clang API Documentation
00001 //=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file defines ExprEngine's support for C expressions. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "clang/AST/ExprCXX.h" 00015 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 00016 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 00017 00018 using namespace clang; 00019 using namespace ento; 00020 using llvm::APSInt; 00021 00022 void ExprEngine::VisitBinaryOperator(const BinaryOperator* B, 00023 ExplodedNode *Pred, 00024 ExplodedNodeSet &Dst) { 00025 00026 Expr *LHS = B->getLHS()->IgnoreParens(); 00027 Expr *RHS = B->getRHS()->IgnoreParens(); 00028 00029 // FIXME: Prechecks eventually go in ::Visit(). 00030 ExplodedNodeSet CheckedSet; 00031 ExplodedNodeSet Tmp2; 00032 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this); 00033 00034 // With both the LHS and RHS evaluated, process the operation itself. 00035 for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end(); 00036 it != ei; ++it) { 00037 00038 ProgramStateRef state = (*it)->getState(); 00039 const LocationContext *LCtx = (*it)->getLocationContext(); 00040 SVal LeftV = state->getSVal(LHS, LCtx); 00041 SVal RightV = state->getSVal(RHS, LCtx); 00042 00043 BinaryOperator::Opcode Op = B->getOpcode(); 00044 00045 if (Op == BO_Assign) { 00046 // EXPERIMENTAL: "Conjured" symbols. 00047 // FIXME: Handle structs. 00048 if (RightV.isUnknown()) { 00049 unsigned Count = currBldrCtx->blockCount(); 00050 RightV = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, 00051 Count); 00052 } 00053 // Simulate the effects of a "store": bind the value of the RHS 00054 // to the L-Value represented by the LHS. 00055 SVal ExprVal = B->isGLValue() ? LeftV : RightV; 00056 evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal), 00057 LeftV, RightV); 00058 continue; 00059 } 00060 00061 if (!B->isAssignmentOp()) { 00062 StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx); 00063 00064 if (B->isAdditiveOp()) { 00065 // If one of the operands is a location, conjure a symbol for the other 00066 // one (offset) if it's unknown so that memory arithmetic always 00067 // results in an ElementRegion. 00068 // TODO: This can be removed after we enable history tracking with 00069 // SymSymExpr. 00070 unsigned Count = currBldrCtx->blockCount(); 00071 if (LeftV.getAs<Loc>() && 00072 RHS->getType()->isIntegralOrEnumerationType() && 00073 RightV.isUnknown()) { 00074 RightV = svalBuilder.conjureSymbolVal(RHS, LCtx, RHS->getType(), 00075 Count); 00076 } 00077 if (RightV.getAs<Loc>() && 00078 LHS->getType()->isIntegralOrEnumerationType() && 00079 LeftV.isUnknown()) { 00080 LeftV = svalBuilder.conjureSymbolVal(LHS, LCtx, LHS->getType(), 00081 Count); 00082 } 00083 } 00084 00085 // Although we don't yet model pointers-to-members, we do need to make 00086 // sure that the members of temporaries have a valid 'this' pointer for 00087 // other checks. 00088 if (B->getOpcode() == BO_PtrMemD) 00089 state = createTemporaryRegionIfNeeded(state, LCtx, LHS); 00090 00091 // Process non-assignments except commas or short-circuited 00092 // logical expressions (LAnd and LOr). 00093 SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType()); 00094 if (Result.isUnknown()) { 00095 Bldr.generateNode(B, *it, state); 00096 continue; 00097 } 00098 00099 state = state->BindExpr(B, LCtx, Result); 00100 Bldr.generateNode(B, *it, state); 00101 continue; 00102 } 00103 00104 assert (B->isCompoundAssignmentOp()); 00105 00106 switch (Op) { 00107 default: 00108 llvm_unreachable("Invalid opcode for compound assignment."); 00109 case BO_MulAssign: Op = BO_Mul; break; 00110 case BO_DivAssign: Op = BO_Div; break; 00111 case BO_RemAssign: Op = BO_Rem; break; 00112 case BO_AddAssign: Op = BO_Add; break; 00113 case BO_SubAssign: Op = BO_Sub; break; 00114 case BO_ShlAssign: Op = BO_Shl; break; 00115 case BO_ShrAssign: Op = BO_Shr; break; 00116 case BO_AndAssign: Op = BO_And; break; 00117 case BO_XorAssign: Op = BO_Xor; break; 00118 case BO_OrAssign: Op = BO_Or; break; 00119 } 00120 00121 // Perform a load (the LHS). This performs the checks for 00122 // null dereferences, and so on. 00123 ExplodedNodeSet Tmp; 00124 SVal location = LeftV; 00125 evalLoad(Tmp, B, LHS, *it, state, location); 00126 00127 for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E; 00128 ++I) { 00129 00130 state = (*I)->getState(); 00131 const LocationContext *LCtx = (*I)->getLocationContext(); 00132 SVal V = state->getSVal(LHS, LCtx); 00133 00134 // Get the computation type. 00135 QualType CTy = 00136 cast<CompoundAssignOperator>(B)->getComputationResultType(); 00137 CTy = getContext().getCanonicalType(CTy); 00138 00139 QualType CLHSTy = 00140 cast<CompoundAssignOperator>(B)->getComputationLHSType(); 00141 CLHSTy = getContext().getCanonicalType(CLHSTy); 00142 00143 QualType LTy = getContext().getCanonicalType(LHS->getType()); 00144 00145 // Promote LHS. 00146 V = svalBuilder.evalCast(V, CLHSTy, LTy); 00147 00148 // Compute the result of the operation. 