/TargetInfo.h" 00021 #include "clang/Sema/LoopHint.h" 00022 #include "clang/Sema/SemaDiagnostic.h" 00023 #include "llvm/ADT/StringExtras.h" 00024 #include "llvm/IR/CallSite.h" 00025 #include "llvm/IR/DataLayout.h" 00026 #include "llvm/IR/InlineAsm.h" 00027 #include "llvm/IR/Intrinsics.h" 00028 using namespace clang; 00029 using namespace CodeGen; 00030 00031 //===----------------------------------------------------------------------===// 00032 // Statement Emission 00033 //===----------------------------------------------------------------------===// 00034 00035 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 00036 if (CGDebugInfo *DI = getDebugInfo()) { 00037 SourceLocation Loc; 00038 Loc = S->getLocStart(); 00039 DI->EmitLocation(Builder, Loc); 00040 00041 LastStopPoint = Loc; 00042 } 00043 } 00044 00045 void CodeGenFunction::EmitStmt(const Stmt *S) { 00046 assert(S && "Null statement?"); 00047 PGO.setCurrentStmt(S); 00048 00049 // These statements have their own debug info handling. 00050 if (EmitSimpleStmt(S)) 00051 return; 00052 00053 // Check if we are generating unreachable code. 00054 if (!HaveInsertPoint()) { 00055 // If so, and the statement doesn't contain a label, then we do not need to 00056 // generate actual code. This is safe because (1) the current point is 00057 // unreachable, so we don't need to execute the code, and (2) we've already 00058 // handled the statements which update internal data structures (like the 00059 // local variable map) which could be used by subsequent statements. 00060 if (!ContainsLabel(S)) { 00061 // Verify that any decl statements were handled as simple, they may be in 00062 // scope of subsequent reachable statements. 00063 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 00064 return; 00065 } 00066 00067 // Otherwise, make a new block to hold the code. 00068 EnsureInsertPoint(); 00069 } 00070 00071 // Generate a stoppoint if we are emitting debug info. 00072 EmitStopPoint(S); 00073 00074 switch (S->getStmtClass()) { 00075 case Stmt::NoStmtClass: 00076 case Stmt::CXXCatchStmtClass: 00077 case Stmt::SEHExceptStmtClass: 00078 case Stmt::SEHFinallyStmtClass: 00079 case Stmt::MSDependentExistsStmtClass: 00080 llvm_unreachable("invalid statement class to emit generically"); 00081 case Stmt::NullStmtClass: 00082 case Stmt::CompoundStmtClass: 00083 case Stmt::DeclStmtClass: 00084 case Stmt::LabelStmtClass: 00085 case Stmt::AttributedStmtClass: 00086 case Stmt::GotoStmtClass: 00087 case Stmt::BreakStmtClass: 00088 case Stmt::ContinueStmtClass: 00089 case Stmt::DefaultStmtClass: 00090 case Stmt::CaseStmtClass: 00091 llvm_unreachable("should have emitted these statements as simple"); 00092 00093 #define STMT(Type, Base) 00094 #define ABSTRACT_STMT(Op) 00095 #define EXPR(Type, Base) \ 00096 case Stmt::Type##Class: 00097 #include "clang/AST/StmtNodes.inc" 00098 { 00099 // Remember the block we came in on. 00100 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 00101 assert(incoming && "expression emission must have an insertion point"); 00102 00103 EmitIgnoredExpr(cast<Expr>(S)); 00104 00105 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 00106 assert(outgoing && "expression emission cleared block!"); 00107 00108 // The expression emitters assume (reasonably!) that the insertion 00109 // point is always set. To maintain that, the call-emission code 00110 // for noreturn functions has to enter a new block with no 00111 // predecessors. We want to kill that block and mark the current 00112 // insertion point unreachable in the common case of a call like 00113 // "exit();". Since expression emission doesn't otherwise create 00114 // blocks with no predecessors, we can just test for that. 00115 // However, we must be careful not to do this to our incoming 00116 // block, because *statement* emission does sometimes create 00117 // reachable blocks which will have no predecessors until later in 00118 // the function. This occurs with, e.g., labels that are not 00119 // reachable by fallthrough. 00120 if (incoming != outgoing && outgoing->use_empty()) { 00121 outgoing->eraseFromParent(); 00122 Builder.ClearInsertionPoint(); 00123 } 00124 break; 00125 } 00126 00127 case Stmt::IndirectGotoStmtClass: 00128 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 00129 00130 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 00131 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break; 00132 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break; 00133 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break; 00134 00135 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 00136 00137 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 00138 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 00139 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 00140 case Stmt::CapturedStmtClass: { 00141 const CapturedStmt *CS = cast<CapturedStmt>(S); 00142 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 00143 } 00144 break; 00145 case Stmt::ObjCAtTryStmtClass: 00146 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 00147 break; 00148 case Stmt::ObjCAtCatchStmtClass: 00149 llvm_unreachable( 00150 "@catch statements should be handled by EmitObjCAtTryStmt"); 00151 case Stmt::ObjCAtFinallyStmtClass: 00152 llvm_unreachable( 00153 "@finally statements should be handled by EmitObjCAtTryStmt"); 00154 case Stmt::ObjCAtThrowStmtClass: 00155 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 00156 break; 00157 case Stmt::ObjCAtSynchronizedStmtClass: 00158 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 00159 break; 00160 case Stmt::ObjCForCollectionStmtClass: 00161 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 00162 break; 00163 case Stmt::ObjCAutoreleasePoolStmtClass: 00164 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 00165 break; 00166 00167 case Stmt::CXXTryStmtClass: 00168 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 00169 break; 00170 case Stmt::CXXForRangeStmtClass: 00171 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S)); 00172 break; 00173 case Stmt::SEHTryStmtClass: 00174 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 00175 break; 00176 case Stmt::SEHLeaveStmtClass: 00177 EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); 00178 break; 00179 case Stmt::OMPParallelDirectiveClass: 00180 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 00181 break; 00182 case Stmt::OMPSimdDirectiveClass: 00183 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 00184 break; 00185 case Stmt::OMPForDirectiveClass: 00186 EmitOMPForDirective(cast<OMPForDirective>(*S)); 00187 break; 00188 case Stmt::OMPForSimdDirectiveClass: 00189 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 00190 break; 00191 case Stmt::OMPSectionsDirectiveClass: 00192 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 00193 break; 00194 case Stmt::OMPSectionDirectiveClass: 00195 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 00196 break; 00197 case Stmt::OMPSingleDirectiveClass: 00198 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 00199 break; 00200 case Stmt::OMPMasterDirectiveClass: 00201 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 00202 break; 00203 case Stmt::OMPCriticalDirectiveClass: 00204 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 00205 break; 00206 case Stmt::OMPParallelForDirectiveClass: 00207 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 00208 break; 00209 case Stmt::OMPParallelForSimdDirectiveClass: 00210 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 00211 break; 00212 case Stmt::OMPParallelSectionsDirectiveClass: 00213 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 00214 break; 00215 case Stmt::OMPTaskDirectiveClass: 00216 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 00217 break; 00218 case Stmt::OMPTaskyieldDirectiveClass: 00219 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 00220 break; 00221 case Stmt::OMPBarrierDirectiveClass: 00222 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 00223 break; 00224 case Stmt::OMPTaskwaitDirectiveClass: 00225 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 00226 break; 00227 case Stmt::OMPFlushDirectiveClass: 00228 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 00229 break; 00230 case Stmt::OMPOrderedDirectiveClass: 00231 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 00232 break; 00233 case Stmt::OMPAtomicDirectiveClass: 00234 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 00235 break; 00236 case Stmt::OMPTargetDirectiveClass: 00237 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 00238 break; 00239 case Stmt::OMPTeamsDirectiveClass: 00240 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 00241 break; 00242 } 00243 } 00244 00245 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 00246 switch (S->getStmtClass()) { 00247 default: return false; 00248 case Stmt::NullStmtClass: break; 00249 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 00250 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 00251 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 00252 case Stmt::AttributedStmtClass: 00253 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 00254 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 00255 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 00256 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 00257 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 00258 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 00259 } 00260 00261 return true; 00262 } 00263 00264 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 00265 /// this captures the expression result of the last sub-statement and returns it 00266 /// (for use by the statement expression extension). 00267 llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 00268 AggValueSlot AggSlot) { 00269 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 00270 "LLVM IR generation of compound statement ('{}')"); 00271 00272 // Keep track of the current cleanup stack depth, including debug scopes. 