clang API Documentation
00001 //===--- Expr.cpp - Expression AST Node Implementation --------------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements the Expr class and subclasses. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "clang/AST/APValue.h" 00015 #include "clang/AST/ASTContext.h" 00016 #include "clang/AST/Attr.h" 00017 #include "clang/AST/DeclCXX.h" 00018 #include "clang/AST/DeclObjC.h" 00019 #include "clang/AST/DeclTemplate.h" 00020 #include "clang/AST/EvaluatedExprVisitor.h" 00021 #include "clang/AST/Expr.h" 00022 #include "clang/AST/ExprCXX.h" 00023 #include "clang/AST/Mangle.h" 00024 #include "clang/AST/RecordLayout.h" 00025 #include "clang/AST/StmtVisitor.h" 00026 #include "clang/Basic/Builtins.h" 00027 #include "clang/Basic/CharInfo.h" 00028 #include "clang/Basic/SourceManager.h" 00029 #include "clang/Basic/TargetInfo.h" 00030 #include "clang/Lex/Lexer.h" 00031 #include "clang/Lex/LiteralSupport.h" 00032 #include "clang/Sema/SemaDiagnostic.h" 00033 #include "llvm/Support/ErrorHandling.h" 00034 #include "llvm/Support/raw_ostream.h" 00035 #include <algorithm> 00036 #include <cstring> 00037 using namespace clang; 00038 00039 const CXXRecordDecl *Expr::getBestDynamicClassType() const { 00040 const Expr *E = ignoreParenBaseCasts(); 00041 00042 QualType DerivedType = E->getType(); 00043 if (const PointerType *PTy = DerivedType->getAs<PointerType>()) 00044 DerivedType = PTy->getPointeeType(); 00045 00046 if (DerivedType->isDependentType()) 00047 return nullptr; 00048 00049 const RecordType *Ty = DerivedType->castAs<RecordType>(); 00050 Decl *D = Ty->getDecl(); 00051 return cast<CXXRecordDecl>(D); 00052 } 00053 00054 const Expr *Expr::skipRValueSubobjectAdjustments( 00055 SmallVectorImpl<const Expr *> &CommaLHSs, 00056 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const { 00057 const Expr *E = this; 00058 while (true) { 00059 E = E->IgnoreParens(); 00060 00061 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 00062 if ((CE->getCastKind() == CK_DerivedToBase || 00063 CE->getCastKind() == CK_UncheckedDerivedToBase) && 00064 E->getType()->isRecordType()) { 00065 E = CE->getSubExpr(); 00066 CXXRecordDecl *Derived 00067 = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl()); 00068 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 00069 continue; 00070 } 00071 00072 if (CE->getCastKind() == CK_NoOp) { 00073 E = CE->getSubExpr(); 00074 continue; 00075 } 00076 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 00077 if (!ME->isArrow()) { 00078 assert(ME->getBase()->getType()->isRecordType()); 00079 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 00080 if (!Field->isBitField() && !Field->getType()->isReferenceType()) { 00081 E = ME->getBase(); 00082 Adjustments.push_back(SubobjectAdjustment(Field)); 00083 continue; 00084 } 00085 } 00086 } 00087 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 00088 if (BO->isPtrMemOp()) { 00089 assert(BO->getRHS()->isRValue()); 00090 E = BO->getLHS(); 00091 const MemberPointerType *MPT = 00092 BO->getRHS()->getType()->getAs<MemberPointerType>(); 00093 Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS())); 00094 continue; 00095 } else if (BO->getOpcode() == BO_Comma) { 00096 CommaLHSs.push_back(BO->getLHS()); 00097 E = BO->getRHS(); 00098 continue; 00099 } 00100 } 00101 00102 // Nothing changed. 00103 break; 00104 } 00105 return E; 00106 } 00107 00108 /// isKnownToHaveBooleanValue - Return true if this is an integer expression 00109 /// that is known to return 0 or 1. This happens for _Bool/bool expressions 00110 /// but also int expressions which are produced by things like comparisons in 00111 /// C. 00112 bool Expr::isKnownToHaveBooleanValue() const { 00113 const Expr *E = IgnoreParens(); 00114 00115 // If this value has _Bool type, it is obvious 0/1. 00116 if (E->getType()->isBooleanType()) return true; 00117 // If this is a non-scalar-integer type, we don't care enough to try. 00118 if (!E->getType()->isIntegralOrEnumerationType()) return false; 00119 00120 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 00121 switch (UO->getOpcode()) { 00122 case UO_Plus: 00123 return UO->getSubExpr()->isKnownToHaveBooleanValue(); 00124 case UO_LNot: 00125 return true; 00126 default: 00127 return false; 00128 } 00129 } 00130 00131 // Only look through implicit casts. If the user writes 00132 // '(int) (a && b)' treat it as an arbitrary int. 00133 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) 00134 return CE->getSubExpr()->isKnownToHaveBooleanValue(); 00135 00136 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 00137 switch (BO->getOpcode()) { 00138 default: return false; 00139 case BO_LT: // Relational operators. 00140 case BO_GT: 00141 case BO_LE: 00142 case BO_GE: 00143 case BO_EQ: // Equality operators. 00144 case BO_NE: 00145 case BO_LAnd: // AND operator. 00146 case BO_LOr: // Logical OR operator. 00147 return true; 00148 00149 case BO_And: // Bitwise AND operator. 00150 case BO_Xor: // Bitwise XOR operator. 00151 case BO_Or: // Bitwise OR operator. 00152 // Handle things like (x==2)|(y==12). 00153 return BO->getLHS()->isKnownToHaveBooleanValue() && 00154 BO->getRHS()->isKnownToHaveBooleanValue(); 00155 00156 case BO_Comma: 00157 case BO_Assign: 00158 return BO->getRHS()->isKnownToHaveBooleanValue(); 00159 } 00160 } 00161 00162 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) 00163 return CO->getTrueExpr()->isKnownToHaveBooleanValue() && 00164 CO->getFalseExpr()->isKnownToHaveBooleanValue(); 00165 00166 return false; 00167 } 00168 00169 // Amusing macro metaprogramming hack: check whether a class provides 00170 // a more specific implementation of getExprLoc(). 00171 // 00172 // See also Stmt.cpp:{getLocStart(),getLocEnd()}. 00173 namespace { 00174 /// This implementation is used when a class provides a custom 00175 /// implementation of getExprLoc. 00176 template <class E, class T> 00177 SourceLocation getExprLocImpl(const Expr *expr, 00178 SourceLocation (T::*v)() const) { 00179 return static_cast<const E*>(expr)->getExprLoc(); 00180 } 00181 00182 /// This implementation is used when a class doesn't provide 00183 /// a custom implementation of getExprLoc. Overload resolution 00184 /// should pick it over the implementation above because it's 00185 /// more specialized according to function template partial ordering. 00186 template <class E> 00187 SourceLocation getExprLocImpl(const Expr *expr, 00188 SourceLocation (Expr::*v)() const) { 00189 return static_cast<const E*>(expr)->getLocStart(); 00190 } 00191 } 00192 00193 SourceLocation Expr::getExprLoc() const { 00194 switch (getStmtClass()) { 00195 case Stmt::NoStmtClass: llvm_unreachable("statement without class"); 00196 #define ABSTRACT_STMT(type) 00197 #define STMT(type, base) \ 00198 case Stmt::type##Class: break; 00199 #define EXPR(type, base) \ 00200 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc); 00201 #include "clang/AST/StmtNodes.inc" 00202 } 00203 llvm_unreachable("unknown expression kind"); 00204 } 00205 00206 //===----------------------------------------------------------------------===// 00207 // Primary Expressions. 00208 //===----------------------------------------------------------------------===// 00209 00210 /// \brief Compute the type-, value-, and instantiation-dependence of a 00211 /// declaration reference 00212 /// based on the declaration being referenced. 