00149 SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy), 00150 B->getType(), CTy); 00151 00152 // EXPERIMENTAL: "Conjured" symbols. 00153 // FIXME: Handle structs. 00154 00155 SVal LHSVal; 00156 00157 if (Result.isUnknown()) { 00158 // The symbolic value is actually for the type of the left-hand side 00159 // expression, not the computation type, as this is the value the 00160 // LValue on the LHS will bind to. 00161 LHSVal = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, LTy, 00162 currBldrCtx->blockCount()); 00163 // However, we need to convert the symbol to the computation type. 00164 Result = svalBuilder.evalCast(LHSVal, CTy, LTy); 00165 } 00166 else { 00167 // The left-hand side may bind to a different value then the 00168 // computation type. 00169 LHSVal = svalBuilder.evalCast(Result, LTy, CTy); 00170 } 00171 00172 // In C++, assignment and compound assignment operators return an 00173 // lvalue. 00174 if (B->isGLValue()) 00175 state = state->BindExpr(B, LCtx, location); 00176 else 00177 state = state->BindExpr(B, LCtx, Result); 00178 00179 evalStore(Tmp2, B, LHS, *I, state, location, LHSVal); 00180 } 00181 } 00182 00183 // FIXME: postvisits eventually go in ::Visit() 00184 getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this); 00185 } 00186 00187 void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred, 00188 ExplodedNodeSet &Dst) { 00189 00190 CanQualType T = getContext().getCanonicalType(BE->getType()); 00191 00192 // Get the value of the block itself. 00193 SVal V = svalBuilder.getBlockPointer(BE->getBlockDecl(), T, 00194 Pred->getLocationContext(), 00195 currBldrCtx->blockCount()); 00196 00197 ProgramStateRef State = Pred->getState(); 00198 00199 // If we created a new MemRegion for the block, we should explicitly bind 00200 // the captured variables. 00201 if (const BlockDataRegion *BDR = 00202 dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) { 00203 00204 BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(), 00205 E = BDR->referenced_vars_end(); 00206 00207 for (; I != E; ++I) { 00208 const MemRegion *capturedR = I.getCapturedRegion(); 00209 const MemRegion *originalR = I.getOriginalRegion(); 00210 if (capturedR != originalR) { 00211 SVal originalV = State->getSVal(loc::MemRegionVal(originalR)); 00212 State = State->bindLoc(loc::MemRegionVal(capturedR), originalV); 00213 } 00214 } 00215 } 00216 00217 ExplodedNodeSet Tmp; 00218 StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx); 00219 Bldr.generateNode(BE, Pred, 00220 State->BindExpr(BE, Pred->getLocationContext(), V), 00221 nullptr, ProgramPoint::PostLValueKind); 00222 00223 // FIXME: Move all post/pre visits to ::Visit(). 00224 getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this); 00225 } 00226 00227 void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex, 00228 ExplodedNode *Pred, ExplodedNodeSet &Dst) { 00229 00230 ExplodedNodeSet dstPreStmt; 00231 getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this); 00232 00233 if (CastE->getCastKind() == CK_LValueToRValue) { 00234 for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end(); 00235 I!=E; ++I) { 00236 ExplodedNode *subExprNode = *I; 00237 ProgramStateRef state = subExprNode->getState(); 00238 const LocationContext *LCtx = subExprNode->getLocationContext(); 00239 evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx)); 00240 } 00241 return; 00242 } 00243 00244 // All other casts. 