00273 LexicalScope Scope(*this, S.getSourceRange()); 00274 00275 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 00276 } 00277 00278 llvm::Value* 00279 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 00280 bool GetLast, 00281 AggValueSlot AggSlot) { 00282 00283 for (CompoundStmt::const_body_iterator I = S.body_begin(), 00284 E = S.body_end()-GetLast; I != E; ++I) 00285 EmitStmt(*I); 00286 00287 llvm::Value *RetAlloca = nullptr; 00288 if (GetLast) { 00289 // We have to special case labels here. They are statements, but when put 00290 // at the end of a statement expression, they yield the value of their 00291 // subexpression. Handle this by walking through all labels we encounter, 00292 // emitting them before we evaluate the subexpr. 00293 const Stmt *LastStmt = S.body_back(); 00294 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 00295 EmitLabel(LS->getDecl()); 00296 LastStmt = LS->getSubStmt(); 00297 } 00298 00299 EnsureInsertPoint(); 00300 00301 QualType ExprTy = cast<Expr>(LastStmt)->getType(); 00302 if (hasAggregateEvaluationKind(ExprTy)) { 00303 EmitAggExpr(cast<Expr>(LastStmt), AggSlot); 00304 } else { 00305 // We can't return an RValue here because there might be cleanups at 00306 // the end of the StmtExpr. Because of that, we have to emit the result 00307 // here into a temporary alloca. 00308 RetAlloca = CreateMemTemp(ExprTy); 00309 EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(), 00310 /*IsInit*/false); 00311 } 00312 00313 } 00314 00315 return RetAlloca; 00316 } 00317 00318 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 00319 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 00320 00321 // If there is a cleanup stack, then we it isn't worth trying to 00322 // simplify this block (we would need to remove it from the scope map 00323 // and cleanup entry). 00324 if (!EHStack.empty()) 00325 return; 00326 00327 // Can only simplify direct branches. 00328 if (!BI || !BI->isUnconditional()) 00329 return; 00330 00331 // Can only simplify empty blocks. 00332 if (BI != BB->begin()) 00333 return; 00334 00335 BB->replaceAllUsesWith(BI->getSuccessor(0)); 00336 BI->eraseFromParent(); 00337 BB->eraseFromParent(); 00338 } 00339 00340 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 00341 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 00342 00343 // Fall out of the current block (if necessary). 00344 EmitBranch(BB); 00345 00346 if (IsFinished && BB->use_empty()) { 00347 delete BB; 00348 return; 00349 } 00350 00351 // Place the block after the current block, if possible, or else at 00352 // the end of the function. 00353 if (CurBB && CurBB->getParent()) 00354 CurFn->getBasicBlockList().insertAfter(CurBB, BB); 00355 else 00356 CurFn->getBasicBlockList().push_back(BB); 00357 Builder.SetInsertPoint(BB); 00358 } 00359 00360 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 00361 // Emit a branch from the current block to the target one if this 00362 // was a real block. If this was just a fall-through block after a 00363 // terminator, don't emit it. 00364 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 00365 00366 if (!CurBB || CurBB->getTerminator()) { 00367 // If there is no insert point or the previous block is already 00368 // terminated, don't touch it. 00369 } else { 00370 // Otherwise, create a fall-through branch. 00371 Builder.CreateBr(Target); 00372 } 00373 00374 Builder.ClearInsertionPoint(); 00375 } 00376 00377 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 00378 bool inserted = false; 00379 for (llvm::User *u : block->users()) { 00380 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 00381 CurFn->getBasicBlockList().insertAfter(insn->getParent(), block); 00382 inserted = true; 00383 break; 00384 } 00385 } 00386 00387 if (!inserted) 00388 CurFn->getBasicBlockList().push_back(block); 00389 00390 Builder.SetInsertPoint(block); 00391 } 00392 00393 CodeGenFunction::JumpDest 00394 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 00395 JumpDest &Dest = LabelMap[D]; 00396 if (Dest.isValid()) return Dest; 00397 00398 // Create, but don't insert, the new block. 00399 Dest = JumpDest(createBasicBlock(D->getName()), 00400 EHScopeStack::stable_iterator::invalid(), 00401 NextCleanupDestIndex++); 00402 return Dest; 00403 } 00404 00405 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 00406 // Add this label to the current lexical scope if we're within any 00407 // normal cleanups. Jumps "in" to this label --- when permitted by 00408 // the language --- may need to be routed around such cleanups. 00409 if (EHStack.hasNormalCleanups() && CurLexicalScope) 00410 CurLexicalScope->addLabel(D); 00411 00412 JumpDest &Dest = LabelMap[D]; 00413 00414 // If we didn't need a forward reference to this label, just go 00415 // ahead and create a destination at the current scope. 00416 if (!Dest.isValid()) { 00417 Dest = getJumpDestInCurrentScope(D->getName()); 00418 00419 // Otherwise, we need to give this label a target depth and remove 00420 // it from the branch-fixups list. 00421 } else { 00422 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 00423 Dest.setScopeDepth(EHStack.stable_begin()); 00424 ResolveBranchFixups(Dest.getBlock()); 00425 } 00426 00427 RegionCounter Cnt = getPGORegionCounter(D->getStmt()); 00428 EmitBlock(Dest.getBlock()); 00429 Cnt.beginRegion(Builder); 00430 } 00431 00432 /// Change the cleanup scope of the labels in this lexical scope to 00433 /// match the scope of the enclosing context. 00434 void CodeGenFunction::LexicalScope::rescopeLabels() { 00435 assert(!Labels.empty()); 00436 EHScopeStack::stable_iterator innermostScope 00437 = CGF.EHStack.getInnermostNormalCleanup(); 00438 00439 // Change the scope depth of all the labels. 00440 for (SmallVectorImpl<const LabelDecl*>::const_iterator 00441 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 00442 assert(CGF.LabelMap.count(*i)); 00443 JumpDest &dest = CGF.LabelMap.find(*i)->second; 00444 assert(dest.getScopeDepth().isValid()); 00445 assert(innermostScope.encloses(dest.getScopeDepth())); 00446 dest.setScopeDepth(innermostScope); 00447 } 00448 00449 // Reparent the labels if the new scope also has cleanups. 00450 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 00451 ParentScope->Labels.append(Labels.begin(), Labels.end()); 00452 } 00453 } 00454 00455 00456 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 00457 EmitLabel(S.getDecl()); 00458 EmitStmt(S.getSubStmt()); 00459 } 00460 00461 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 00462 const Stmt *SubStmt = S.getSubStmt(); 00463 switch (SubStmt->getStmtClass()) { 00464 case Stmt::DoStmtClass: 00465 EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs()); 00466 break; 00467 case Stmt::ForStmtClass: 00468 EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs()); 00469 break; 00470 case Stmt::WhileStmtClass: 00471 EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs()); 00472 break; 00473 case Stmt::CXXForRangeStmtClass: 00474 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs()); 00475 break; 00476 default: 00477 EmitStmt(SubStmt); 00478 } 00479 } 00480 00481 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 00482 // If this code is reachable then emit a stop point (if generating 00483 // debug info). We have to do this ourselves because we are on the 00484 // "simple" statement path. 00485 if (HaveInsertPoint()) 00486 EmitStopPoint(&S); 00487 00488 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 00489 } 00490 00491 00492 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 00493 if (const LabelDecl *Target = S.getConstantTarget()) { 00494 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 00495 return; 00496 } 00497 00498 // Ensure that we have an i8* for our PHI node. 00499 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 00500 Int8PtrTy, "addr"); 00501 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 00502 00503 // Get the basic block for the indirect goto. 00504 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 00505 00506 // The first instruction in the block has to be the PHI for the switch dest, 00507 // add an entry for this branch. 00508 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 00509 00510 EmitBranch(IndGotoBB); 00511 } 00512 00513 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 00514 // C99 6.8.4.1: The first substatement is executed if the expression compares 00515 // unequal to 0. The condition must be a scalar type. 00516 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 00517 RegionCounter Cnt = getPGORegionCounter(&S); 00518 00519 if (S.getConditionVariable()) 00520 EmitAutoVarDecl(*S.getConditionVariable()); 00521 00522 // If the condition constant folds and can be elided, try to avoid emitting 00523 // the condition and the dead arm of the if/else. 00524 bool CondConstant; 00525 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) { 00526 // Figure out which block (then or else) is executed. 00527 const Stmt *Executed = S.getThen(); 00528 const Stmt *Skipped = S.getElse(); 00529 if (!CondConstant) // Condition false? 00530 std::swap(Executed, Skipped); 00531 00532 // If the skipped block has no labels in it, just emit the executed block. 00533 // This avoids emitting dead code and simplifies the CFG substantially. 00534 if (!ContainsLabel(Skipped)) { 00535 if (CondConstant) 00536 Cnt.beginRegion(Builder); 00537 if (Executed) { 00538 RunCleanupsScope ExecutedScope(*this); 00539 EmitStmt(Executed); 00540 } 00541 return; 00542 } 00543 } 00544 00545 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 00546 // the conditional branch. 00547 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 00548 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 00549 llvm::BasicBlock *ElseBlock = ContBlock; 00550 if (S.getElse()) 00551 ElseBlock = createBasicBlock("if.else"); 00552 00553 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Cnt.getCount()); 00554 00555 // Emit the 'then' code. 00556 EmitBlock(ThenBlock); 00557 Cnt.beginRegion(Builder); 00558 { 00559 RunCleanupsScope ThenScope(*this); 00560 EmitStmt(S.getThen()); 00561 } 00562 EmitBranch(ContBlock); 00563 00564 // Emit the 'else' code if present. 00565 if (const Stmt *Else = S.getElse()) { 00566 { 00567 // There is no need to emit line number for unconditional branch. 00568 SuppressDebugLocation S(Builder); 00569 EmitBlock(ElseBlock); 00570 } 00571 { 00572 RunCleanupsScope ElseScope(*this); 00573 EmitStmt(Else); 00574 } 00575 { 00576 // There is no need to emit line number for unconditional branch. 