00213 static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D, 00214 QualType T, bool &TypeDependent, 00215 bool &ValueDependent, 00216 bool &InstantiationDependent) { 00217 TypeDependent = false; 00218 ValueDependent = false; 00219 InstantiationDependent = false; 00220 00221 // (TD) C++ [temp.dep.expr]p3: 00222 // An id-expression is type-dependent if it contains: 00223 // 00224 // and 00225 // 00226 // (VD) C++ [temp.dep.constexpr]p2: 00227 // An identifier is value-dependent if it is: 00228 00229 // (TD) - an identifier that was declared with dependent type 00230 // (VD) - a name declared with a dependent type, 00231 if (T->isDependentType()) { 00232 TypeDependent = true; 00233 ValueDependent = true; 00234 InstantiationDependent = true; 00235 return; 00236 } else if (T->isInstantiationDependentType()) { 00237 InstantiationDependent = true; 00238 } 00239 00240 // (TD) - a conversion-function-id that specifies a dependent type 00241 if (D->getDeclName().getNameKind() 00242 == DeclarationName::CXXConversionFunctionName) { 00243 QualType T = D->getDeclName().getCXXNameType(); 00244 if (T->isDependentType()) { 00245 TypeDependent = true; 00246 ValueDependent = true; 00247 InstantiationDependent = true; 00248 return; 00249 } 00250 00251 if (T->isInstantiationDependentType()) 00252 InstantiationDependent = true; 00253 } 00254 00255 // (VD) - the name of a non-type template parameter, 00256 if (isa<NonTypeTemplateParmDecl>(D)) { 00257 ValueDependent = true; 00258 InstantiationDependent = true; 00259 return; 00260 } 00261 00262 // (VD) - a constant with integral or enumeration type and is 00263 // initialized with an expression that is value-dependent. 00264 // (VD) - a constant with literal type and is initialized with an 00265 // expression that is value-dependent [C++11]. 00266 // (VD) - FIXME: Missing from the standard: 00267 // - an entity with reference type and is initialized with an 00268 // expression that is value-dependent [C++11] 00269 if (VarDecl *Var = dyn_cast<VarDecl>(D)) { 00270 if ((Ctx.getLangOpts().CPlusPlus11 ? 00271 Var->getType()->isLiteralType(Ctx) : 00272 Var->getType()->isIntegralOrEnumerationType()) && 00273 (Var->getType().isConstQualified() || 00274 Var->getType()->isReferenceType())) { 00275 if (const Expr *Init = Var->getAnyInitializer()) 00276 if (Init->isValueDependent()) { 00277 ValueDependent = true; 00278 InstantiationDependent = true; 00279 } 00280 } 00281 00282 // (VD) - FIXME: Missing from the standard: 00283 // - a member function or a static data member of the current 00284 // instantiation 00285 if (Var->isStaticDataMember() && 00286 Var->getDeclContext()->isDependentContext()) { 00287 ValueDependent = true; 00288 InstantiationDependent = true; 00289 TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo(); 00290 if (TInfo->getType()->isIncompleteArrayType()) 00291 TypeDependent = true; 00292 } 00293 00294 return; 00295 } 00296 00297 // (VD) - FIXME: Missing from the standard: 00298 // - a member function or a static data member of the current 00299 // instantiation 00300 if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) { 00301 ValueDependent = true; 00302 InstantiationDependent = true; 00303 } 00304 } 00305 00306 void DeclRefExpr::computeDependence(const ASTContext &Ctx) { 00307 bool TypeDependent = false; 00308 bool ValueDependent = false; 00309 bool InstantiationDependent = false; 00310 computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent, 00311 ValueDependent, InstantiationDependent); 00312 00313 ExprBits.TypeDependent |= TypeDependent; 00314 ExprBits.ValueDependent |= ValueDependent; 00315 ExprBits.InstantiationDependent |= InstantiationDependent; 00316 00317 // Is the declaration a parameter pack? 00318 if (getDecl()->isParameterPack()) 00319 ExprBits.ContainsUnexpandedParameterPack = true; 00320 } 00321 00322 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, 00323 NestedNameSpecifierLoc QualifierLoc, 00324 SourceLocation TemplateKWLoc, 00325 ValueDecl *D, bool RefersToEnclosingLocal, 00326 const DeclarationNameInfo &NameInfo, 00327 NamedDecl *FoundD, 00328 const TemplateArgumentListInfo *TemplateArgs, 00329 QualType T, ExprValueKind VK) 00330 : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false), 00331 D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) { 00332 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0; 00333 if (QualifierLoc) { 00334 getInternalQualifierLoc() = QualifierLoc; 00335 auto *NNS = QualifierLoc.getNestedNameSpecifier(); 00336 if (NNS->isInstantiationDependent()) 00337 ExprBits.InstantiationDependent = true; 00338 if (NNS->containsUnexpandedParameterPack()) 00339 ExprBits.ContainsUnexpandedParameterPack = true; 00340 } 00341 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0; 00342 if (FoundD) 00343 getInternalFoundDecl() = FoundD; 00344 DeclRefExprBits.HasTemplateKWAndArgsInfo 00345 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0; 00346 DeclRefExprBits.RefersToEnclosingLocal = RefersToEnclosingLocal; 00347 if (TemplateArgs) { 00348 bool Dependent = false; 00349 bool InstantiationDependent = false; 00350 bool ContainsUnexpandedParameterPack = false; 00351 getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs, 00352 Dependent, 00353 InstantiationDependent, 00354 ContainsUnexpandedParameterPack); 00355 assert(!Dependent && "built a DeclRefExpr with dependent template args"); 00356 ExprBits.InstantiationDependent |= InstantiationDependent; 00357 ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack; 00358 } else if (TemplateKWLoc.isValid()) { 00359 getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc); 00360 } 00361 DeclRefExprBits.HadMultipleCandidates = 0; 00362 00363 computeDependence(Ctx); 00364 } 00365 00366 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 00367 NestedNameSpecifierLoc QualifierLoc, 00368 SourceLocation TemplateKWLoc, 00369 ValueDecl *D, 00370 bool RefersToEnclosingLocal, 00371 SourceLocation NameLoc, 00372 QualType T, 00373 ExprValueKind VK, 00374 NamedDecl *FoundD, 00375 const TemplateArgumentListInfo *TemplateArgs) { 00376 return Create(Context, QualifierLoc, TemplateKWLoc, D, 00377 RefersToEnclosingLocal, 00378 DeclarationNameInfo(D->getDeclName(), NameLoc), 00379 T, VK, FoundD, TemplateArgs); 00380 } 00381 00382 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 00383 NestedNameSpecifierLoc QualifierLoc, 00384 SourceLocation TemplateKWLoc, 00385 ValueDecl *D, 00386 bool RefersToEnclosingLocal, 00387 const DeclarationNameInfo &NameInfo, 00388 QualType T, 00389 ExprValueKind VK, 00390 NamedDecl *FoundD, 00391 const TemplateArgumentListInfo *TemplateArgs) { 00392 // Filter out cases where the found Decl is the same as the value refenenced. 00393 if (D == FoundD) 00394 FoundD = nullptr; 00395 00396 std::size_t Size = sizeof(DeclRefExpr); 00397 if (QualifierLoc) 00398 Size += sizeof(NestedNameSpecifierLoc); 00399 if (FoundD) 00400 Size += sizeof(NamedDecl *); 00401 if (TemplateArgs) 00402 Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size()); 00403 else if (TemplateKWLoc.isValid()) 00404 Size += ASTTemplateKWAndArgsInfo::sizeFor(0); 00405 00406 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>()); 00407 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D, 00408 RefersToEnclosingLocal, 00409 NameInfo, FoundD, TemplateArgs, T, VK); 00410 } 00411 00412 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context, 00413 bool HasQualifier, 00414 bool HasFoundDecl, 00415 bool HasTemplateKWAndArgsInfo, 00416 unsigned NumTemplateArgs) { 00417 std::size_t Size = sizeof(DeclRefExpr); 00418 if (HasQualifier) 00419 Size += sizeof(NestedNameSpecifierLoc); 00420 if (HasFoundDecl) 00421 Size += sizeof(NamedDecl *); 00422 if (HasTemplateKWAndArgsInfo) 00423 Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs); 00424 00425 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>()); 00426 return new (Mem) DeclRefExpr(EmptyShell()); 00427 } 00428 00429 SourceLocation DeclRefExpr::getLocStart() const { 00430 if (hasQualifier()) 00431 return getQualifierLoc().getBeginLoc(); 00432 return getNameInfo().getLocStart(); 00433 } 00434 SourceLocation DeclRefExpr::getLocEnd() const { 00435 if (hasExplicitTemplateArgs()) 00436 return getRAngleLoc(); 00437 return getNameInfo().getLocEnd(); 00438 } 00439 00440 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentType IT, 00441 StringLiteral *SL) 00442 : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary, 00443 FNTy->isDependentType(), FNTy->isDependentType(), 00444 FNTy->isInstantiationDependentType(), 00445 /*ContainsUnexpandedParameterPack=*/false), 00446 Loc(L), Type(IT), FnName(SL) {} 00447 00448 StringLiteral *PredefinedExpr::getFunctionName() { 00449 return cast_or_null<StringLiteral>(FnName); 00450 } 00451 00452 StringRef PredefinedExpr::getIdentTypeName(PredefinedExpr::IdentType IT) { 00453 switch (IT) { 00454 case Func: 00455 return "__func__"; 00456 case Function: 00457 return "__FUNCTION__"; 00458 case FuncDName: 00459 return "__FUNCDNAME__"; 00460 case LFunction: 00461 return "L__FUNCTION__"; 00462 case PrettyFunction: 00463 return "__PRETTY_FUNCTION__"; 00464 case FuncSig: 00465 return "__FUNCSIG__"; 00466 case PrettyFunctionNoVirtual: 00467 break; 00468 } 00469 llvm_unreachable("Unknown ident type for PredefinedExpr"); 00470 } 00471 00472 // FIXME: Maybe this should use DeclPrinter with a special "print predefined 00473 // expr" policy instead. 