00245 QualType T = CastE->getType(); 00246 QualType ExTy = Ex->getType(); 00247 00248 if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE)) 00249 T = ExCast->getTypeAsWritten(); 00250 00251 StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx); 00252 for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end(); 00253 I != E; ++I) { 00254 00255 Pred = *I; 00256 ProgramStateRef state = Pred->getState(); 00257 const LocationContext *LCtx = Pred->getLocationContext(); 00258 00259 switch (CastE->getCastKind()) { 00260 case CK_LValueToRValue: 00261 llvm_unreachable("LValueToRValue casts handled earlier."); 00262 case CK_ToVoid: 00263 continue; 00264 // The analyzer doesn't do anything special with these casts, 00265 // since it understands retain/release semantics already. 00266 case CK_ARCProduceObject: 00267 case CK_ARCConsumeObject: 00268 case CK_ARCReclaimReturnedObject: 00269 case CK_ARCExtendBlockObject: // Fall-through. 00270 case CK_CopyAndAutoreleaseBlockObject: 00271 // The analyser can ignore atomic casts for now, although some future 00272 // checkers may want to make certain that you're not modifying the same 00273 // value through atomic and nonatomic pointers. 00274 case CK_AtomicToNonAtomic: 00275 case CK_NonAtomicToAtomic: 00276 // True no-ops. 00277 case CK_NoOp: 00278 case CK_ConstructorConversion: 00279 case CK_UserDefinedConversion: 00280 case CK_FunctionToPointerDecay: 00281 case CK_BuiltinFnToFnPtr: { 00282 // Copy the SVal of Ex to CastE. 00283 ProgramStateRef state = Pred->getState(); 00284 const LocationContext *LCtx = Pred->getLocationContext(); 00285 SVal V = state->getSVal(Ex, LCtx); 00286 state = state->BindExpr(CastE, LCtx, V); 00287 Bldr.generateNode(CastE, Pred, state); 00288 continue; 00289 } 00290 case CK_MemberPointerToBoolean: 00291 // FIXME: For now, member pointers are represented by void *. 00292 // FALLTHROUGH 00293 case CK_Dependent: 00294 case CK_ArrayToPointerDecay: 00295 case CK_BitCast: 00296 case CK_AddressSpaceConversion: 00297 case CK_IntegralCast: 00298 case CK_NullToPointer: 00299 case CK_IntegralToPointer: 00300 case CK_PointerToIntegral: 00301 case CK_PointerToBoolean: 00302 case CK_IntegralToBoolean: 00303 case CK_IntegralToFloating: 00304 case CK_FloatingToIntegral: 00305 case CK_FloatingToBoolean: 00306 case CK_FloatingCast: 00307 case CK_FloatingRealToComplex: 00308 case CK_FloatingComplexToReal: 00309 case CK_FloatingComplexToBoolean: 00310 case CK_FloatingComplexCast: 00311 case CK_FloatingComplexToIntegralComplex: 00312 case CK_IntegralRealToComplex: 00313 case CK_IntegralComplexToReal: 00314 case CK_IntegralComplexToBoolean: 00315 case CK_IntegralComplexCast: 00316 case CK_IntegralComplexToFloatingComplex: 00317 case CK_CPointerToObjCPointerCast: 00318 case CK_BlockPointerToObjCPointerCast: 00319 case CK_AnyPointerToBlockPointerCast: 00320 case CK_ObjCObjectLValueCast: 00321 case CK_ZeroToOCLEvent: 00322 case CK_LValueBitCast: { 00323 // Delegate to SValBuilder to process. 00324 SVal V = state->getSVal(Ex, LCtx); 00325 V = svalBuilder.evalCast(V, T, ExTy); 00326 state = state->BindExpr(CastE, LCtx, V); 00327 Bldr.generateNode(CastE, Pred, state); 00328 continue; 00329 } 00330 case CK_DerivedToBase: 00331 case CK_UncheckedDerivedToBase: { 00332 // For DerivedToBase cast, delegate to the store manager. 00333 SVal val = state->getSVal(Ex, LCtx); 00334 val = getStoreManager().evalDerivedToBase(val, CastE); 00335 state = state->BindExpr(CastE, LCtx, val); 00336 Bldr.generateNode(CastE, Pred, state); 00337 continue; 00338 } 00339 // Handle C++ dyn_cast. 00340 case CK_Dynamic: { 00341 SVal val = state->getSVal(Ex, LCtx); 00342 00343 // Compute the type of the result. 00344 QualType resultType = CastE->getType(); 00345 if (CastE->isGLValue()) 00346 resultType = getContext().getPointerType(resultType); 00347 00348 bool Failed = false; 00349 00350 // Check if the value being cast evaluates to 0. 00351 if (val.isZeroConstant()) 00352 Failed = true; 00353 // Else, evaluate the cast. 00354 else 00355 val = getStoreManager().evalDynamicCast(val, T, Failed); 00356 00357 if (Failed) { 00358 if (T->isReferenceType()) { 00359 // A bad_cast exception is thrown if input value is a reference. 00360 // Currently, we model this, by generating a sink. 00361 Bldr.generateSink(CastE, Pred, state); 00362 continue; 00363 } else { 00364 // If the cast fails on a pointer, bind to 0. 00365 state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull()); 00366 } 00367 } else { 00368 // If we don't know if the cast succeeded, conjure a new symbol. 00369 if (val.isUnknown()) { 00370 DefinedOrUnknownSVal NewSym = 00371 svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType, 00372 currBldrCtx->blockCount()); 00373 state = state->BindExpr(CastE, LCtx, NewSym); 00374 } else 00375 // Else, bind to the derived region value. 