00577 SuppressDebugLocation S(Builder); 00578 EmitBranch(ContBlock); 00579 } 00580 } 00581 00582 // Emit the continuation block for code after the if. 00583 EmitBlock(ContBlock, true); 00584 } 00585 00586 void CodeGenFunction::EmitCondBrHints(llvm::LLVMContext &Context, 00587 llvm::BranchInst *CondBr, 00588 ArrayRef<const Attr *> Attrs) { 00589 // Return if there are no hints. 00590 if (Attrs.empty()) 00591 return; 00592 00593 // Add vectorize and unroll hints to the metadata on the conditional branch. 00594 SmallVector<llvm::Value *, 2> Metadata(1); 00595 for (const auto *Attr : Attrs) { 00596 const LoopHintAttr *LH = dyn_cast<LoopHintAttr>(Attr); 00597 00598 // Skip non loop hint attributes 00599 if (!LH) 00600 continue; 00601 00602 LoopHintAttr::OptionType Option = LH->getOption(); 00603 LoopHintAttr::LoopHintState State = LH->getState(); 00604 const char *MetadataName; 00605 switch (Option) { 00606 case LoopHintAttr::Vectorize: 00607 case LoopHintAttr::VectorizeWidth: 00608 MetadataName = "llvm.loop.vectorize.width"; 00609 break; 00610 case LoopHintAttr::Interleave: 00611 case LoopHintAttr::InterleaveCount: 00612 MetadataName = "llvm.loop.interleave.count"; 00613 break; 00614 case LoopHintAttr::Unroll: 00615 // With the unroll loop hint, a non-zero value indicates full unrolling. 00616 MetadataName = State == LoopHintAttr::Disable ? "llvm.loop.unroll.disable" 00617 : "llvm.loop.unroll.full"; 00618 break; 00619 case LoopHintAttr::UnrollCount: 00620 MetadataName = "llvm.loop.unroll.count"; 00621 break; 00622 } 00623 00624 Expr *ValueExpr = LH->getValue(); 00625 int ValueInt = 1; 00626 if (ValueExpr) { 00627 llvm::APSInt ValueAPS = 00628 ValueExpr->EvaluateKnownConstInt(CGM.getContext()); 00629 ValueInt = static_cast<int>(ValueAPS.getSExtValue()); 00630 } 00631 00632 llvm::Value *Value; 00633 llvm::MDString *Name; 00634 switch (Option) { 00635 case LoopHintAttr::Vectorize: 00636 case LoopHintAttr::Interleave: 00637 if (State != LoopHintAttr::Disable) { 00638 // FIXME: In the future I will modifiy the behavior of the metadata 00639 // so we can enable/disable vectorization and interleaving separately. 00640 Name = llvm::MDString::get(Context, "llvm.loop.vectorize.enable"); 00641 Value = Builder.getTrue(); 00642 break; 00643 } 00644 // Vectorization/interleaving is disabled, set width/count to 1. 00645 ValueInt = 1; 00646 // Fallthrough. 00647 case LoopHintAttr::VectorizeWidth: 00648 case LoopHintAttr::InterleaveCount: 00649 case LoopHintAttr::UnrollCount: 00650 Name = llvm::MDString::get(Context, MetadataName); 00651 Value = llvm::ConstantInt::get(Int32Ty, ValueInt); 00652 break; 00653 case LoopHintAttr::Unroll: 00654 Name = llvm::MDString::get(Context, MetadataName); 00655 Value = nullptr; 00656 break; 00657 } 00658 00659 SmallVector<llvm::Value *, 2> OpValues; 00660 OpValues.push_back(Name); 00661 if (Value) 00662 OpValues.push_back(Value); 00663 00664 // Set or overwrite metadata indicated by Name. 00665 Metadata.push_back(llvm::MDNode::get(Context, OpValues)); 00666 } 00667 00668 if (!Metadata.empty()) { 00669 // Add llvm.loop MDNode to CondBr. 00670 llvm::MDNode *LoopID = llvm::MDNode::get(Context, Metadata); 00671 LoopID->replaceOperandWith(0, LoopID); // First op points to itself. 00672 00673 CondBr->setMetadata("llvm.loop", LoopID); 00674 } 00675 } 00676 00677 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 00678 ArrayRef<const Attr *> WhileAttrs) { 00679 RegionCounter Cnt = getPGORegionCounter(&S); 00680 00681 // Emit the header for the loop, which will also become 00682 // the continue target. 00683 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 00684 EmitBlock(LoopHeader.getBlock()); 00685 00686 LoopStack.push(LoopHeader.getBlock()); 00687 00688 // Create an exit block for when the condition fails, which will 00689 // also become the break target. 00690 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 00691 00692 // Store the blocks to use for break and continue. 00693 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 00694 00695 // C++ [stmt.while]p2: 00696 // When the condition of a while statement is a declaration, the 00697 // scope of the variable that is declared extends from its point 00698 // of declaration (3.3.2) to the end of the while statement. 00699 // [...] 00700 // The object created in a condition is destroyed and created 00701 // with each iteration of the loop. 00702 RunCleanupsScope ConditionScope(*this); 00703 00704 if (S.getConditionVariable()) 00705 EmitAutoVarDecl(*S.getConditionVariable()); 00706 00707 // Evaluate the conditional in the while header. C99 6.8.5.1: The 00708 // evaluation of the controlling expression takes place before each 00709 // execution of the loop body. 00710 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 00711 00712 // while(1) is common, avoid extra exit blocks. Be sure 00713 // to correctly handle break/continue though. 00714 bool EmitBoolCondBranch = true; 00715 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 00716 if (C->isOne()) 00717 EmitBoolCondBranch = false; 00718 00719 // As long as the condition is true, go to the loop body. 00720 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 00721 if (EmitBoolCondBranch) { 00722 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 00723 if (ConditionScope.requiresCleanups()) 00724 ExitBlock = createBasicBlock("while.exit"); 00725 llvm::BranchInst *CondBr = 00726 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, 00727 PGO.createLoopWeights(S.getCond(), Cnt)); 00728 00729 if (ExitBlock != LoopExit.getBlock()) { 00730 EmitBlock(ExitBlock); 00731 EmitBranchThroughCleanup(LoopExit); 00732 } 00733 00734 // Attach metadata to loop body conditional branch. 00735 EmitCondBrHints(LoopBody->getContext(), CondBr, WhileAttrs); 00736 } 00737 00738 // Emit the loop body. We have to emit this in a cleanup scope 00739 // because it might be a singleton DeclStmt. 00740 { 00741 RunCleanupsScope BodyScope(*this); 00742 EmitBlock(LoopBody); 00743 Cnt.beginRegion(Builder); 00744 EmitStmt(S.getBody()); 00745 } 00746 00747 BreakContinueStack.pop_back(); 00748 00749 // Immediately force cleanup. 00750 ConditionScope.ForceCleanup(); 00751 00752 EmitStopPoint(&S); 00753 // Branch to the loop header again. 00754 EmitBranch(LoopHeader.getBlock()); 00755 00756 LoopStack.pop(); 00757 00758 // Emit the exit block. 00759 EmitBlock(LoopExit.getBlock(), true); 00760 00761 // The LoopHeader typically is just a branch if we skipped emitting 00762 // a branch, try to erase it. 00763 if (!EmitBoolCondBranch) 00764 SimplifyForwardingBlocks(LoopHeader.getBlock()); 00765 } 00766 00767 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 00768 ArrayRef<const Attr *> DoAttrs) { 00769 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 00770 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 00771 00772 RegionCounter Cnt = getPGORegionCounter(&S); 00773 00774 // Store the blocks to use for break and continue. 00775 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 00776 00777 // Emit the body of the loop. 00778 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 00779 00780 LoopStack.push(LoopBody); 00781 00782 EmitBlockWithFallThrough(LoopBody, Cnt); 00783 { 00784 RunCleanupsScope BodyScope(*this); 00785 EmitStmt(S.getBody()); 00786 } 00787 00788 EmitBlock(LoopCond.getBlock()); 00789 00790 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 00791 // after each execution of the loop body." 00792 00793 // Evaluate the conditional in the while header. 00794 // C99 6.8.5p2/p4: The first substatement is executed if the expression 00795 // compares unequal to 0. The condition must be a scalar type. 00796 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 00797 00798 BreakContinueStack.pop_back(); 00799 00800 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 00801 // to correctly handle break/continue though. 00802 bool EmitBoolCondBranch = true; 00803 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 00804 if (C->isZero()) 00805 EmitBoolCondBranch = false; 00806 00807 // As long as the condition is true, iterate the loop. 00808 if (EmitBoolCondBranch) { 00809 llvm::BranchInst *CondBr = 00810 Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock(), 00811 PGO.createLoopWeights(S.getCond(), Cnt)); 00812 00813 // Attach metadata to loop body conditional branch. 00814 EmitCondBrHints(LoopBody->getContext(), CondBr, DoAttrs); 00815 } 00816 00817 LoopStack.pop(); 00818 00819 // Emit the exit block. 00820 EmitBlock(LoopExit.getBlock()); 00821 00822 // The DoCond block typically is just a branch if we skipped 00823 // emitting a branch, try to erase it. 00824 if (!EmitBoolCondBranch) 00825 SimplifyForwardingBlocks(LoopCond.getBlock()); 00826 } 00827 00828 void CodeGenFunction::EmitForStmt(const ForStmt &S, 00829 ArrayRef<const Attr *> ForAttrs) { 00830 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 00831 00832 LexicalScope ForScope(*this, S.getSourceRange()); 00833 00834 // Evaluate the first part before the loop. 00835 if (S.getInit()) 00836 EmitStmt(S.getInit()); 00837 00838 RegionCounter Cnt = getPGORegionCounter(&S); 00839 00840 // Start the loop with a block that tests the condition. 00841 // If there's an increment, the continue scope will be overwritten 00842 // later. 00843 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 00844 llvm::BasicBlock *CondBlock = Continue.getBlock(); 00845 EmitBlock(CondBlock); 00846 00847 LoopStack.push(CondBlock); 00848 00849 // If the for loop doesn't have an increment we can just use the 00850 // condition as the continue block. Otherwise we'll need to create 00851 // a block for it (in the current scope, i.e. in the scope of the 00852 // condition), and that we will become our continue block. 00853 if (S.getInc()) 00854 Continue = getJumpDestInCurrentScope("for.inc"); 00855 00856 // Store the blocks to use for break and continue. 00857 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 00858 00859 // Create a cleanup scope for the condition variable cleanups. 00860 LexicalScope ConditionScope(*this, S.getSourceRange()); 00861 00862 if (S.getCond()) { 00863 // If the for statement has a condition scope, emit the local variable 00864 // declaration. 00865 if (S.getConditionVariable()) { 00866 EmitAutoVarDecl(*S.getConditionVariable()); 00867 } 00868 00869 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 00870 // If there are any cleanups between here and the loop-exit scope, 00871 // create a block to stage a loop exit along. 