00474 std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) { 00475 ASTContext &Context = CurrentDecl->getASTContext(); 00476 00477 if (IT == PredefinedExpr::FuncDName) { 00478 if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) { 00479 std::unique_ptr<MangleContext> MC; 00480 MC.reset(Context.createMangleContext()); 00481 00482 if (MC->shouldMangleDeclName(ND)) { 00483 SmallString<256> Buffer; 00484 llvm::raw_svector_ostream Out(Buffer); 00485 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND)) 00486 MC->mangleCXXCtor(CD, Ctor_Base, Out); 00487 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND)) 00488 MC->mangleCXXDtor(DD, Dtor_Base, Out); 00489 else 00490 MC->mangleName(ND, Out); 00491 00492 Out.flush(); 00493 if (!Buffer.empty() && Buffer.front() == '\01') 00494 return Buffer.substr(1); 00495 return Buffer.str(); 00496 } else 00497 return ND->getIdentifier()->getName(); 00498 } 00499 return ""; 00500 } 00501 if (auto *BD = dyn_cast<BlockDecl>(CurrentDecl)) { 00502 std::unique_ptr<MangleContext> MC; 00503 MC.reset(Context.createMangleContext()); 00504 SmallString<256> Buffer; 00505 llvm::raw_svector_ostream Out(Buffer); 00506 auto DC = CurrentDecl->getDeclContext(); 00507 if (DC->isFileContext()) 00508 MC->mangleGlobalBlock(BD, /*ID*/ nullptr, Out); 00509 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 00510 MC->mangleCtorBlock(CD, /*CT*/ Ctor_Complete, BD, Out); 00511 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 00512 MC->mangleDtorBlock(DD, /*DT*/ Dtor_Complete, BD, Out); 00513 else 00514 MC->mangleBlock(DC, BD, Out); 00515 return Out.str(); 00516 } 00517 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { 00518 if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual && IT != FuncSig) 00519 return FD->getNameAsString(); 00520 00521 SmallString<256> Name; 00522 llvm::raw_svector_ostream Out(Name); 00523 00524 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 00525 if (MD->isVirtual() && IT != PrettyFunctionNoVirtual) 00526 Out << "virtual "; 00527 if (MD->isStatic()) 00528 Out << "static "; 00529 } 00530 00531 PrintingPolicy Policy(Context.getLangOpts()); 00532 std::string Proto; 00533 llvm::raw_string_ostream POut(Proto); 00534 00535 const FunctionDecl *Decl = FD; 00536 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern()) 00537 Decl = Pattern; 00538 const FunctionType *AFT = Decl->getType()->getAs<FunctionType>(); 00539 const FunctionProtoType *FT = nullptr; 00540 if (FD->hasWrittenPrototype()) 00541 FT = dyn_cast<FunctionProtoType>(AFT); 00542 00543 if (IT == FuncSig) { 00544 switch (FT->getCallConv()) { 00545 case CC_C: POut << "__cdecl "; break; 00546 case CC_X86StdCall: POut << "__stdcall "; break; 00547 case CC_X86FastCall: POut << "__fastcall "; break; 00548 case CC_X86ThisCall: POut << "__thiscall "; break; 00549 case CC_X86VectorCall: POut << "__vectorcall "; break; 00550 // Only bother printing the conventions that MSVC knows about. 00551 default: break; 00552 } 00553 } 00554 00555 FD->printQualifiedName(POut, Policy); 00556 00557 POut << "("; 00558 if (FT) { 00559 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) { 00560 if (i) POut << ", "; 00561 POut << Decl->getParamDecl(i)->getType().stream(Policy); 00562 } 00563 00564 if (FT->isVariadic()) { 00565 if (FD->getNumParams()) POut << ", "; 00566 POut << "..."; 00567 } 00568 } 00569 POut << ")"; 00570 00571 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 00572 const FunctionType *FT = MD->getType()->castAs<FunctionType>(); 00573 if (FT->isConst()) 00574 POut << " const"; 00575 if (FT->isVolatile()) 00576 POut << " volatile"; 00577 RefQualifierKind Ref = MD->getRefQualifier(); 00578 if (Ref == RQ_LValue) 00579 POut << " &"; 00580 else if (Ref == RQ_RValue) 00581 POut << " &&"; 00582 } 00583 00584 typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy; 00585 SpecsTy Specs; 00586 const DeclContext *Ctx = FD->getDeclContext(); 00587 while (Ctx && isa<NamedDecl>(Ctx)) { 00588 const ClassTemplateSpecializationDecl *Spec 00589 = dyn_cast<ClassTemplateSpecializationDecl>(Ctx); 00590 if (Spec && !Spec->isExplicitSpecialization()) 00591 Specs.push_back(Spec); 00592 Ctx = Ctx->getParent(); 00593 } 00594 00595 std::string TemplateParams; 00596 llvm::raw_string_ostream TOut(TemplateParams); 00597 for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend(); 00598 I != E; ++I) { 00599 const TemplateParameterList *Params 00600 = (*I)->getSpecializedTemplate()->getTemplateParameters(); 00601 const TemplateArgumentList &Args = (*I)->getTemplateArgs(); 00602 assert(Params->size() == Args.size()); 00603 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) { 00604 StringRef Param = Params->getParam(i)->getName(); 00605 if (Param.empty()) continue; 00606 TOut << Param << " = "; 00607 Args.get(i).print(Policy, TOut); 00608 TOut << ", "; 00609 } 00610 } 00611 00612 FunctionTemplateSpecializationInfo *FSI 00613 = FD->getTemplateSpecializationInfo(); 00614 if (FSI && !FSI->isExplicitSpecialization()) { 00615 const TemplateParameterList* Params 00616 = FSI->getTemplate()->getTemplateParameters(); 00617 const TemplateArgumentList* Args = FSI->TemplateArguments; 00618 assert(Params->size() == Args->size()); 00619 for (unsigned i = 0, e = Params->size(); i != e; ++i) { 00620 StringRef Param = Params->getParam(i)->getName(); 00621 if (Param.empty()) continue; 00622 TOut << Param << " = "; 00623 Args->get(i).print(Policy, TOut); 00624 TOut << ", "; 00625 } 00626 } 00627 00628 TOut.flush(); 00629 if (!TemplateParams.empty()) { 00630 // remove the trailing comma and space 00631 TemplateParams.resize(TemplateParams.size() - 2); 00632 POut << " [" << TemplateParams << "]"; 00633 } 00634 00635 POut.flush(); 00636 00637 // Print "auto" for all deduced return types. This includes C++1y return 00638 // type deduction and lambdas. For trailing return types resolve the 00639 // decltype expression. Otherwise print the real type when this is 00640 // not a constructor or destructor. 00641 if (isa<CXXMethodDecl>(FD) && 00642 cast<CXXMethodDecl>(FD)->getParent()->isLambda()) 00643 Proto = "auto " + Proto; 00644 else if (FT && FT->getReturnType()->getAs<DecltypeType>()) 00645 FT->getReturnType() 00646 ->getAs<DecltypeType>() 00647 ->getUnderlyingType() 00648 .getAsStringInternal(Proto, Policy); 00649 else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) 00650 AFT->getReturnType().getAsStringInternal(Proto, Policy); 00651 00652 Out << Proto; 00653 00654 Out.flush(); 00655 return Name.str().str(); 00656 } 00657 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) { 00658 for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent()) 00659 // Skip to its enclosing function or method, but not its enclosing 00660 // CapturedDecl. 00661 if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) { 00662 const Decl *D = Decl::castFromDeclContext(DC); 00663 return ComputeName(IT, D); 00664 } 00665 llvm_unreachable("CapturedDecl not inside a function or method"); 00666 } 00667 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { 00668 SmallString<256> Name; 00669 llvm::raw_svector_ostream Out(Name); 00670 Out << (MD->isInstanceMethod() ? '-' : '+'); 00671 Out << '['; 00672 00673 // For incorrect code, there might not be an ObjCInterfaceDecl. Do 00674 // a null check to avoid a crash. 