00376 state = state->BindExpr(CastE, LCtx, val); 00377 } 00378 Bldr.generateNode(CastE, Pred, state); 00379 continue; 00380 } 00381 case CK_NullToMemberPointer: { 00382 // FIXME: For now, member pointers are represented by void *. 00383 SVal V = svalBuilder.makeNull(); 00384 state = state->BindExpr(CastE, LCtx, V); 00385 Bldr.generateNode(CastE, Pred, state); 00386 continue; 00387 } 00388 // Various C++ casts that are not handled yet. 00389 case CK_ToUnion: 00390 case CK_BaseToDerived: 00391 case CK_BaseToDerivedMemberPointer: 00392 case CK_DerivedToBaseMemberPointer: 00393 case CK_ReinterpretMemberPointer: 00394 case CK_VectorSplat: { 00395 // Recover some path-sensitivty by conjuring a new value. 00396 QualType resultType = CastE->getType(); 00397 if (CastE->isGLValue()) 00398 resultType = getContext().getPointerType(resultType); 00399 SVal result = svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, 00400 resultType, 00401 currBldrCtx->blockCount()); 00402 state = state->BindExpr(CastE, LCtx, result); 00403 Bldr.generateNode(CastE, Pred, state); 00404 continue; 00405 } 00406 } 00407 } 00408 } 00409 00410 void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL, 00411 ExplodedNode *Pred, 00412 ExplodedNodeSet &Dst) { 00413 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 00414 00415 ProgramStateRef State = Pred->getState(); 00416 const LocationContext *LCtx = Pred->getLocationContext(); 00417 00418 const Expr *Init = CL->getInitializer(); 00419 SVal V = State->getSVal(CL->getInitializer(), LCtx); 00420 00421 if (isa<CXXConstructExpr>(Init)) { 00422 // No work needed. Just pass the value up to this expression. 00423 } else { 00424 assert(isa<InitListExpr>(Init)); 00425 Loc CLLoc = State->getLValue(CL, LCtx); 00426 State = State->bindLoc(CLLoc, V); 00427 00428 // Compound literal expressions are a GNU extension in C++. 00429 // Unlike in C, where CLs are lvalues, in C++ CLs are prvalues, 00430 // and like temporary objects created by the functional notation T() 00431 // CLs are destroyed at the end of the containing full-expression. 00432 // HOWEVER, an rvalue of array type is not something the analyzer can 00433 // reason about, since we expect all regions to be wrapped in Locs. 00434 // So we treat array CLs as lvalues as well, knowing that they will decay 00435 // to pointers as soon as they are used. 00436 if (CL->isGLValue() || CL->getType()->isArrayType()) 00437 V = CLLoc; 00438 } 00439 00440 B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V)); 00441 } 00442 00443 void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred, 00444 ExplodedNodeSet &Dst) { 00445 // Assumption: The CFG has one DeclStmt per Decl. 00446 const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin()); 00447 00448 if (!VD) { 00449 //TODO:AZ: remove explicit insertion after refactoring is done. 00450 Dst.insert(Pred); 00451 return; 00452 } 00453 00454 // FIXME: all pre/post visits should eventually be handled by ::Visit(). 00455 ExplodedNodeSet dstPreVisit; 00456 getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this); 00457 00458 ExplodedNodeSet dstEvaluated; 00459 StmtNodeBuilder B(dstPreVisit, dstEvaluated, *currBldrCtx); 00460 for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end(); 00461 I!=E; ++I) { 00462 ExplodedNode *N = *I; 00463 ProgramStateRef state = N->getState(); 00464 const LocationContext *LC = N->getLocationContext(); 00465 00466 // Decls without InitExpr are not initialized explicitly. 00467 if (const Expr *InitEx = VD->getInit()) { 00468 00469 // Note in the state that the initialization has occurred. 00470 ExplodedNode *UpdatedN = N; 00471 SVal InitVal = state->getSVal(InitEx, LC); 00472 00473 if (isa<CXXConstructExpr>(InitEx->IgnoreImplicit())) { 00474 // We constructed the object directly in the variable. 00475 // No need to bind anything. 00476 B.generateNode(DS, UpdatedN, state); 00477 } else { 00478 // We bound the temp obj region to the CXXConstructExpr. Now recover 00479 // the lazy compound value when the variable is not a reference. 00480 if (AMgr.getLangOpts().CPlusPlus && VD->getType()->isRecordType() && 00481 !VD->getType()->isReferenceType()) { 00482 if (Optional<loc::MemRegionVal> M = 00483 InitVal.getAs<loc::MemRegionVal>()) { 00484 InitVal = state->getSVal(M->getRegion()); 00485 assert(InitVal.getAs<nonloc::LazyCompoundVal>()); 00486 } 00487 } 00488 00489 // Recover some path-sensitivity if a scalar value evaluated to 00490 // UnknownVal. 