00872 if (ForScope.requiresCleanups()) 00873 ExitBlock = createBasicBlock("for.cond.cleanup"); 00874 00875 // As long as the condition is true, iterate the loop. 00876 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 00877 00878 // C99 6.8.5p2/p4: The first substatement is executed if the expression 00879 // compares unequal to 0. The condition must be a scalar type. 00880 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 00881 llvm::BranchInst *CondBr = 00882 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, 00883 PGO.createLoopWeights(S.getCond(), Cnt)); 00884 00885 // Attach metadata to loop body conditional branch. 00886 EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs); 00887 00888 if (ExitBlock != LoopExit.getBlock()) { 00889 EmitBlock(ExitBlock); 00890 EmitBranchThroughCleanup(LoopExit); 00891 } 00892 00893 EmitBlock(ForBody); 00894 } else { 00895 // Treat it as a non-zero constant. Don't even create a new block for the 00896 // body, just fall into it. 00897 } 00898 Cnt.beginRegion(Builder); 00899 00900 { 00901 // Create a separate cleanup scope for the body, in case it is not 00902 // a compound statement. 00903 RunCleanupsScope BodyScope(*this); 00904 EmitStmt(S.getBody()); 00905 } 00906 00907 // If there is an increment, emit it next. 00908 if (S.getInc()) { 00909 EmitBlock(Continue.getBlock()); 00910 EmitStmt(S.getInc()); 00911 } 00912 00913 BreakContinueStack.pop_back(); 00914 00915 ConditionScope.ForceCleanup(); 00916 00917 EmitStopPoint(&S); 00918 EmitBranch(CondBlock); 00919 00920 ForScope.ForceCleanup(); 00921 00922 LoopStack.pop(); 00923 00924 // Emit the fall-through block. 00925 EmitBlock(LoopExit.getBlock(), true); 00926 } 00927 00928 void 00929 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 00930 ArrayRef<const Attr *> ForAttrs) { 00931 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 00932 00933 LexicalScope ForScope(*this, S.getSourceRange()); 00934 00935 // Evaluate the first pieces before the loop. 00936 EmitStmt(S.getRangeStmt()); 00937 EmitStmt(S.getBeginEndStmt()); 00938 00939 RegionCounter Cnt = getPGORegionCounter(&S); 00940 00941 // Start the loop with a block that tests the condition. 00942 // If there's an increment, the continue scope will be overwritten 00943 // later. 00944 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 00945 EmitBlock(CondBlock); 00946 00947 LoopStack.push(CondBlock); 00948 00949 // If there are any cleanups between here and the loop-exit scope, 00950 // create a block to stage a loop exit along. 00951 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 00952 if (ForScope.requiresCleanups()) 00953 ExitBlock = createBasicBlock("for.cond.cleanup"); 00954 00955 // The loop body, consisting of the specified body and the loop variable. 00956 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 00957 00958 // The body is executed if the expression, contextually converted 00959 // to bool, is true. 00960 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 00961 llvm::BranchInst *CondBr = Builder.CreateCondBr( 00962 BoolCondVal, ForBody, ExitBlock, PGO.createLoopWeights(S.getCond(), Cnt)); 00963 00964 // Attach metadata to loop body conditional branch. 00965 EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs); 00966 00967 if (ExitBlock != LoopExit.getBlock()) { 00968 EmitBlock(ExitBlock); 00969 EmitBranchThroughCleanup(LoopExit); 00970 } 00971 00972 EmitBlock(ForBody); 00973 Cnt.beginRegion(Builder); 00974 00975 // Create a block for the increment. In case of a 'continue', we jump there. 00976 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 00977 00978 // Store the blocks to use for break and continue. 00979 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 00980 00981 { 00982 // Create a separate cleanup scope for the loop variable and body. 00983 LexicalScope BodyScope(*this, S.getSourceRange()); 00984 EmitStmt(S.getLoopVarStmt()); 00985 EmitStmt(S.getBody()); 00986 } 00987 00988 EmitStopPoint(&S); 00989 // If there is an increment, emit it next. 00990 EmitBlock(Continue.getBlock()); 00991 EmitStmt(S.getInc()); 00992 00993 BreakContinueStack.pop_back(); 00994 00995 EmitBranch(CondBlock); 00996 00997 ForScope.ForceCleanup(); 00998 00999 LoopStack.pop(); 01000 01001 // Emit the fall-through block. 01002 EmitBlock(LoopExit.getBlock(), true); 01003 } 01004 01005 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 01006 if (RV.isScalar()) { 01007 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 01008 } else if (RV.isAggregate()) { 01009 EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty); 01010 } else { 01011 EmitStoreOfComplex(RV.getComplexVal(), 01012 MakeNaturalAlignAddrLValue(ReturnValue, Ty), 01013 /*init*/ true); 01014 } 01015 EmitBranchThroughCleanup(ReturnBlock); 01016 } 01017 01018 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 01019 /// if the function returns void, or may be missing one if the function returns 01020 /// non-void. Fun stuff :). 01021 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 01022 // Emit the result value, even if unused, to evalute the side effects. 01023 const Expr *RV = S.getRetValue(); 01024 01025 // Treat block literals in a return expression as if they appeared 01026 // in their own scope. This permits a small, easily-implemented 01027 // exception to our over-conservative rules about not jumping to 01028 // statements following block literals with non-trivial cleanups. 01029 RunCleanupsScope cleanupScope(*this); 01030 if (const ExprWithCleanups *cleanups = 01031 dyn_cast_or_null<ExprWithCleanups>(RV)) { 01032 enterFullExpression(cleanups); 01033 RV = cleanups->getSubExpr(); 01034 } 01035 01036 // FIXME: Clean this up by using an LValue for ReturnTemp, 01037 // EmitStoreThroughLValue, and EmitAnyExpr. 01038 if (getLangOpts().ElideConstructors && 01039 S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { 01040 // Apply the named return value optimization for this return statement, 01041 // which means doing nothing: the appropriate result has already been 01042 // constructed into the NRVO variable. 01043 01044 // If there is an NRVO flag for this variable, set it to 1 into indicate 01045 // that the cleanup code should not destroy the variable. 01046 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 01047 Builder.CreateStore(Builder.getTrue(), NRVOFlag); 01048 } else if (!ReturnValue || (RV && RV->getType()->isVoidType())) { 01049 // Make sure not to return anything, but evaluate the expression 01050 // for side effects. 01051 if (RV) 01052 EmitAnyExpr(RV); 01053 } else if (!RV) { 01054 // Do nothing (return value is left uninitialized) 01055 } else if (FnRetTy->isReferenceType()) { 01056 // If this function returns a reference, take the address of the expression 01057 // rather than the value. 01058 RValue Result = EmitReferenceBindingToExpr(RV); 01059 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 01060 } else { 01061 switch (getEvaluationKind(RV->getType())) { 01062 case TEK_Scalar: 01063 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 01064 break; 01065 case TEK_Complex: 01066 EmitComplexExprIntoLValue(RV, 01067 MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()), 01068 /*isInit*/ true); 01069 break; 01070 case TEK_Aggregate: { 01071 CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType()); 01072 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment, 01073 Qualifiers(), 01074 AggValueSlot::IsDestructed, 01075 AggValueSlot::DoesNotNeedGCBarriers, 01076 AggValueSlot::IsNotAliased)); 01077 break; 01078 } 01079 } 01080 } 01081 01082 ++NumReturnExprs; 01083 if (!RV || RV->isEvaluatable(getContext())) 01084 ++NumSimpleReturnExprs; 01085 01086 cleanupScope.ForceCleanup(); 01087 EmitBranchThroughCleanup(ReturnBlock); 01088 } 01089 01090 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 01091 // As long as debug info is modeled with instructions, we have to ensure we 01092 // have a place to insert here and write the stop point here. 01093 if (HaveInsertPoint()) 01094 EmitStopPoint(&S); 01095 01096 for (const auto *I : S.decls()) 01097 EmitDecl(*I); 01098 } 01099 01100 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 01101 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 01102 01103 // If this code is reachable then emit a stop point (if generating 01104 // debug info). We have to do this ourselves because we are on the 01105 // "simple" statement path. 01106 if (HaveInsertPoint()) 01107 EmitStopPoint(&S); 01108 01109 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 01110 } 01111 01112 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 01113 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 01114 01115 // If this code is reachable then emit a stop point (if generating 01116 // debug info). We have to do this ourselves because we are on the 01117 // "simple" statement path. 01118 if (HaveInsertPoint()) 01119 EmitStopPoint(&S); 01120 01121 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 01122 } 01123 01124 /// EmitCaseStmtRange - If case statement range is not too big then 01125 /// add multiple cases to switch instruction, one for each value within 01126 /// the range. If range is too big then emit "if" condition check. 01127 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 01128 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 01129 01130 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 01131 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 01132 01133 RegionCounter CaseCnt = getPGORegionCounter(&S); 01134 01135 // Emit the code for this case. We do this first to make sure it is 01136 // properly chained from our predecessor before generating the 01137 // switch machinery to enter this block. 01138 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 01139 EmitBlockWithFallThrough(CaseDest, CaseCnt); 01140 EmitStmt(S.getSubStmt()); 01141 01142 // If range is empty, do nothing. 01143 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 01144 return; 01145 01146 llvm::APInt Range = RHS - LHS; 01147 // FIXME: parameters such as this should not be hardcoded. 01148 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 01149 // Range is small enough to add multiple switch instruction cases. 