00675 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 00676 Out << *ID; 00677 00678 if (const ObjCCategoryImplDecl *CID = 00679 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) 00680 Out << '(' << *CID << ')'; 00681 00682 Out << ' '; 00683 MD->getSelector().print(Out); 00684 Out << ']'; 00685 00686 Out.flush(); 00687 return Name.str().str(); 00688 } 00689 if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) { 00690 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. 00691 return "top level"; 00692 } 00693 return ""; 00694 } 00695 00696 void APNumericStorage::setIntValue(const ASTContext &C, 00697 const llvm::APInt &Val) { 00698 if (hasAllocation()) 00699 C.Deallocate(pVal); 00700 00701 BitWidth = Val.getBitWidth(); 00702 unsigned NumWords = Val.getNumWords(); 00703 const uint64_t* Words = Val.getRawData(); 00704 if (NumWords > 1) { 00705 pVal = new (C) uint64_t[NumWords]; 00706 std::copy(Words, Words + NumWords, pVal); 00707 } else if (NumWords == 1) 00708 VAL = Words[0]; 00709 else 00710 VAL = 0; 00711 } 00712 00713 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V, 00714 QualType type, SourceLocation l) 00715 : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false, 00716 false, false), 00717 Loc(l) { 00718 assert(type->isIntegerType() && "Illegal type in IntegerLiteral"); 00719 assert(V.getBitWidth() == C.getIntWidth(type) && 00720 "Integer type is not the correct size for constant."); 00721 setValue(C, V); 00722 } 00723 00724 IntegerLiteral * 00725 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V, 00726 QualType type, SourceLocation l) { 00727 return new (C) IntegerLiteral(C, V, type, l); 00728 } 00729 00730 IntegerLiteral * 00731 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) { 00732 return new (C) IntegerLiteral(Empty); 00733 } 00734 00735 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, 00736 bool isexact, QualType Type, SourceLocation L) 00737 : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false, 00738 false, false), Loc(L) { 00739 setSemantics(V.getSemantics()); 00740 FloatingLiteralBits.IsExact = isexact; 00741 setValue(C, V); 00742 } 00743 00744 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty) 00745 : Expr(FloatingLiteralClass, Empty) { 00746 setRawSemantics(IEEEhalf); 00747 FloatingLiteralBits.IsExact = false; 00748 } 00749 00750 FloatingLiteral * 00751 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V, 00752 bool isexact, QualType Type, SourceLocation L) { 00753 return new (C) FloatingLiteral(C, V, isexact, Type, L); 00754 } 00755 00756 FloatingLiteral * 00757 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) { 00758 return new (C) FloatingLiteral(C, Empty); 00759 } 00760 00761 const llvm::fltSemantics &FloatingLiteral::getSemantics() const { 00762 switch(FloatingLiteralBits.Semantics) { 00763 case IEEEhalf: 00764 return llvm::APFloat::IEEEhalf; 00765 case IEEEsingle: 00766 return llvm::APFloat::IEEEsingle; 00767 case IEEEdouble: 00768 return llvm::APFloat::IEEEdouble; 00769 case x87DoubleExtended: 00770 return llvm::APFloat::x87DoubleExtended; 00771 case IEEEquad: 00772 return llvm::APFloat::IEEEquad; 00773 case PPCDoubleDouble: 00774 return llvm::APFloat::PPCDoubleDouble; 00775 } 00776 llvm_unreachable("Unrecognised floating semantics"); 00777 } 00778 00779 void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) { 00780 if (&Sem == &llvm::APFloat::IEEEhalf) 00781 FloatingLiteralBits.Semantics = IEEEhalf; 00782 else if (&Sem == &llvm::APFloat::IEEEsingle) 00783 FloatingLiteralBits.Semantics = IEEEsingle; 00784 else if (&Sem == &llvm::APFloat::IEEEdouble) 00785 FloatingLiteralBits.Semantics = IEEEdouble; 00786 else if (&Sem == &llvm::APFloat::x87DoubleExtended) 00787 FloatingLiteralBits.Semantics = x87DoubleExtended; 00788 else if (&Sem == &llvm::APFloat::IEEEquad) 00789 FloatingLiteralBits.Semantics = IEEEquad; 00790 else if (&Sem == &llvm::APFloat::PPCDoubleDouble) 00791 FloatingLiteralBits.Semantics = PPCDoubleDouble; 00792 else 00793 llvm_unreachable("Unknown floating semantics"); 00794 } 00795 00796 /// getValueAsApproximateDouble - This returns the value as an inaccurate 00797 /// double. Note that this may cause loss of precision, but is useful for 00798 /// debugging dumps, etc. 00799 double FloatingLiteral::getValueAsApproximateDouble() const { 00800 llvm::APFloat V = getValue(); 00801 bool ignored; 00802 V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven, 00803 &ignored); 00804 return V.convertToDouble(); 00805 } 00806 00807 int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) { 00808 int CharByteWidth = 0; 00809 switch(k) { 00810 case Ascii: 00811 case UTF8: 00812 CharByteWidth = target.getCharWidth(); 00813 break; 00814 case Wide: 00815 CharByteWidth = target.getWCharWidth(); 00816 break; 00817 case UTF16: 00818 CharByteWidth = target.getChar16Width(); 00819 break; 00820 case UTF32: 00821 CharByteWidth = target.getChar32Width(); 00822 break; 00823 } 00824 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); 00825 CharByteWidth /= 8; 00826 assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4) 00827 && "character byte widths supported are 1, 2, and 4 only"); 00828 return CharByteWidth; 00829 } 00830 00831 StringLiteral *StringLiteral::Create(const ASTContext &C, StringRef Str, 00832 StringKind Kind, bool Pascal, QualType Ty, 00833 const SourceLocation *Loc, 00834 unsigned NumStrs) { 00835 assert(C.getAsConstantArrayType(Ty) && 00836 "StringLiteral must be of constant array type!"); 00837 00838 // Allocate enough space for the StringLiteral plus an array of locations for 00839 // any concatenated string tokens. 00840 void *Mem = C.Allocate(sizeof(StringLiteral)+ 00841 sizeof(SourceLocation)*(NumStrs-1), 00842 llvm::alignOf<StringLiteral>()); 00843 StringLiteral *SL = new (Mem) StringLiteral(Ty); 00844 00845 // OPTIMIZE: could allocate this appended to the StringLiteral. 00846 SL->setString(C,Str,Kind,Pascal); 00847 00848 SL->TokLocs[0] = Loc[0]; 00849 SL->NumConcatenated = NumStrs; 00850 00851 if (NumStrs != 1) 00852 memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1)); 00853 return SL; 00854 } 00855 00856 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &C, 00857 unsigned NumStrs) { 00858 void *Mem = C.Allocate(sizeof(StringLiteral)+ 00859 sizeof(SourceLocation)*(NumStrs-1), 00860 llvm::alignOf<StringLiteral>()); 00861 StringLiteral *SL = new (Mem) StringLiteral(QualType()); 00862 SL->CharByteWidth = 0; 00863 SL->Length = 0; 00864 SL->NumConcatenated = NumStrs; 00865 return SL; 00866 } 00867 00868 void StringLiteral::outputString(raw_ostream &OS) const { 00869 switch (getKind()) { 00870 case Ascii: break; // no prefix. 00871 case Wide: OS << 'L'; break; 00872 case UTF8: OS << "u8"; break; 00873 case UTF16: OS << 'u'; break; 00874 case UTF32: OS << 'U'; break; 00875 } 00876 OS << '"'; 00877 static const char Hex[] = "0123456789ABCDEF"; 00878 00879 unsigned LastSlashX = getLength(); 00880 for (unsigned I = 0, N = getLength(); I != N; ++I) { 00881 switch (uint32_t Char = getCodeUnit(I)) { 00882 default: 00883 // FIXME: Convert UTF-8 back to codepoints before rendering. 00884 00885 // Convert UTF-16 surrogate pairs back to codepoints before rendering. 00886 // Leave invalid surrogates alone; we'll use \x for those. 00887 if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 && 00888 Char <= 0xdbff) { 00889 uint32_t Trail = getCodeUnit(I + 1); 00890 if (Trail >= 0xdc00 && Trail <= 0xdfff) { 00891 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00); 00892 ++I; 00893 } 00894 } 00895 00896 if (Char > 0xff) { 00897 // If this is a wide string, output characters over 0xff using \x 00898 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a 00899 // codepoint: use \x escapes for invalid codepoints. 