00491 if (InitVal.isUnknown()) { 00492 QualType Ty = InitEx->getType(); 00493 if (InitEx->isGLValue()) { 00494 Ty = getContext().getPointerType(Ty); 00495 } 00496 00497 InitVal = svalBuilder.conjureSymbolVal(nullptr, InitEx, LC, Ty, 00498 currBldrCtx->blockCount()); 00499 } 00500 00501 00502 B.takeNodes(UpdatedN); 00503 ExplodedNodeSet Dst2; 00504 evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true); 00505 B.addNodes(Dst2); 00506 } 00507 } 00508 else { 00509 B.generateNode(DS, N, state); 00510 } 00511 } 00512 00513 getCheckerManager().runCheckersForPostStmt(Dst, B.getResults(), DS, *this); 00514 } 00515 00516 void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred, 00517 ExplodedNodeSet &Dst) { 00518 assert(B->getOpcode() == BO_LAnd || 00519 B->getOpcode() == BO_LOr); 00520 00521 StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx); 00522 ProgramStateRef state = Pred->getState(); 00523 00524 ExplodedNode *N = Pred; 00525 while (!N->getLocation().getAs<BlockEntrance>()) { 00526 ProgramPoint P = N->getLocation(); 00527 assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>()); 00528 (void) P; 00529 assert(N->pred_size() == 1); 00530 N = *N->pred_begin(); 00531 } 00532 assert(N->pred_size() == 1); 00533 N = *N->pred_begin(); 00534 BlockEdge BE = N->getLocation().castAs<BlockEdge>(); 00535 SVal X; 00536 00537 // Determine the value of the expression by introspecting how we 00538 // got this location in the CFG. This requires looking at the previous 00539 // block we were in and what kind of control-flow transfer was involved. 00540 const CFGBlock *SrcBlock = BE.getSrc(); 00541 // The only terminator (if there is one) that makes sense is a logical op. 00542 CFGTerminator T = SrcBlock->getTerminator(); 00543 if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) { 00544 (void) Term; 00545 assert(Term->isLogicalOp()); 00546 assert(SrcBlock->succ_size() == 2); 00547 // Did we take the true or false branch? 00548 unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0; 00549 X = svalBuilder.makeIntVal(constant, B->getType()); 00550 } 00551 else { 00552 // If there is no terminator, by construction the last statement 00553 // in SrcBlock is the value of the enclosing expression. 00554 // However, we still need to constrain that value to be 0 or 1. 00555 assert(!SrcBlock->empty()); 00556 CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>(); 00557 const Expr *RHS = cast<Expr>(Elem.getStmt()); 00558 SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext()); 00559 00560 if (RHSVal.isUndef()) { 00561 X = RHSVal; 00562 } else { 00563 DefinedOrUnknownSVal DefinedRHS = RHSVal.castAs<DefinedOrUnknownSVal>(); 00564 ProgramStateRef StTrue, StFalse; 00565 std::tie(StTrue, StFalse) = N->getState()->assume(DefinedRHS); 00566 if (StTrue) { 00567 if (StFalse) { 00568 // We can't constrain the value to 0 or 1. 00569 // The best we can do is a cast. 00570 X = getSValBuilder().evalCast(RHSVal, B->getType(), RHS->getType()); 00571 } else { 00572 // The value is known to be true. 00573 X = getSValBuilder().makeIntVal(1, B->getType()); 00574 } 00575 } else { 00576 // The value is known to be false. 00577 assert(StFalse && "Infeasible path!"); 00578 X = getSValBuilder().makeIntVal(0, B->getType()); 00579 } 00580 } 00581 } 00582 Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X)); 00583 } 00584 00585 void ExprEngine::VisitInitListExpr(const InitListExpr *IE, 00586 ExplodedNode *Pred, 00587 ExplodedNodeSet &Dst) { 00588 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 00589 00590 ProgramStateRef state = Pred->getState(); 00591 const LocationContext *LCtx = Pred->getLocationContext(); 00592 QualType T = getContext().getCanonicalType(IE->getType()); 00593 unsigned NumInitElements = IE->getNumInits(); 00594 00595 if (!IE->isGLValue() && 00596 (T->isArrayType() || T->isRecordType() || T->isVectorType() || 00597 T->isAnyComplexType())) { 00598 llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList(); 00599 00600 // Handle base case where the initializer has no elements. 