01150 uint64_t Total = CaseCnt.getCount(); 01151 unsigned NCases = Range.getZExtValue() + 1; 01152 // We only have one region counter for the entire set of cases here, so we 01153 // need to divide the weights evenly between the generated cases, ensuring 01154 // that the total weight is preserved. E.g., a weight of 5 over three cases 01155 // will be distributed as weights of 2, 2, and 1. 01156 uint64_t Weight = Total / NCases, Rem = Total % NCases; 01157 for (unsigned I = 0; I != NCases; ++I) { 01158 if (SwitchWeights) 01159 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 01160 if (Rem) 01161 Rem--; 01162 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 01163 LHS++; 01164 } 01165 return; 01166 } 01167 01168 // The range is too big. Emit "if" condition into a new block, 01169 // making sure to save and restore the current insertion point. 01170 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 01171 01172 // Push this test onto the chain of range checks (which terminates 01173 // in the default basic block). The switch's default will be changed 01174 // to the top of this chain after switch emission is complete. 01175 llvm::BasicBlock *FalseDest = CaseRangeBlock; 01176 CaseRangeBlock = createBasicBlock("sw.caserange"); 01177 01178 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 01179 Builder.SetInsertPoint(CaseRangeBlock); 01180 01181 // Emit range check. 01182 llvm::Value *Diff = 01183 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 01184 llvm::Value *Cond = 01185 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 01186 01187 llvm::MDNode *Weights = nullptr; 01188 if (SwitchWeights) { 01189 uint64_t ThisCount = CaseCnt.getCount(); 01190 uint64_t DefaultCount = (*SwitchWeights)[0]; 01191 Weights = PGO.createBranchWeights(ThisCount, DefaultCount); 01192 01193 // Since we're chaining the switch default through each large case range, we 01194 // need to update the weight for the default, ie, the first case, to include 01195 // this case. 01196 (*SwitchWeights)[0] += ThisCount; 01197 } 01198 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 01199 01200 // Restore the appropriate insertion point. 01201 if (RestoreBB) 01202 Builder.SetInsertPoint(RestoreBB); 01203 else 01204 Builder.ClearInsertionPoint(); 01205 } 01206 01207 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 01208 // If there is no enclosing switch instance that we're aware of, then this 01209 // case statement and its block can be elided. This situation only happens 01210 // when we've constant-folded the switch, are emitting the constant case, 01211 // and part of the constant case includes another case statement. For 01212 // instance: switch (4) { case 4: do { case 5: } while (1); } 01213 if (!SwitchInsn) { 01214 EmitStmt(S.getSubStmt()); 01215 return; 01216 } 01217 01218 // Handle case ranges. 01219 if (S.getRHS()) { 01220 EmitCaseStmtRange(S); 01221 return; 01222 } 01223 01224 RegionCounter CaseCnt = getPGORegionCounter(&S); 01225 llvm::ConstantInt *CaseVal = 01226 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 01227 01228 // If the body of the case is just a 'break', try to not emit an empty block. 01229 // If we're profiling or we're not optimizing, leave the block in for better 01230 // debug and coverage analysis. 01231 if (!CGM.getCodeGenOpts().ProfileInstrGenerate && 01232 CGM.getCodeGenOpts().OptimizationLevel > 0 && 01233 isa<BreakStmt>(S.getSubStmt())) { 01234 JumpDest Block = BreakContinueStack.back().BreakBlock; 01235 01236 // Only do this optimization if there are no cleanups that need emitting. 01237 if (isObviouslyBranchWithoutCleanups(Block)) { 01238 if (SwitchWeights) 01239 SwitchWeights->push_back(CaseCnt.getCount()); 01240 SwitchInsn->addCase(CaseVal, Block.getBlock()); 01241 01242 // If there was a fallthrough into this case, make sure to redirect it to 01243 // the end of the switch as well. 01244 if (Builder.GetInsertBlock()) { 01245 Builder.CreateBr(Block.getBlock()); 01246 Builder.ClearInsertionPoint(); 01247 } 01248 return; 01249 } 01250 } 01251 01252 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 01253 EmitBlockWithFallThrough(CaseDest, CaseCnt); 01254 if (SwitchWeights) 01255 SwitchWeights->push_back(CaseCnt.getCount()); 01256 SwitchInsn->addCase(CaseVal, CaseDest); 01257 01258 // Recursively emitting the statement is acceptable, but is not wonderful for 01259 // code where we have many case statements nested together, i.e.: 01260 // case 1: 01261 // case 2: 01262 // case 3: etc. 01263 // Handling this recursively will create a new block for each case statement 01264 // that falls through to the next case which is IR intensive. It also causes 01265 // deep recursion which can run into stack depth limitations. Handle 01266 // sequential non-range case statements specially. 01267 const CaseStmt *CurCase = &S; 01268 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 01269 01270 // Otherwise, iteratively add consecutive cases to this switch stmt. 01271 while (NextCase && NextCase->getRHS() == nullptr) { 01272 CurCase = NextCase; 01273 llvm::ConstantInt *CaseVal = 01274 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 01275 01276 CaseCnt = getPGORegionCounter(NextCase); 01277 if (SwitchWeights) 01278 SwitchWeights->push_back(CaseCnt.getCount()); 01279 if (CGM.getCodeGenOpts().ProfileInstrGenerate) { 01280 CaseDest = createBasicBlock("sw.bb"); 01281 EmitBlockWithFallThrough(CaseDest, CaseCnt); 01282 } 01283 01284 SwitchInsn->addCase(CaseVal, CaseDest); 01285 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 01286 } 01287 01288 // Normal default recursion for non-cases. 01289 EmitStmt(CurCase->getSubStmt()); 01290 } 01291 01292 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 01293 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 01294 assert(DefaultBlock->empty() && 01295 "EmitDefaultStmt: Default block already defined?"); 01296 01297 RegionCounter Cnt = getPGORegionCounter(&S); 01298 EmitBlockWithFallThrough(DefaultBlock, Cnt); 01299 01300 EmitStmt(S.getSubStmt()); 01301 } 01302 01303 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 01304 /// constant value that is being switched on, see if we can dead code eliminate 01305 /// the body of the switch to a simple series of statements to emit. Basically, 01306 /// on a switch (5) we want to find these statements: 01307 /// case 5: 01308 /// printf(...); <-- 01309 /// ++i; <-- 01310 /// break; 01311 /// 01312 /// and add them to the ResultStmts vector. If it is unsafe to do this 01313 /// transformation (for example, one of the elided statements contains a label 01314 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 01315 /// should include statements after it (e.g. the printf() line is a substmt of 01316 /// the case) then return CSFC_FallThrough. If we handled it and found a break 01317 /// statement, then return CSFC_Success. 01318 /// 01319 /// If Case is non-null, then we are looking for the specified case, checking 01320 /// that nothing we jump over contains labels. If Case is null, then we found 01321 /// the case and are looking for the break. 01322 /// 01323 /// If the recursive walk actually finds our Case, then we set FoundCase to 01324 /// true. 01325 /// 01326 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 01327 static CSFC_Result CollectStatementsForCase(const Stmt *S, 01328 const SwitchCase *Case, 01329 bool &FoundCase, 01330 SmallVectorImpl<const Stmt*> &ResultStmts) { 01331 // If this is a null statement, just succeed. 01332 if (!S) 01333 return Case ? CSFC_Success : CSFC_FallThrough; 01334 01335 // If this is the switchcase (case 4: or default) that we're looking for, then 01336 // we're in business. Just add the substatement. 01337 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 01338 if (S == Case) { 01339 FoundCase = true; 01340 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 01341 ResultStmts); 01342 } 01343 01344 // Otherwise, this is some other case or default statement, just ignore it. 01345 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 01346 ResultStmts); 01347 } 01348 01349 // If we are in the live part of the code and we found our break statement, 01350 // return a success! 01351 if (!Case && isa<BreakStmt>(S)) 01352 return CSFC_Success; 01353 01354 // If this is a switch statement, then it might contain the SwitchCase, the 01355 // break, or neither. 01356 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 01357 // Handle this as two cases: we might be looking for the SwitchCase (if so 01358 // the skipped statements must be skippable) or we might already have it. 01359 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 01360 if (Case) { 01361 // Keep track of whether we see a skipped declaration. The code could be 01362 // using the declaration even if it is skipped, so we can't optimize out 01363 // the decl if the kept statements might refer to it. 01364 bool HadSkippedDecl = false; 01365 01366 // If we're looking for the case, just see if we can skip each of the 01367 // substatements. 01368 for (; Case && I != E; ++I) { 01369 HadSkippedDecl |= isa<DeclStmt>(*I); 01370 01371 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 01372 case CSFC_Failure: return CSFC_Failure; 01373 case CSFC_Success: 01374 // A successful result means that either 1) that the statement doesn't 01375 // have the case and is skippable, or 2) does contain the case value 01376 // and also contains the break to exit the switch. In the later case, 01377 // we just verify the rest of the statements are elidable. 01378 if (FoundCase) { 01379 // If we found the case and skipped declarations, we can't do the 01380 // optimization. 01381 if (HadSkippedDecl) 01382 return CSFC_Failure; 01383 01384 for (++I; I != E; ++I) 01385 if (CodeGenFunction::ContainsLabel(*I, true)) 01386 return CSFC_Failure; 01387 return CSFC_Success; 01388 } 01389 break; 01390 case CSFC_FallThrough: 01391 // If we have a fallthrough condition, then we must have found the 01392 // case started to include statements. Consider the rest of the 01393 // statements in the compound statement as candidates for inclusion. 01394 assert(FoundCase && "Didn't find case but returned fallthrough?"); 01395 // We recursively found Case, so we're not looking for it anymore. 01396 Case = nullptr; 01397 01398 // If we found the case and skipped declarations, we can't do the 01399 // optimization. 