00900 if (getKind() == Wide || 00901 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) { 00902 // FIXME: Is this the best way to print wchar_t? 00903 OS << "\\x"; 00904 int Shift = 28; 00905 while ((Char >> Shift) == 0) 00906 Shift -= 4; 00907 for (/**/; Shift >= 0; Shift -= 4) 00908 OS << Hex[(Char >> Shift) & 15]; 00909 LastSlashX = I; 00910 break; 00911 } 00912 00913 if (Char > 0xffff) 00914 OS << "\\U00" 00915 << Hex[(Char >> 20) & 15] 00916 << Hex[(Char >> 16) & 15]; 00917 else 00918 OS << "\\u"; 00919 OS << Hex[(Char >> 12) & 15] 00920 << Hex[(Char >> 8) & 15] 00921 << Hex[(Char >> 4) & 15] 00922 << Hex[(Char >> 0) & 15]; 00923 break; 00924 } 00925 00926 // If we used \x... for the previous character, and this character is a 00927 // hexadecimal digit, prevent it being slurped as part of the \x. 00928 if (LastSlashX + 1 == I) { 00929 switch (Char) { 00930 case '0': case '1': case '2': case '3': case '4': 00931 case '5': case '6': case '7': case '8': case '9': 00932 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': 00933 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': 00934 OS << "\"\""; 00935 } 00936 } 00937 00938 assert(Char <= 0xff && 00939 "Characters above 0xff should already have been handled."); 00940 00941 if (isPrintable(Char)) 00942 OS << (char)Char; 00943 else // Output anything hard as an octal escape. 00944 OS << '\\' 00945 << (char)('0' + ((Char >> 6) & 7)) 00946 << (char)('0' + ((Char >> 3) & 7)) 00947 << (char)('0' + ((Char >> 0) & 7)); 00948 break; 00949 // Handle some common non-printable cases to make dumps prettier. 00950 case '\\': OS << "\\\\"; break; 00951 case '"': OS << "\\\""; break; 00952 case '\n': OS << "\\n"; break; 00953 case '\t': OS << "\\t"; break; 00954 case '\a': OS << "\\a"; break; 00955 case '\b': OS << "\\b"; break; 00956 } 00957 } 00958 OS << '"'; 00959 } 00960 00961 void StringLiteral::setString(const ASTContext &C, StringRef Str, 00962 StringKind Kind, bool IsPascal) { 00963 //FIXME: we assume that the string data comes from a target that uses the same 00964 // code unit size and endianess for the type of string. 00965 this->Kind = Kind; 00966 this->IsPascal = IsPascal; 00967 00968 CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind); 00969 assert((Str.size()%CharByteWidth == 0) 00970 && "size of data must be multiple of CharByteWidth"); 00971 Length = Str.size()/CharByteWidth; 00972 00973 switch(CharByteWidth) { 00974 case 1: { 00975 char *AStrData = new (C) char[Length]; 00976 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData)); 00977 StrData.asChar = AStrData; 00978 break; 00979 } 00980 case 2: { 00981 uint16_t *AStrData = new (C) uint16_t[Length]; 00982 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData)); 00983 StrData.asUInt16 = AStrData; 00984 break; 00985 } 00986 case 4: { 00987 uint32_t *AStrData = new (C) uint32_t[Length]; 00988 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData)); 00989 StrData.asUInt32 = AStrData; 00990 break; 00991 } 00992 default: 00993 assert(false && "unsupported CharByteWidth"); 00994 } 00995 } 00996 00997 /// getLocationOfByte - Return a source location that points to the specified 00998 /// byte of this string literal. 00999 /// 01000 /// Strings are amazingly complex. They can be formed from multiple tokens and 01001 /// can have escape sequences in them in addition to the usual trigraph and 01002 /// escaped newline business. This routine handles this complexity. 01003 /// 01004 SourceLocation StringLiteral:: 01005 getLocationOfByte(unsigned ByteNo, const SourceManager &SM, 01006 const LangOptions &Features, const TargetInfo &Target) const { 01007 assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) && 01008 "Only narrow string literals are currently supported"); 01009 01010 // Loop over all of the tokens in this string until we find the one that 01011 // contains the byte we're looking for. 01012 unsigned TokNo = 0; 01013 while (1) { 01014 assert(TokNo < getNumConcatenated() && "Invalid byte number!"); 01015 SourceLocation StrTokLoc = getStrTokenLoc(TokNo); 01016 01017 // Get the spelling of the string so that we can get the data that makes up 01018 // the string literal, not the identifier for the macro it is potentially 01019 // expanded through. 01020 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc); 01021 01022 // Re-lex the token to get its length and original spelling. 01023 std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc); 01024 bool Invalid = false; 01025 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 01026 if (Invalid) 01027 return StrTokSpellingLoc; 01028 01029 const char *StrData = Buffer.data()+LocInfo.second; 01030 01031 // Create a lexer starting at the beginning of this token. 01032 Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features, 01033 Buffer.begin(), StrData, Buffer.end()); 01034 Token TheTok; 01035 TheLexer.LexFromRawLexer(TheTok); 01036 01037 // Use the StringLiteralParser to compute the length of the string in bytes. 01038 StringLiteralParser SLP(TheTok, SM, Features, Target); 01039 unsigned TokNumBytes = SLP.GetStringLength(); 01040 01041 // If the byte is in this token, return the location of the byte. 01042 if (ByteNo < TokNumBytes || 01043 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) { 01044 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); 01045 01046 // Now that we know the offset of the token in the spelling, use the 01047 // preprocessor to get the offset in the original source. 01048 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features); 01049 } 01050 01051 // Move to the next string token. 01052 ++TokNo; 01053 ByteNo -= TokNumBytes; 01054 } 01055 } 01056 01057 01058 01059 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 01060 /// corresponds to, e.g. "sizeof" or "[pre]++". 01061 StringRef UnaryOperator::getOpcodeStr(Opcode Op) { 01062 switch (Op) { 01063 case UO_PostInc: return "++"; 01064 case UO_PostDec: return "--"; 01065 case UO_PreInc: return "++"; 01066 case UO_PreDec: return "--"; 01067 case UO_AddrOf: return "&"; 01068 case UO_Deref: return "*"; 01069 case UO_Plus: return "+"; 01070 case UO_Minus: return "-"; 01071 case UO_Not: return "~"; 01072 case UO_LNot: return "!"; 01073 case UO_Real: return "__real"; 01074 case UO_Imag: return "__imag"; 01075 case UO_Extension: return "__extension__"; 01076 } 01077 llvm_unreachable("Unknown unary operator"); 01078 } 01079 01080 UnaryOperatorKind 01081 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { 01082 switch (OO) { 01083 default: llvm_unreachable("No unary operator for overloaded function"); 01084 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc; 01085 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec; 01086 case OO_Amp: return UO_AddrOf; 01087 case OO_Star: return UO_Deref; 01088 case OO_Plus: return UO_Plus; 01089 case OO_Minus: return UO_Minus; 01090 case OO_Tilde: return UO_Not; 01091 case OO_Exclaim: return UO_LNot; 01092 } 01093 } 01094 01095 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { 01096 switch (Opc) { 01097 case UO_PostInc: case UO_PreInc: return OO_PlusPlus; 01098 case UO_PostDec: case UO_PreDec: return OO_MinusMinus; 01099 case UO_AddrOf: return OO_Amp; 01100 case UO_Deref: return OO_Star; 01101 case UO_Plus: return OO_Plus; 01102 case UO_Minus: return OO_Minus; 01103 case UO_Not: return OO_Tilde; 01104 case UO_LNot: return OO_Exclaim; 01105 default: return OO_None; 01106 } 01107 } 01108 01109 01110 //===----------------------------------------------------------------------===// 01111 // Postfix Operators. 