00601 // e.g: static int* myArray[] = {}; 00602 if (NumInitElements == 0) { 00603 SVal V = svalBuilder.makeCompoundVal(T, vals); 00604 B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V)); 00605 return; 00606 } 00607 00608 for (InitListExpr::const_reverse_iterator it = IE->rbegin(), 00609 ei = IE->rend(); it != ei; ++it) { 00610 SVal V = state->getSVal(cast<Expr>(*it), LCtx); 00611 vals = getBasicVals().consVals(V, vals); 00612 } 00613 00614 B.generateNode(IE, Pred, 00615 state->BindExpr(IE, LCtx, 00616 svalBuilder.makeCompoundVal(T, vals))); 00617 return; 00618 } 00619 00620 // Handle scalars: int{5} and int{} and GLvalues. 00621 // Note, if the InitListExpr is a GLvalue, it means that there is an address 00622 // representing it, so it must have a single init element. 00623 assert(NumInitElements <= 1); 00624 00625 SVal V; 00626 if (NumInitElements == 0) 00627 V = getSValBuilder().makeZeroVal(T); 00628 else 00629 V = state->getSVal(IE->getInit(0), LCtx); 00630 00631 B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V)); 00632 } 00633 00634 void ExprEngine::VisitGuardedExpr(const Expr *Ex, 00635 const Expr *L, 00636 const Expr *R, 00637 ExplodedNode *Pred, 00638 ExplodedNodeSet &Dst) { 00639 assert(L && R); 00640 00641 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 00642 ProgramStateRef state = Pred->getState(); 00643 const LocationContext *LCtx = Pred->getLocationContext(); 00644 const CFGBlock *SrcBlock = nullptr; 00645 00646 // Find the predecessor block. 00647 ProgramStateRef SrcState = state; 00648 for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) { 00649 ProgramPoint PP = N->getLocation(); 00650 if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) { 00651 assert(N->pred_size() == 1); 00652 continue; 00653 } 00654 SrcBlock = PP.castAs<BlockEdge>().getSrc(); 00655 SrcState = N->getState(); 00656 break; 00657 } 00658 00659 assert(SrcBlock && "missing function entry"); 00660 00661 // Find the last expression in the predecessor block. That is the 00662 // expression that is used for the value of the ternary expression. 00663 bool hasValue = false; 00664 SVal V; 00665 00666 for (CFGBlock::const_reverse_iterator I = SrcBlock->rbegin(), 00667 E = SrcBlock->rend(); I != E; ++I) { 00668 CFGElement CE = *I; 00669 if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) { 00670 const Expr *ValEx = cast<Expr>(CS->getStmt()); 00671 ValEx = ValEx->IgnoreParens(); 00672 00673 // For GNU extension '?:' operator, the left hand side will be an 00674 // OpaqueValueExpr, so get the underlying expression. 00675 if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L)) 00676 L = OpaqueEx->getSourceExpr(); 00677 00678 // If the last expression in the predecessor block matches true or false 00679 // subexpression, get its the value. 00680 if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) { 00681 hasValue = true; 00682 V = SrcState->getSVal(ValEx, LCtx); 00683 } 00684 break; 00685 } 00686 } 00687 00688 if (!hasValue) 00689 V = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx, 00690 currBldrCtx->blockCount()); 00691 00692 // Generate a new node with the binding from the appropriate path. 00693 B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true)); 00694 } 00695 00696 void ExprEngine:: 00697 VisitOffsetOfExpr(const OffsetOfExpr *OOE, 00698 ExplodedNode *Pred, ExplodedNodeSet &Dst) { 00699 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 00700 APSInt IV; 00701 if (OOE->EvaluateAsInt(IV, getContext())) { 00702 assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType())); 00703 assert(OOE->getType()->isBuiltinType()); 00704 assert(OOE->getType()->getAs<BuiltinType>()->isInteger()); 00705 assert(IV.isSigned() == OOE->getType()->isSignedIntegerType()); 00706 SVal X = svalBuilder.makeIntVal(IV); 00707 B.generateNode(OOE, Pred, 00708 Pred->getState()->BindExpr(OOE, Pred->getLocationContext(), 00709 X)); 00710 } 00711 // FIXME: Handle the case where __builtin_offsetof is not a constant. 00712 } 00713 00714 00715 void ExprEngine:: 00716 VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex, 00717 ExplodedNode *Pred, 00718 ExplodedNodeSet &Dst) { 00719 // FIXME: Prechecks eventually go in ::Visit(). 00720 ExplodedNodeSet CheckedSet; 00721 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, Ex, *this); 00722 00723 ExplodedNodeSet EvalSet; 00724 StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx); 00725 00726 QualType T = Ex->getTypeOfArgument(); 00727 00728 for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); 00729 I != E; ++I) { 00730 if (Ex->getKind() == UETT_SizeOf) { 00731 if (!T->isIncompleteType() && !T->isConstantSizeType()) { 00732 assert(T->isVariableArrayType() && "Unknown non-constant-sized type."); 00733 00734 // FIXME: Add support for VLA type arguments and VLA expressions. 