01400 if (HadSkippedDecl) 01401 return CSFC_Failure; 01402 break; 01403 } 01404 } 01405 } 01406 01407 // If we have statements in our range, then we know that the statements are 01408 // live and need to be added to the set of statements we're tracking. 01409 for (; I != E; ++I) { 01410 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 01411 case CSFC_Failure: return CSFC_Failure; 01412 case CSFC_FallThrough: 01413 // A fallthrough result means that the statement was simple and just 01414 // included in ResultStmt, keep adding them afterwards. 01415 break; 01416 case CSFC_Success: 01417 // A successful result means that we found the break statement and 01418 // stopped statement inclusion. We just ensure that any leftover stmts 01419 // are skippable and return success ourselves. 01420 for (++I; I != E; ++I) 01421 if (CodeGenFunction::ContainsLabel(*I, true)) 01422 return CSFC_Failure; 01423 return CSFC_Success; 01424 } 01425 } 01426 01427 return Case ? CSFC_Success : CSFC_FallThrough; 01428 } 01429 01430 // Okay, this is some other statement that we don't handle explicitly, like a 01431 // for statement or increment etc. If we are skipping over this statement, 01432 // just verify it doesn't have labels, which would make it invalid to elide. 01433 if (Case) { 01434 if (CodeGenFunction::ContainsLabel(S, true)) 01435 return CSFC_Failure; 01436 return CSFC_Success; 01437 } 01438 01439 // Otherwise, we want to include this statement. Everything is cool with that 01440 // so long as it doesn't contain a break out of the switch we're in. 01441 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 01442 01443 // Otherwise, everything is great. Include the statement and tell the caller 01444 // that we fall through and include the next statement as well. 01445 ResultStmts.push_back(S); 01446 return CSFC_FallThrough; 01447 } 01448 01449 /// FindCaseStatementsForValue - Find the case statement being jumped to and 01450 /// then invoke CollectStatementsForCase to find the list of statements to emit 01451 /// for a switch on constant. See the comment above CollectStatementsForCase 01452 /// for more details. 01453 static bool FindCaseStatementsForValue(const SwitchStmt &S, 01454 const llvm::APSInt &ConstantCondValue, 01455 SmallVectorImpl<const Stmt*> &ResultStmts, 01456 ASTContext &C, 01457 const SwitchCase *&ResultCase) { 01458 // First step, find the switch case that is being branched to. We can do this 01459 // efficiently by scanning the SwitchCase list. 01460 const SwitchCase *Case = S.getSwitchCaseList(); 01461 const DefaultStmt *DefaultCase = nullptr; 01462 01463 for (; Case; Case = Case->getNextSwitchCase()) { 01464 // It's either a default or case. Just remember the default statement in 01465 // case we're not jumping to any numbered cases. 01466 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 01467 DefaultCase = DS; 01468 continue; 01469 } 01470 01471 // Check to see if this case is the one we're looking for. 01472 const CaseStmt *CS = cast<CaseStmt>(Case); 01473 // Don't handle case ranges yet. 01474 if (CS->getRHS()) return false; 01475 01476 // If we found our case, remember it as 'case'. 01477 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 01478 break; 01479 } 01480 01481 // If we didn't find a matching case, we use a default if it exists, or we 01482 // elide the whole switch body! 01483 if (!Case) { 01484 // It is safe to elide the body of the switch if it doesn't contain labels 01485 // etc. If it is safe, return successfully with an empty ResultStmts list. 01486 if (!DefaultCase) 01487 return !CodeGenFunction::ContainsLabel(&S); 01488 Case = DefaultCase; 01489 } 01490 01491 // Ok, we know which case is being jumped to, try to collect all the 01492 // statements that follow it. This can fail for a variety of reasons. Also, 01493 // check to see that the recursive walk actually found our case statement. 01494 // Insane cases like this can fail to find it in the recursive walk since we 01495 // don't handle every stmt kind: 01496 // switch (4) { 01497 // while (1) { 01498 // case 4: ... 01499 bool FoundCase = false; 01500 ResultCase = Case; 01501 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 01502 ResultStmts) != CSFC_Failure && 01503 FoundCase; 01504 } 01505 01506 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 01507 // Handle nested switch statements. 01508 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 01509 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 01510 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 01511 01512 // See if we can constant fold the condition of the switch and therefore only 01513 // emit the live case statement (if any) of the switch. 01514 llvm::APSInt ConstantCondValue; 01515 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 01516 SmallVector<const Stmt*, 4> CaseStmts; 01517 const SwitchCase *Case = nullptr; 01518 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 01519 getContext(), Case)) { 01520 if (Case) { 01521 RegionCounter CaseCnt = getPGORegionCounter(Case); 01522 CaseCnt.beginRegion(Builder); 01523 } 01524 RunCleanupsScope ExecutedScope(*this); 01525 01526 // Emit the condition variable if needed inside the entire cleanup scope 01527 // used by this special case for constant folded switches. 01528 if (S.getConditionVariable()) 01529 EmitAutoVarDecl(*S.getConditionVariable()); 01530 01531 // At this point, we are no longer "within" a switch instance, so 01532 // we can temporarily enforce this to ensure that any embedded case 01533 // statements are not emitted. 01534 SwitchInsn = nullptr; 01535 01536 // Okay, we can dead code eliminate everything except this case. Emit the 01537 // specified series of statements and we're good. 01538 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 01539 EmitStmt(CaseStmts[i]); 01540 RegionCounter ExitCnt = getPGORegionCounter(&S); 01541 ExitCnt.beginRegion(Builder); 01542 01543 // Now we want to restore the saved switch instance so that nested 01544 // switches continue to function properly 01545 SwitchInsn = SavedSwitchInsn; 01546 01547 return; 01548 } 01549 } 01550 01551 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 01552 01553 RunCleanupsScope ConditionScope(*this); 01554 if (S.getConditionVariable()) 01555 EmitAutoVarDecl(*S.getConditionVariable()); 01556 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 01557 01558 // Create basic block to hold stuff that comes after switch 01559 // statement. We also need to create a default block now so that 01560 // explicit case ranges tests can have a place to jump to on 01561 // failure. 01562 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 01563 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 01564 if (PGO.haveRegionCounts()) { 01565 // Walk the SwitchCase list to find how many there are. 01566 uint64_t DefaultCount = 0; 01567 unsigned NumCases = 0; 01568 for (const SwitchCase *Case = S.getSwitchCaseList(); 01569 Case; 01570 Case = Case->getNextSwitchCase()) { 01571 if (isa<DefaultStmt>(Case)) 01572 DefaultCount = getPGORegionCounter(Case).getCount(); 01573 NumCases += 1; 01574 } 01575 SwitchWeights = new SmallVector<uint64_t, 16>(); 01576 SwitchWeights->reserve(NumCases); 01577 // The default needs to be first. We store the edge count, so we already 01578 // know the right weight. 01579 SwitchWeights->push_back(DefaultCount); 01580 } 01581 CaseRangeBlock = DefaultBlock; 01582 01583 // Clear the insertion point to indicate we are in unreachable code. 01584 Builder.ClearInsertionPoint(); 01585 01586 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 01587 // then reuse last ContinueBlock. 01588 JumpDest OuterContinue; 01589 if (!BreakContinueStack.empty()) 01590 OuterContinue = BreakContinueStack.back().ContinueBlock; 01591 01592 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 01593 01594 // Emit switch body. 01595 EmitStmt(S.getBody()); 01596 01597 BreakContinueStack.pop_back(); 01598 01599 // Update the default block in case explicit case range tests have 01600 // been chained on top. 01601 SwitchInsn->setDefaultDest(CaseRangeBlock); 01602 01603 // If a default was never emitted: 01604 if (!DefaultBlock->getParent()) { 01605 // If we have cleanups, emit the default block so that there's a 01606 // place to jump through the cleanups from. 01607 if (ConditionScope.requiresCleanups()) { 01608 EmitBlock(DefaultBlock); 01609 01610 // Otherwise, just forward the default block to the switch end. 01611 } else { 01612 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 01613 delete DefaultBlock; 01614 } 01615 } 01616 01617 ConditionScope.ForceCleanup(); 01618 01619 // Emit continuation. 01620 EmitBlock(SwitchExit.getBlock(), true); 01621 RegionCounter ExitCnt = getPGORegionCounter(&S); 01622 ExitCnt.beginRegion(Builder); 01623 01624 if (SwitchWeights) { 01625 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 01626 "switch weights do not match switch cases"); 01627 // If there's only one jump destination there's no sense weighting it. 01628 if (SwitchWeights->size() > 1) 01629 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 01630 PGO.createBranchWeights(*SwitchWeights)); 01631 delete SwitchWeights; 01632 } 01633 SwitchInsn = SavedSwitchInsn; 01634 SwitchWeights = SavedSwitchWeights; 01635 CaseRangeBlock = SavedCRBlock; 01636 } 01637 01638 static std::string 01639 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 01640 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 01641 std::string Result; 01642 01643 while (*Constraint) { 01644 switch (*Constraint) { 01645 default: 01646 Result += Target.convertConstraint(Constraint); 01647 break; 01648 // Ignore these 01649 case '*': 01650 case '?': 01651 case '!': 01652 case '=': // Will see this and the following in mult-alt constraints. 01653 case '+': 01654 break; 01655 case '#': // Ignore the rest of the constraint alternative. 