01112 //===----------------------------------------------------------------------===// 01113 01114 CallExpr::CallExpr(const ASTContext& C, StmtClass SC, Expr *fn, 01115 unsigned NumPreArgs, ArrayRef<Expr*> args, QualType t, 01116 ExprValueKind VK, SourceLocation rparenloc) 01117 : Expr(SC, t, VK, OK_Ordinary, 01118 fn->isTypeDependent(), 01119 fn->isValueDependent(), 01120 fn->isInstantiationDependent(), 01121 fn->containsUnexpandedParameterPack()), 01122 NumArgs(args.size()) { 01123 01124 SubExprs = new (C) Stmt*[args.size()+PREARGS_START+NumPreArgs]; 01125 SubExprs[FN] = fn; 01126 for (unsigned i = 0; i != args.size(); ++i) { 01127 if (args[i]->isTypeDependent()) 01128 ExprBits.TypeDependent = true; 01129 if (args[i]->isValueDependent()) 01130 ExprBits.ValueDependent = true; 01131 if (args[i]->isInstantiationDependent()) 01132 ExprBits.InstantiationDependent = true; 01133 if (args[i]->containsUnexpandedParameterPack()) 01134 ExprBits.ContainsUnexpandedParameterPack = true; 01135 01136 SubExprs[i+PREARGS_START+NumPreArgs] = args[i]; 01137 } 01138 01139 CallExprBits.NumPreArgs = NumPreArgs; 01140 RParenLoc = rparenloc; 01141 } 01142 01143 CallExpr::CallExpr(const ASTContext& C, Expr *fn, ArrayRef<Expr*> args, 01144 QualType t, ExprValueKind VK, SourceLocation rparenloc) 01145 : Expr(CallExprClass, t, VK, OK_Ordinary, 01146 fn->isTypeDependent(), 01147 fn->isValueDependent(), 01148 fn->isInstantiationDependent(), 01149 fn->containsUnexpandedParameterPack()), 01150 NumArgs(args.size()) { 01151 01152 SubExprs = new (C) Stmt*[args.size()+PREARGS_START]; 01153 SubExprs[FN] = fn; 01154 for (unsigned i = 0; i != args.size(); ++i) { 01155 if (args[i]->isTypeDependent()) 01156 ExprBits.TypeDependent = true; 01157 if (args[i]->isValueDependent()) 01158 ExprBits.ValueDependent = true; 01159 if (args[i]->isInstantiationDependent()) 01160 ExprBits.InstantiationDependent = true; 01161 if (args[i]->containsUnexpandedParameterPack()) 01162 ExprBits.ContainsUnexpandedParameterPack = true; 01163 01164 SubExprs[i+PREARGS_START] = args[i]; 01165 } 01166 01167 CallExprBits.NumPreArgs = 0; 01168 RParenLoc = rparenloc; 01169 } 01170 01171 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty) 01172 : Expr(SC, Empty), SubExprs(nullptr), NumArgs(0) { 01173 // FIXME: Why do we allocate this? 01174 SubExprs = new (C) Stmt*[PREARGS_START]; 01175 CallExprBits.NumPreArgs = 0; 01176 } 01177 01178 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs, 01179 EmptyShell Empty) 01180 : Expr(SC, Empty), SubExprs(nullptr), NumArgs(0) { 01181 // FIXME: Why do we allocate this? 01182 SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs]; 01183 CallExprBits.NumPreArgs = NumPreArgs; 01184 } 01185 01186 Decl *CallExpr::getCalleeDecl() { 01187 Expr *CEE = getCallee()->IgnoreParenImpCasts(); 01188 01189 while (SubstNonTypeTemplateParmExpr *NTTP 01190 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) { 01191 CEE = NTTP->getReplacement()->IgnoreParenCasts(); 01192 } 01193 01194 // If we're calling a dereference, look at the pointer instead. 01195 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) { 01196 if (BO->isPtrMemOp()) 01197 CEE = BO->getRHS()->IgnoreParenCasts(); 01198 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) { 01199 if (UO->getOpcode() == UO_Deref) 01200 CEE = UO->getSubExpr()->IgnoreParenCasts(); 01201 } 01202 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) 01203 return DRE->getDecl(); 01204 if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE)) 01205 return ME->getMemberDecl(); 01206 01207 return nullptr; 01208 } 01209 01210 FunctionDecl *CallExpr::getDirectCallee() { 01211 return dyn_cast_or_null<FunctionDecl>(getCalleeDecl()); 01212 } 01213 01214 /// setNumArgs - This changes the number of arguments present in this call. 01215 /// Any orphaned expressions are deleted by this, and any new operands are set 01216 /// to null. 01217 void CallExpr::setNumArgs(const ASTContext& C, unsigned NumArgs) { 01218 // No change, just return. 01219 if (NumArgs == getNumArgs()) return; 01220 01221 // If shrinking # arguments, just delete the extras and forgot them. 01222 if (NumArgs < getNumArgs()) { 01223 this->NumArgs = NumArgs; 01224 return; 01225 } 01226 01227 // Otherwise, we are growing the # arguments. New an bigger argument array. 01228 unsigned NumPreArgs = getNumPreArgs(); 01229 Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs]; 01230 // Copy over args. 01231 for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i) 01232 NewSubExprs[i] = SubExprs[i]; 01233 // Null out new args. 01234 for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs; 01235 i != NumArgs+PREARGS_START+NumPreArgs; ++i) 01236 NewSubExprs[i] = nullptr; 01237 01238 if (SubExprs) C.Deallocate(SubExprs); 01239 SubExprs = NewSubExprs; 01240 this->NumArgs = NumArgs; 01241 } 01242 01243 /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If 01244 /// not, return 0. 01245 unsigned CallExpr::getBuiltinCallee() const { 01246 // All simple function calls (e.g. func()) are implicitly cast to pointer to 01247 // function. As a result, we try and obtain the DeclRefExpr from the 01248 // ImplicitCastExpr. 01249 const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee()); 01250 if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()). 01251 return 0; 01252 01253 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()); 01254 if (!DRE) 01255 return 0; 01256 01257 const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()); 01258 if (!FDecl) 01259 return 0; 01260 01261 if (!FDecl->getIdentifier()) 01262 return 0; 01263 01264 return FDecl->getBuiltinID(); 01265 } 01266 01267 bool CallExpr::isUnevaluatedBuiltinCall(ASTContext &Ctx) const { 01268 if (unsigned BI = getBuiltinCallee()) 01269 return Ctx.BuiltinInfo.isUnevaluated(BI); 01270 return false; 01271 } 01272 01273 QualType CallExpr::getCallReturnType() const { 01274 QualType CalleeType = getCallee()->getType(); 01275 if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>()) 01276 CalleeType = FnTypePtr->getPointeeType(); 01277 else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>()) 01278 CalleeType = BPT->getPointeeType(); 01279 else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) 01280 // This should never be overloaded and so should never return null. 01281 CalleeType = Expr::findBoundMemberType(getCallee()); 01282 01283 const FunctionType *FnType = CalleeType->castAs<FunctionType>(); 01284 return FnType->getReturnType(); 01285 } 01286 01287 SourceLocation CallExpr::getLocStart() const { 01288 if (isa<CXXOperatorCallExpr>(this)) 01289 return cast<CXXOperatorCallExpr>(this)->getLocStart(); 01290 01291 SourceLocation begin = getCallee()->getLocStart(); 01292 if (begin.isInvalid() && getNumArgs() > 0 && getArg(0)) 01293 begin = getArg(0)->getLocStart(); 01294 return begin; 01295 } 01296 SourceLocation CallExpr::getLocEnd() const { 01297 if (isa<CXXOperatorCallExpr>(this)) 01298 return cast<CXXOperatorCallExpr>(this)->getLocEnd(); 01299 01300 SourceLocation end = getRParenLoc(); 01301 if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1)) 01302 end = getArg(getNumArgs() - 1)->getLocEnd(); 01303 return end; 01304 } 01305 01306 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type, 01307 SourceLocation OperatorLoc, 01308 TypeSourceInfo *tsi, 01309 ArrayRef<OffsetOfNode> comps, 01310 ArrayRef<Expr*> exprs, 01311 SourceLocation RParenLoc) { 01312 void *Mem = C.Allocate(sizeof(OffsetOfExpr) + 01313 sizeof(OffsetOfNode) * comps.size() + 01314 sizeof(Expr*) * exprs.size()); 01315 01316 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs, 01317 RParenLoc); 01318 } 01319 01320 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C, 01321 unsigned numComps, unsigned numExprs) { 01322 void *Mem = C.Allocate(sizeof(OffsetOfExpr) + 01323 sizeof(OffsetOfNode) * numComps + 01324 sizeof(Expr*) * numExprs); 01325 return new (Mem) OffsetOfExpr(numComps, numExprs); 01326 } 01327 01328 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type, 01329 SourceLocation OperatorLoc, TypeSourceInfo *tsi, 01330 ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs, 01331 SourceLocation RParenLoc) 01332 : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary, 01333 /*TypeDependent=*/false, 01334 /*ValueDependent=*/tsi->getType()->isDependentType(), 01335 tsi->getType()->isInstantiationDependentType(), 01336 tsi->getType()->containsUnexpandedParameterPack()), 01337 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), 