00735 // When that happens, we should probably refactor VLASizeChecker's code. 00736 continue; 00737 } else if (T->getAs<ObjCObjectType>()) { 00738 // Some code tries to take the sizeof an ObjCObjectType, relying that 00739 // the compiler has laid out its representation. Just report Unknown 00740 // for these. 00741 continue; 00742 } 00743 } 00744 00745 APSInt Value = Ex->EvaluateKnownConstInt(getContext()); 00746 CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue()); 00747 00748 ProgramStateRef state = (*I)->getState(); 00749 state = state->BindExpr(Ex, (*I)->getLocationContext(), 00750 svalBuilder.makeIntVal(amt.getQuantity(), 00751 Ex->getType())); 00752 Bldr.generateNode(Ex, *I, state); 00753 } 00754 00755 getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this); 00756 } 00757 00758 void ExprEngine::VisitUnaryOperator(const UnaryOperator* U, 00759 ExplodedNode *Pred, 00760 ExplodedNodeSet &Dst) { 00761 // FIXME: Prechecks eventually go in ::Visit(). 00762 ExplodedNodeSet CheckedSet; 00763 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, U, *this); 00764 00765 ExplodedNodeSet EvalSet; 00766 StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx); 00767 00768 for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); 00769 I != E; ++I) { 00770 switch (U->getOpcode()) { 00771 default: { 00772 Bldr.takeNodes(*I); 00773 ExplodedNodeSet Tmp; 00774 VisitIncrementDecrementOperator(U, *I, Tmp); 00775 Bldr.addNodes(Tmp); 00776 break; 00777 } 00778 case UO_Real: { 00779 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 00780 00781 // FIXME: We don't have complex SValues yet. 00782 if (Ex->getType()->isAnyComplexType()) { 00783 // Just report "Unknown." 00784 break; 00785 } 00786 00787 // For all other types, UO_Real is an identity operation. 00788 assert (U->getType() == Ex->getType()); 00789 ProgramStateRef state = (*I)->getState(); 00790 const LocationContext *LCtx = (*I)->getLocationContext(); 00791 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, 00792 state->getSVal(Ex, LCtx))); 00793 break; 00794 } 00795 00796 case UO_Imag: { 00797 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 00798 // FIXME: We don't have complex SValues yet. 00799 if (Ex->getType()->isAnyComplexType()) { 00800 // Just report "Unknown." 00801 break; 00802 } 00803 // For all other types, UO_Imag returns 0. 00804 ProgramStateRef state = (*I)->getState(); 00805 const LocationContext *LCtx = (*I)->getLocationContext(); 00806 SVal X = svalBuilder.makeZeroVal(Ex->getType()); 00807 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, X)); 00808 break; 00809 } 00810 00811 case UO_Plus: 00812 assert(!U->isGLValue()); 00813 // FALL-THROUGH. 00814 case UO_Deref: 00815 case UO_AddrOf: 00816 case UO_Extension: { 00817 // FIXME: We can probably just have some magic in Environment::getSVal() 00818 // that propagates values, instead of creating a new node here. 00819 // 00820 // Unary "+" is a no-op, similar to a parentheses. We still have places 00821 // where it may be a block-level expression, so we need to 00822 // generate an extra node that just propagates the value of the 00823 // subexpression. 00824 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 00825 ProgramStateRef state = (*I)->getState(); 00826 const LocationContext *LCtx = (*I)->getLocationContext(); 00827 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, 00828 state->getSVal(Ex, LCtx))); 00829 break; 00830 } 00831 00832 case UO_LNot: 00833 case UO_Minus: 00834 case UO_Not: { 00835 assert (!U->isGLValue()); 00836 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 00837 ProgramStateRef state = (*I)->getState(); 00838 const LocationContext *LCtx = (*I)->getLocationContext(); 00839 00840 // Get the value of the subexpression. 00841 SVal V = state->getSVal(Ex, LCtx); 00842 00843 if (V.isUnknownOrUndef()) { 00844 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V)); 00845 break; 00846 } 00847 00848 switch (U->getOpcode()) { 00849 default: 00850 llvm_unreachable("Invalid Opcode."); 00851 case UO_Not: 00852 // FIXME: Do we need to handle promotions? 