01656 while (Constraint[1] && Constraint[1] != ',') 01657 Constraint++; 01658 break; 01659 case ',': 01660 Result += "|"; 01661 break; 01662 case 'g': 01663 Result += "imr"; 01664 break; 01665 case '[': { 01666 assert(OutCons && 01667 "Must pass output names to constraints with a symbolic name"); 01668 unsigned Index; 01669 bool result = Target.resolveSymbolicName(Constraint, 01670 &(*OutCons)[0], 01671 OutCons->size(), Index); 01672 assert(result && "Could not resolve symbolic name"); (void)result; 01673 Result += llvm::utostr(Index); 01674 break; 01675 } 01676 } 01677 01678 Constraint++; 01679 } 01680 01681 return Result; 01682 } 01683 01684 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 01685 /// as using a particular register add that as a constraint that will be used 01686 /// in this asm stmt. 01687 static std::string 01688 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 01689 const TargetInfo &Target, CodeGenModule &CGM, 01690 const AsmStmt &Stmt) { 01691 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 01692 if (!AsmDeclRef) 01693 return Constraint; 01694 const ValueDecl &Value = *AsmDeclRef->getDecl(); 01695 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 01696 if (!Variable) 01697 return Constraint; 01698 if (Variable->getStorageClass() != SC_Register) 01699 return Constraint; 01700 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 01701 if (!Attr) 01702 return Constraint; 01703 StringRef Register = Attr->getLabel(); 01704 assert(Target.isValidGCCRegisterName(Register)); 01705 // We're using validateOutputConstraint here because we only care if 01706 // this is a register constraint. 01707 TargetInfo::ConstraintInfo Info(Constraint, ""); 01708 if (Target.validateOutputConstraint(Info) && 01709 !Info.allowsRegister()) { 01710 CGM.ErrorUnsupported(&Stmt, "__asm__"); 01711 return Constraint; 01712 } 01713 // Canonicalize the register here before returning it. 01714 Register = Target.getNormalizedGCCRegisterName(Register); 01715 return "{" + Register.str() + "}"; 01716 } 01717 01718 llvm::Value* 01719 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 01720 LValue InputValue, QualType InputType, 01721 std::string &ConstraintStr, 01722 SourceLocation Loc) { 01723 llvm::Value *Arg; 01724 if (Info.allowsRegister() || !Info.allowsMemory()) { 01725 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 01726 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 01727 } else { 01728 llvm::Type *Ty = ConvertType(InputType); 01729 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 01730 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 01731 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 01732 Ty = llvm::PointerType::getUnqual(Ty); 01733 01734 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 01735 Ty)); 01736 } else { 01737 Arg = InputValue.getAddress(); 01738 ConstraintStr += '*'; 01739 } 01740 } 01741 } else { 01742 Arg = InputValue.getAddress(); 01743 ConstraintStr += '*'; 01744 } 01745 01746 return Arg; 01747 } 01748 01749 llvm::Value* CodeGenFunction::EmitAsmInput( 01750 const TargetInfo::ConstraintInfo &Info, 01751 const Expr *InputExpr, 01752 std::string &ConstraintStr) { 01753 if (Info.allowsRegister() || !Info.allowsMemory()) 01754 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 01755 return EmitScalarExpr(InputExpr); 01756 01757 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 01758 LValue Dest = EmitLValue(InputExpr); 01759 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 01760 InputExpr->getExprLoc()); 01761 } 01762 01763 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 01764 /// asm call instruction. The !srcloc MDNode contains a list of constant 01765 /// integers which are the source locations of the start of each line in the 01766 /// asm. 01767 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 01768 CodeGenFunction &CGF) { 01769 SmallVector<llvm::Value *, 8> Locs; 01770 // Add the location of the first line to the MDNode. 01771 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 01772 Str->getLocStart().getRawEncoding())); 01773 StringRef StrVal = Str->getString(); 01774 if (!StrVal.empty()) { 01775 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 01776 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 01777 01778 // Add the location of the start of each subsequent line of the asm to the 01779 // MDNode. 01780 for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) { 01781 if (StrVal[i] != '\n') continue; 01782 SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts, 01783 CGF.getTarget()); 01784 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 01785 LineLoc.getRawEncoding())); 01786 } 01787 } 01788 01789 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 01790 } 01791 01792 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 01793 // Assemble the final asm string. 01794 std::string AsmString = S.generateAsmString(getContext()); 01795 01796 // Get all the output and input constraints together. 01797 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 01798 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 01799 01800 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 01801 StringRef Name; 01802 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 01803 Name = GAS->getOutputName(i); 01804 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 01805 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 01806 assert(IsValid && "Failed to parse output constraint"); 01807 OutputConstraintInfos.push_back(Info); 01808 } 01809 01810 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 01811 StringRef Name; 01812 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 01813 Name = GAS->getInputName(i); 01814 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 01815 bool IsValid = 01816 getTarget().validateInputConstraint(OutputConstraintInfos.data(), 01817 S.getNumOutputs(), Info); 01818 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 01819 InputConstraintInfos.push_back(Info); 01820 } 01821 01822 std::string Constraints; 01823 01824 std::vector<LValue> ResultRegDests; 01825 std::vector<QualType> ResultRegQualTys; 01826 std::vector<llvm::Type *> ResultRegTypes; 01827 std::vector<llvm::Type *> ResultTruncRegTypes; 01828 std::vector<llvm::Type *> ArgTypes; 01829 std::vector<llvm::Value*> Args; 01830 01831 // Keep track of inout constraints. 01832 std::string InOutConstraints; 01833 std::vector<llvm::Value*> InOutArgs; 01834 std::vector<llvm::Type*> InOutArgTypes; 01835 01836 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 01837 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 01838 01839 // Simplify the output constraint. 01840 std::string OutputConstraint(S.getOutputConstraint(i)); 01841 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 01842 getTarget()); 01843 01844 const Expr *OutExpr = S.getOutputExpr(i); 01845 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 01846 01847 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 01848 getTarget(), CGM, S); 01849 01850 LValue Dest = EmitLValue(OutExpr); 01851 if (!Constraints.empty()) 01852 Constraints += ','; 01853 01854 // If this is a register output, then make the inline asm return it 01855 // by-value. If this is a memory result, return the value by-reference. 01856 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { 01857 Constraints += "=" + OutputConstraint; 01858 ResultRegQualTys.push_back(OutExpr->getType()); 01859 ResultRegDests.push_back(Dest); 01860 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 01861 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 01862 01863 // If this output is tied to an input, and if the input is larger, then 01864 // we need to set the actual result type of the inline asm node to be the 01865 // same as the input type. 01866 if (Info.hasMatchingInput()) { 01867 unsigned InputNo; 01868 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 01869 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 01870 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 01871 break; 01872 } 01873 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 01874 01875 QualType InputTy = S.getInputExpr(InputNo)->getType(); 01876 QualType OutputType = OutExpr->getType(); 01877 01878 uint64_t InputSize = getContext().getTypeSize(InputTy); 01879 if (getContext().getTypeSize(OutputType) < InputSize) { 01880 // Form the asm to return the value as a larger integer or fp type. 01881 ResultRegTypes.back() = ConvertType(InputTy); 01882 } 01883 } 01884 if (llvm::Type* AdjTy = 01885 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 01886 ResultRegTypes.back())) 01887 ResultRegTypes.back() = AdjTy; 01888 else { 01889 CGM.getDiags().Report(S.getAsmLoc(), 01890 diag::err_asm_invalid_type_in_input) 01891 << OutExpr->getType() << OutputConstraint; 01892 } 01893 } else { 01894 ArgTypes.push_back(Dest.getAddress()->getType()); 01895 Args.push_back(Dest.getAddress()); 01896 Constraints += "=*"; 01897 Constraints += OutputConstraint; 01898 } 01899 01900 if (Info.isReadWrite()) { 01901 InOutConstraints += ','; 01902 01903 const Expr *InputExpr = S.getOutputExpr(i); 01904 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 01905 InOutConstraints, 01906 InputExpr->getExprLoc()); 01907 01908 if (llvm::Type* AdjTy = 01909 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 01910 Arg->getType())) 01911 Arg = Builder.CreateBitCast(Arg, AdjTy); 01912 01913 if (Info.allowsRegister()) 01914 InOutConstraints += llvm::utostr(i); 01915 else 01916 InOutConstraints += OutputConstraint; 01917 01918 InOutArgTypes.push_back(Arg->getType()); 01919 InOutArgs.push_back(Arg); 01920 } 01921 } 01922 01923 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 01924 // to the return value slot. Only do this when returning in registers. 01925 if (isa<MSAsmStmt>(&S)) { 01926 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 01927 if (RetAI.isDirect() || RetAI.isExtend()) { 01928 // Make a fake lvalue for the return value slot. 01929 LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); 01930 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 01931 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 01932 ResultRegDests, AsmString, S.getNumOutputs()); 01933 SawAsmBlock = true; 01934 } 01935 } 01936 01937 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 01938 const Expr *InputExpr = S.getInputExpr(i); 01939 01940 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 01941 01942 if (!Constraints.empty()) 01943 Constraints += ','; 01944 01945 // Simplify the input constraint. 