01338 NumComps(comps.size()), NumExprs(exprs.size()) 01339 { 01340 for (unsigned i = 0; i != comps.size(); ++i) { 01341 setComponent(i, comps[i]); 01342 } 01343 01344 for (unsigned i = 0; i != exprs.size(); ++i) { 01345 if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent()) 01346 ExprBits.ValueDependent = true; 01347 if (exprs[i]->containsUnexpandedParameterPack()) 01348 ExprBits.ContainsUnexpandedParameterPack = true; 01349 01350 setIndexExpr(i, exprs[i]); 01351 } 01352 } 01353 01354 IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const { 01355 assert(getKind() == Field || getKind() == Identifier); 01356 if (getKind() == Field) 01357 return getField()->getIdentifier(); 01358 01359 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask); 01360 } 01361 01362 MemberExpr *MemberExpr::Create(const ASTContext &C, Expr *base, bool isarrow, 01363 NestedNameSpecifierLoc QualifierLoc, 01364 SourceLocation TemplateKWLoc, 01365 ValueDecl *memberdecl, 01366 DeclAccessPair founddecl, 01367 DeclarationNameInfo nameinfo, 01368 const TemplateArgumentListInfo *targs, 01369 QualType ty, 01370 ExprValueKind vk, 01371 ExprObjectKind ok) { 01372 std::size_t Size = sizeof(MemberExpr); 01373 01374 bool hasQualOrFound = (QualifierLoc || 01375 founddecl.getDecl() != memberdecl || 01376 founddecl.getAccess() != memberdecl->getAccess()); 01377 if (hasQualOrFound) 01378 Size += sizeof(MemberNameQualifier); 01379 01380 if (targs) 01381 Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size()); 01382 else if (TemplateKWLoc.isValid()) 01383 Size += ASTTemplateKWAndArgsInfo::sizeFor(0); 01384 01385 void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>()); 01386 MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo, 01387 ty, vk, ok); 01388 01389 if (hasQualOrFound) { 01390 // FIXME: Wrong. We should be looking at the member declaration we found. 01391 if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) { 01392 E->setValueDependent(true); 01393 E->setTypeDependent(true); 01394 E->setInstantiationDependent(true); 01395 } 01396 else if (QualifierLoc && 01397 QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent()) 01398 E->setInstantiationDependent(true); 01399 01400 E->HasQualifierOrFoundDecl = true; 01401 01402 MemberNameQualifier *NQ = E->getMemberQualifier(); 01403 NQ->QualifierLoc = QualifierLoc; 01404 NQ->FoundDecl = founddecl; 01405 } 01406 01407 E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid()); 01408 01409 if (targs) { 01410 bool Dependent = false; 01411 bool InstantiationDependent = false; 01412 bool ContainsUnexpandedParameterPack = false; 01413 E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs, 01414 Dependent, 01415 InstantiationDependent, 01416 ContainsUnexpandedParameterPack); 01417 if (InstantiationDependent) 01418 E->setInstantiationDependent(true); 01419 } else if (TemplateKWLoc.isValid()) { 01420 E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc); 01421 } 01422 01423 return E; 01424 } 01425 01426 SourceLocation MemberExpr::getLocStart() const { 01427 if (isImplicitAccess()) { 01428 if (hasQualifier()) 01429 return getQualifierLoc().getBeginLoc(); 01430 return MemberLoc; 01431 } 01432 01433 // FIXME: We don't want this to happen. Rather, we should be able to 01434 // detect all kinds of implicit accesses more cleanly. 01435 SourceLocation BaseStartLoc = getBase()->getLocStart(); 01436 if (BaseStartLoc.isValid()) 01437 return BaseStartLoc; 01438 return MemberLoc; 01439 } 01440 SourceLocation MemberExpr::getLocEnd() const { 01441 SourceLocation EndLoc = getMemberNameInfo().getEndLoc(); 01442 if (hasExplicitTemplateArgs()) 01443 EndLoc = getRAngleLoc(); 01444 else if (EndLoc.isInvalid()) 01445 EndLoc = getBase()->getLocEnd(); 01446 return EndLoc; 01447 } 01448 01449 bool CastExpr::CastConsistency() const { 01450 switch (getCastKind()) { 01451 case CK_DerivedToBase: 01452 case CK_UncheckedDerivedToBase: 01453 case CK_DerivedToBaseMemberPointer: 01454 case CK_BaseToDerived: 01455 case CK_BaseToDerivedMemberPointer: 01456 assert(!path_empty() && "Cast kind should have a base path!"); 01457 break; 01458 01459 case CK_CPointerToObjCPointerCast: 01460 assert(getType()->isObjCObjectPointerType()); 01461 assert(getSubExpr()->getType()->isPointerType()); 01462 goto CheckNoBasePath; 01463 01464 case CK_BlockPointerToObjCPointerCast: 01465 assert(getType()->isObjCObjectPointerType()); 01466 assert(getSubExpr()->getType()->isBlockPointerType()); 01467 goto CheckNoBasePath; 01468 01469 case CK_ReinterpretMemberPointer: 01470 assert(getType()->isMemberPointerType()); 01471 assert(getSubExpr()->getType()->isMemberPointerType()); 01472 goto CheckNoBasePath; 01473 01474 case CK_BitCast: 01475 // Arbitrary casts to C pointer types count as bitcasts. 01476 // Otherwise, we should only have block and ObjC pointer casts 01477 // here if they stay within the type kind. 01478 if (!getType()->isPointerType()) { 01479 assert(getType()->isObjCObjectPointerType() == 01480 getSubExpr()->getType()->isObjCObjectPointerType()); 01481 assert(getType()->isBlockPointerType() == 01482 getSubExpr()->getType()->isBlockPointerType()); 01483 } 01484 goto CheckNoBasePath; 01485 01486 case CK_AnyPointerToBlockPointerCast: 01487 assert(getType()->isBlockPointerType()); 01488 assert(getSubExpr()->getType()->isAnyPointerType() && 01489 !getSubExpr()->getType()->isBlockPointerType()); 01490 goto CheckNoBasePath; 01491 01492 case CK_CopyAndAutoreleaseBlockObject: 01493 assert(getType()->isBlockPointerType()); 01494 assert(getSubExpr()->getType()->isBlockPointerType()); 01495 goto CheckNoBasePath; 01496 01497 case CK_FunctionToPointerDecay: 01498 assert(getType()->isPointerType()); 01499 assert(getSubExpr()->getType()->isFunctionType()); 01500 goto CheckNoBasePath; 01501 01502 case CK_AddressSpaceConversion: 01503 assert(getType()->isPointerType()); 01504 assert(getSubExpr()->getType()->isPointerType()); 01505 assert(getType()->getPointeeType().getAddressSpace() != 01506 getSubExpr()->getType()->getPointeeType().getAddressSpace()); 01507 // These should not have an inheritance path. 01508 case CK_Dynamic: 01509 case CK_ToUnion: 01510 case CK_ArrayToPointerDecay: 01511 case CK_NullToMemberPointer: 01512 case CK_NullToPointer: 01513 case CK_ConstructorConversion: 01514 case CK_IntegralToPointer: 01515 case CK_PointerToIntegral: 01516 case CK_ToVoid: 01517 case CK_VectorSplat: 01518 case CK_IntegralCast: 01519 case CK_IntegralToFloating: 01520 case CK_FloatingToIntegral: 01521 case CK_FloatingCast: 01522 case CK_ObjCObjectLValueCast: 01523 case CK_FloatingRealToComplex: 01524 case CK_FloatingComplexToReal: 01525 case CK_FloatingComplexCast: 01526 case CK_FloatingComplexToIntegralComplex: 01527 case CK_IntegralRealToComplex: 01528 case CK_IntegralComplexToReal: 01529 case CK_IntegralComplexCast: 01530 case CK_IntegralComplexToFloatingComplex: 01531 case CK_ARCProduceObject: 01532 case CK_ARCConsumeObject: 01533 case CK_ARCReclaimReturnedObject: 01534 case CK_ARCExtendBlockObject: 01535 case CK_ZeroToOCLEvent: 01536 assert(!getType()->isBooleanType() && "unheralded conversion to bool"); 01537 goto CheckNoBasePath; 01538 01539 case CK_Dependent: 01540 case CK_LValueToRValue: 01541 case CK_NoOp: 01542 case CK_AtomicToNonAtomic: 01543 case CK_NonAtomicToAtomic: 01544 case CK_PointerToBoolean: 01545 case CK_IntegralToBoolean: 01546 case CK_FloatingToBoolean: 01547 case CK_MemberPointerToBoolean: 01548 case CK_FloatingComplexToBoolean: 01549 case CK_IntegralComplexToBoolean: 01550 case CK_LValueBitCast: // -> bool& 01551 case CK_UserDefinedConversion: // operator bool() 01552 case CK_BuiltinFnToFnPtr: 01553 CheckNoBasePath: 01554 assert(path_empty() && "Cast kind should not have a base path!"); 01555 break; 01556 } 01557 return true; 01558 } 01559 01560 const char *CastExpr::getCastKindName() const { 01561 switch (getCastKind()) { 01562 case CK_Dependent: 01563 return "Dependent"; 01564 case CK_BitCast: 01565 return "BitCast"; 01566 case