00853 state = state->BindExpr(U, LCtx, evalComplement(V.castAs<NonLoc>())); 00854 break; 00855 case UO_Minus: 00856 // FIXME: Do we need to handle promotions? 00857 state = state->BindExpr(U, LCtx, evalMinus(V.castAs<NonLoc>())); 00858 break; 00859 case UO_LNot: 00860 // C99 6.5.3.3: "The expression !E is equivalent to (0==E)." 00861 // 00862 // Note: technically we do "E == 0", but this is the same in the 00863 // transfer functions as "0 == E". 00864 SVal Result; 00865 if (Optional<Loc> LV = V.getAs<Loc>()) { 00866 Loc X = svalBuilder.makeNull(); 00867 Result = evalBinOp(state, BO_EQ, *LV, X, U->getType()); 00868 } 00869 else if (Ex->getType()->isFloatingType()) { 00870 // FIXME: handle floating point types. 00871 Result = UnknownVal(); 00872 } else { 00873 nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType())); 00874 Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X, 00875 U->getType()); 00876 } 00877 00878 state = state->BindExpr(U, LCtx, Result); 00879 break; 00880 } 00881 Bldr.generateNode(U, *I, state); 00882 break; 00883 } 00884 } 00885 } 00886 00887 getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, U, *this); 00888 } 00889 00890 void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U, 00891 ExplodedNode *Pred, 00892 ExplodedNodeSet &Dst) { 00893 // Handle ++ and -- (both pre- and post-increment). 00894 assert (U->isIncrementDecrementOp()); 00895 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 00896 00897 const LocationContext *LCtx = Pred->getLocationContext(); 00898 ProgramStateRef state = Pred->getState(); 00899 SVal loc = state->getSVal(Ex, LCtx); 00900 00901 // Perform a load. 00902 ExplodedNodeSet Tmp; 00903 evalLoad(Tmp, U, Ex, Pred, state, loc); 00904 00905 ExplodedNodeSet Dst2; 00906 StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx); 00907 for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) { 00908 00909 state = (*I)->getState(); 00910 assert(LCtx == (*I)->getLocationContext()); 00911 SVal V2_untested = state->getSVal(Ex, LCtx); 00912 00913 // Propagate unknown and undefined values. 00914 if (V2_untested.isUnknownOrUndef()) { 00915 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V2_untested)); 00916 continue; 00917 } 00918 DefinedSVal V2 = V2_untested.castAs<DefinedSVal>(); 00919 00920 // Handle all other values. 00921 BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub; 00922 00923 // If the UnaryOperator has non-location type, use its type to create the 00924 // constant value. If the UnaryOperator has location type, create the 00925 // constant with int type and pointer width. 00926 SVal RHS; 00927 00928 if (U->getType()->isAnyPointerType()) 00929 RHS = svalBuilder.makeArrayIndex(1); 00930 else if (U->getType()->isIntegralOrEnumerationType()) 00931 RHS = svalBuilder.makeIntVal(1, U->getType()); 00932 else 00933 RHS = UnknownVal(); 00934 00935 SVal Result = evalBinOp(state, Op, V2, RHS, U->getType()); 00936 00937 // Conjure a new symbol if necessary to recover precision. 00938 if (Result.isUnknown()){ 00939 DefinedOrUnknownSVal SymVal = 00940 svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx, 00941 currBldrCtx->blockCount()); 00942 Result = SymVal; 00943 00944 // If the value is a location, ++/-- should always preserve 00945 // non-nullness. Check if the original value was non-null, and if so 00946 // propagate that constraint. 00947 if (Loc::isLocType(U->getType())) { 00948 DefinedOrUnknownSVal Constraint = 00949 svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType())); 00950 00951 if (!state->assume(Constraint, true)) { 00952 // It isn't feasible for the original value to be null. 00953 // Propagate this constraint. 00954 Constraint = svalBuilder.evalEQ(state, SymVal, 00955 svalBuilder.makeZeroVal(U->getType())); 00956 00957 00958 state = state->assume(Constraint, false); 00959 assert(state); 00960 } 00961 } 00962 } 00963 00964 // Since the lvalue-to-rvalue conversion is explicit in the AST, 00965 // we bind an l-value if the operator is prefix and an lvalue (in C++). 00966 if (U->isGLValue()) 00967 state = state->BindExpr(U, LCtx, loc); 00968 else 00969 state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result); 00970 00971 // Perform the store. 00972 Bldr.takeNodes(*I); 00973 ExplodedNodeSet Dst3; 00974 evalStore(Dst3, U, U, *I, state, loc, Result); 00975 Bldr.addNodes(Dst3); 00976 } 00977 Dst.insert(Dst2); 00978 }