01946 std::string InputConstraint(S.getInputConstraint(i)); 01947 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 01948 &OutputConstraintInfos); 01949 01950 InputConstraint = 01951 AddVariableConstraints(InputConstraint, 01952 *InputExpr->IgnoreParenNoopCasts(getContext()), 01953 getTarget(), CGM, S); 01954 01955 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 01956 01957 // If this input argument is tied to a larger output result, extend the 01958 // input to be the same size as the output. The LLVM backend wants to see 01959 // the input and output of a matching constraint be the same size. Note 01960 // that GCC does not define what the top bits are here. We use zext because 01961 // that is usually cheaper, but LLVM IR should really get an anyext someday. 01962 if (Info.hasTiedOperand()) { 01963 unsigned Output = Info.getTiedOperand(); 01964 QualType OutputType = S.getOutputExpr(Output)->getType(); 01965 QualType InputTy = InputExpr->getType(); 01966 01967 if (getContext().getTypeSize(OutputType) > 01968 getContext().getTypeSize(InputTy)) { 01969 // Use ptrtoint as appropriate so that we can do our extension. 01970 if (isa<llvm::PointerType>(Arg->getType())) 01971 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 01972 llvm::Type *OutputTy = ConvertType(OutputType); 01973 if (isa<llvm::IntegerType>(OutputTy)) 01974 Arg = Builder.CreateZExt(Arg, OutputTy); 01975 else if (isa<llvm::PointerType>(OutputTy)) 01976 Arg = Builder.CreateZExt(Arg, IntPtrTy); 01977 else { 01978 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 01979 Arg = Builder.CreateFPExt(Arg, OutputTy); 01980 } 01981 } 01982 } 01983 if (llvm::Type* AdjTy = 01984 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 01985 Arg->getType())) 01986 Arg = Builder.CreateBitCast(Arg, AdjTy); 01987 else 01988 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 01989 << InputExpr->getType() << InputConstraint; 01990 01991 ArgTypes.push_back(Arg->getType()); 01992 Args.push_back(Arg); 01993 Constraints += InputConstraint; 01994 } 01995 01996 // Append the "input" part of inout constraints last. 01997 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 01998 ArgTypes.push_back(InOutArgTypes[i]); 01999 Args.push_back(InOutArgs[i]); 02000 } 02001 Constraints += InOutConstraints; 02002 02003 // Clobbers 02004 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 02005 StringRef Clobber = S.getClobber(i); 02006 02007 if (Clobber != "memory" && Clobber != "cc") 02008 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 02009 02010 if (!Constraints.empty()) 02011 Constraints += ','; 02012 02013 Constraints += "~{"; 02014 Constraints += Clobber; 02015 Constraints += '}'; 02016 } 02017 02018 // Add machine specific clobbers 02019 std::string MachineClobbers = getTarget().getClobbers(); 02020 if (!MachineClobbers.empty()) { 02021 if (!Constraints.empty()) 02022 Constraints += ','; 02023 Constraints += MachineClobbers; 02024 } 02025 02026 llvm::Type *ResultType; 02027 if (ResultRegTypes.empty()) 02028 ResultType = VoidTy; 02029 else if (ResultRegTypes.size() == 1) 02030 ResultType = ResultRegTypes[0]; 02031 else 02032 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 02033 02034 llvm::FunctionType *FTy = 02035 llvm::FunctionType::get(ResultType, ArgTypes, false); 02036 02037 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 02038 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 02039 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 02040 llvm::InlineAsm *IA = 02041 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 02042 /* IsAlignStack */ false, AsmDialect); 02043 llvm::CallInst *Result = Builder.CreateCall(IA, Args); 02044 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 02045 llvm::Attribute::NoUnwind); 02046 02047 // Slap the source location of the inline asm into a !srcloc metadata on the 02048 // call. 02049 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) { 02050 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(), 02051 *this)); 02052 } else { 02053 // At least put the line number on MS inline asm blobs. 02054 auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding()); 02055 Result->setMetadata("srcloc", llvm::MDNode::get(getLLVMContext(), Loc)); 02056 } 02057 02058 // Extract all of the register value results from the asm. 02059 std::vector<llvm::Value*> RegResults; 02060 if (ResultRegTypes.size() == 1) { 02061 RegResults.push_back(Result); 02062 } else { 02063 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 02064 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 02065 RegResults.push_back(Tmp); 02066 } 02067 } 02068 02069 assert(RegResults.size() == ResultRegTypes.size()); 02070 assert(RegResults.size() == ResultTruncRegTypes.size()); 02071 assert(RegResults.size() == ResultRegDests.size()); 02072 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 02073 llvm::Value *Tmp = RegResults[i]; 02074 02075 // If the result type of the LLVM IR asm doesn't match the result type of 02076 // the expression, do the conversion. 02077 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 02078 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 02079 02080 // Truncate the integer result to the right size, note that TruncTy can be 02081 // a pointer. 02082 if (TruncTy->isFloatingPointTy()) 02083 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 02084 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 02085 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 02086 Tmp = Builder.CreateTrunc(Tmp, 02087 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 02088 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 02089 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 02090 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 02091 Tmp = Builder.CreatePtrToInt(Tmp, 02092 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 02093 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 02094 } else if (TruncTy->isIntegerTy()) { 02095 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 02096 } else if (TruncTy->isVectorTy()) { 02097 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 02098 } 02099 } 02100 02101 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 02102 } 02103 } 02104 02105 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 02106 const RecordDecl *RD = S.getCapturedRecordDecl(); 02107 QualType RecordTy = getContext().getRecordType(RD); 02108 02109 // Initialize the captured struct. 02110 LValue SlotLV = MakeNaturalAlignAddrLValue( 02111 CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 02112 02113 RecordDecl::field_iterator CurField = RD->field_begin(); 02114 for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(), 02115 E = S.capture_init_end(); 02116 I != E; ++I, ++CurField) { 02117 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 02118 if (CurField->hasCapturedVLAType()) { 02119 auto VAT = CurField->getCapturedVLAType(); 02120 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 02121 } else { 02122 EmitInitializerForField(*CurField, LV, *I, None); 02123 } 02124 } 02125 02126 return SlotLV; 02127 } 02128 02129 /// Generate an outlined function for the body of a CapturedStmt, store any 02130 /// captured variables into the captured struct, and call the outlined function. 02131 llvm::Function * 02132 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 02133 LValue CapStruct = InitCapturedStruct(S); 02134 02135 // Emit the CapturedDecl 02136 CodeGenFunction CGF(CGM, true); 02137 CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K); 02138 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 02139 delete CGF.CapturedStmtInfo; 02140 02141 // Emit call to the helper function. 02142 EmitCallOrInvoke(F, CapStruct.getAddress()); 02143 02144 return F; 02145 } 02146 02147 llvm::Value * 02148 CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 02149 LValue CapStruct = InitCapturedStruct(S); 02150 return CapStruct.getAddress(); 02151 } 02152 02153 /// Creates the outlined function for a CapturedStmt. 02154 llvm::Function * 02155 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 02156 assert(CapturedStmtInfo && 02157 "CapturedStmtInfo should be set when generating the captured function"); 02158 const CapturedDecl *CD = S.getCapturedDecl(); 02159 const RecordDecl *RD = S.getCapturedRecordDecl(); 02160 SourceLocation Loc = S.getLocStart(); 02161 assert(CD->hasBody() && "missing CapturedDecl body"); 02162 02163 // Build the argument list. 02164 ASTContext &Ctx = CGM.getContext(); 02165 FunctionArgList Args; 02166 Args.append(CD->param_begin(), CD->param_end()); 02167 02168 // Create the function declaration. 02169 FunctionType::ExtInfo ExtInfo; 02170 const CGFunctionInfo &FuncInfo = 02171 CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo, 02172 /*IsVariadic=*/false); 02173 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 02174 02175 llvm::Function *F = 02176 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 02177 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 02178 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 02179 02180 // Generate the function. 02181 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, 02182 CD->getLocation(), 02183 CD->getBody()->getLocStart()); 02184 // Set the context parameter in CapturedStmtInfo. 02185 llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()]; 02186 assert(DeclPtr && "missing context parameter for CapturedStmt"); 02187 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 02188 02189 // Initialize variable-length arrays. 02190 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 02191 Ctx.getTagDeclType(RD)); 02192 for (auto *FD : RD->fields()) { 02193 if (FD->hasCapturedVLAType()) { 02194 auto *ExprArg = EmitLoadOfLValue(EmitLValueForField(Base, FD), 02195 S.getLocStart()).getScalarVal(); 02196 auto VAT = FD->getCapturedVLAType(); 02197 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 02198 } 02199 } 02200 02201 // If 'this' is captured, load it into CXXThisValue. 02202 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 02203 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 02204 LValue ThisLValue = EmitLValueForField(Base, FD); 02205 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 02206 } 02207 02208 PGO.assignRegionCounters(CD, F); 02209 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 02210 FinishFunction(CD->getBodyRBrace()); 02211 PGO.emitInstrumentationData(); 02212 PGO.destroyRegionCounters(); 02213 02214 return F; 02215 }