CK_LValueBitCast: 01567 return "LValueBitCast"; 01568 case CK_LValueToRValue: 01569 return "LValueToRValue"; 01570 case CK_NoOp: 01571 return "NoOp"; 01572 case CK_BaseToDerived: 01573 return "BaseToDerived"; 01574 case CK_DerivedToBase: 01575 return "DerivedToBase"; 01576 case CK_UncheckedDerivedToBase: 01577 return "UncheckedDerivedToBase"; 01578 case CK_Dynamic: 01579 return "Dynamic"; 01580 case CK_ToUnion: 01581 return "ToUnion"; 01582 case CK_ArrayToPointerDecay: 01583 return "ArrayToPointerDecay"; 01584 case CK_FunctionToPointerDecay: 01585 return "FunctionToPointerDecay"; 01586 case CK_NullToMemberPointer: 01587 return "NullToMemberPointer"; 01588 case CK_NullToPointer: 01589 return "NullToPointer"; 01590 case CK_BaseToDerivedMemberPointer: 01591 return "BaseToDerivedMemberPointer"; 01592 case CK_DerivedToBaseMemberPointer: 01593 return "DerivedToBaseMemberPointer"; 01594 case CK_ReinterpretMemberPointer: 01595 return "ReinterpretMemberPointer"; 01596 case CK_UserDefinedConversion: 01597 return "UserDefinedConversion"; 01598 case CK_ConstructorConversion: 01599 return "ConstructorConversion"; 01600 case CK_IntegralToPointer: 01601 return "IntegralToPointer"; 01602 case CK_PointerToIntegral: 01603 return "PointerToIntegral"; 01604 case CK_PointerToBoolean: 01605 return "PointerToBoolean"; 01606 case CK_ToVoid: 01607 return "ToVoid"; 01608 case CK_VectorSplat: 01609 return "VectorSplat"; 01610 case CK_IntegralCast: 01611 return "IntegralCast"; 01612 case CK_IntegralToBoolean: 01613 return "IntegralToBoolean"; 01614 case CK_IntegralToFloating: 01615 return "IntegralToFloating"; 01616 case CK_FloatingToIntegral: 01617 return "FloatingToIntegral"; 01618 case CK_FloatingCast: 01619 return "FloatingCast"; 01620 case CK_FloatingToBoolean: 01621 return "FloatingToBoolean"; 01622 case CK_MemberPointerToBoolean: 01623 return "MemberPointerToBoolean"; 01624 case CK_CPointerToObjCPointerCast: 01625 return "CPointerToObjCPointerCast"; 01626 case CK_BlockPointerToObjCPointerCast: 01627 return "BlockPointerToObjCPointerCast"; 01628 case CK_AnyPointerToBlockPointerCast: 01629 return "AnyPointerToBlockPointerCast"; 01630 case CK_ObjCObjectLValueCast: 01631 return "ObjCObjectLValueCast"; 01632 case CK_FloatingRealToComplex: 01633 return "FloatingRealToComplex"; 01634 case CK_FloatingComplexToReal: 01635 return "FloatingComplexToReal"; 01636 case CK_FloatingComplexToBoolean: 01637 return "FloatingComplexToBoolean"; 01638 case CK_FloatingComplexCast: 01639 return "FloatingComplexCast"; 01640 case CK_FloatingComplexToIntegralComplex: 01641 return "FloatingComplexToIntegralComplex"; 01642 case CK_IntegralRealToComplex: 01643 return "IntegralRealToComplex"; 01644 case CK_IntegralComplexToReal: 01645 return "IntegralComplexToReal"; 01646 case CK_IntegralComplexToBoolean: 01647 return "IntegralComplexToBoolean"; 01648 case CK_IntegralComplexCast: 01649 return "IntegralComplexCast"; 01650 case CK_IntegralComplexToFloatingComplex: 01651 return "IntegralComplexToFloatingComplex"; 01652 case CK_ARCConsumeObject: 01653 return "ARCConsumeObject"; 01654 case CK_ARCProduceObject: 01655 return "ARCProduceObject"; 01656 case CK_ARCReclaimReturnedObject: 01657 return "ARCReclaimReturnedObject"; 01658 case CK_ARCExtendBlockObject: 01659 return "ARCExtendBlockObject"; 01660 case CK_AtomicToNonAtomic: 01661 return "AtomicToNonAtomic"; 01662 case CK_NonAtomicToAtomic: 01663 return "NonAtomicToAtomic"; 01664 case CK_CopyAndAutoreleaseBlockObject: 01665 return "CopyAndAutoreleaseBlockObject"; 01666 case CK_BuiltinFnToFnPtr: 01667 return "BuiltinFnToFnPtr"; 01668 case CK_ZeroToOCLEvent: 01669 return "ZeroToOCLEvent"; 01670 case CK_AddressSpaceConversion: 01671 return "AddressSpaceConversion"; 01672 } 01673 01674 llvm_unreachable("Unhandled cast kind!"); 01675 } 01676 01677 Expr *CastExpr::getSubExprAsWritten() { 01678 Expr *SubExpr = nullptr; 01679 CastExpr *E = this; 01680 do { 01681 SubExpr = E->getSubExpr(); 01682 01683 // Skip through reference binding to temporary. 01684 if (MaterializeTemporaryExpr *Materialize 01685 = dyn_cast<MaterializeTemporaryExpr>(SubExpr)) 01686 SubExpr = Materialize->GetTemporaryExpr(); 01687 01688 // Skip any temporary bindings; they're implicit. 01689 if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr)) 01690 SubExpr = Binder->getSubExpr(); 01691 01692 // Conversions by constructor and conversion functions have a 01693 // subexpression describing the call; strip it off. 01694 if (E->getCastKind() == CK_ConstructorConversion) 01695 SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0); 01696 else if (E->getCastKind() == CK_UserDefinedConversion) 01697 SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument(); 01698 01699 // If the subexpression we're left with is an implicit cast, look 01700 // through that, too. 01701 } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr))); 01702 01703 return SubExpr; 01704 } 01705 01706 CXXBaseSpecifier **CastExpr::path_buffer() { 01707 switch (getStmtClass()) { 01708 #define ABSTRACT_STMT(x) 01709 #define CASTEXPR(Type, Base) \ 01710 case Stmt::Type##Class: \ 01711 return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1); 01712 #define STMT(Type, Base) 01713 #include "clang/AST/StmtNodes.inc" 01714 default: 01715 llvm_unreachable("non-cast expressions not possible here"); 01716 } 01717 } 01718 01719 void CastExpr::setCastPath(const CXXCastPath &Path) { 01720 assert(Path.size() == path_size()); 01721 memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*)); 01722 } 01723 01724 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T, 01725 CastKind Kind, Expr *Operand, 01726 const CXXCastPath *BasePath, 01727 ExprValueKind VK) { 01728 unsigned PathSize = (BasePath ? BasePath->size() : 0); 01729 void *Buffer = 01730 C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); 01731 ImplicitCastExpr *E = 01732 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK); 01733 if (PathSize) E->setCastPath(*BasePath); 01734 return E; 01735 } 01736 01737 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C, 01738 unsigned PathSize) { 01739 void *Buffer = 01740 C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); 01741 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize); 01742 } 01743 01744 01745 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T, 01746 ExprValueKind VK, CastKind K, Expr *Op, 01747 const CXXCastPath *BasePath, 01748 TypeSourceInfo *WrittenTy, 01749 SourceLocation L, SourceLocation R) { 01750 unsigned PathSize = (BasePath ? BasePath->size() : 0); 01751 void *Buffer = 01752 C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); 01753 CStyleCastExpr *E = 01754 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R); 01755 if (PathSize) E->setCastPath(*BasePath); 01756 return E; 01757 } 01758 01759 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C, 01760 unsigned PathSize) { 01761 void *Buffer = 01762 C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); 01763 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize); 01764 } 01765 01766 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 01767 /// corresponds to, e.g. "<<=". 01768 StringRef BinaryOperator::getOpcodeStr(Opcode Op) { 01769 switch (Op) { 01770 case BO_PtrMemD: return ".*"; 01771 case BO_PtrMemI: return "->*"; 01772 case BO_Mul: return "*"; 01773 case BO_Div: return "/"; 01774 case BO_Rem: return "%"; 01775 case BO_Add: return "+"; 01776 case BO_Sub: return "-"; 01777 case BO_Shl: return "<<"; 01778 case BO_Shr: return ">>"; 01779 case BO_LT: return "<"; 01780 case BO_GT: return ">"; 01781 case BO_LE: return "<="; 01782 case BO_GE: return ">="; 01783 case BO_EQ: return "=="; 01784 case BO_NE: return "!="; 01785 case BO_And: return "&"; 01786 case BO_Xor: return "^"; 01787 case BO_Or: return "|"; 01788 case BO_LAnd: return "&&"; 01789 case BO_LOr: return "||"; 01790 case BO_Assign: return "="; 01791 case BO_MulAssign: return "*="; 01792 case BO_DivAssign: return "/="; 01793 case BO_RemAssign: return "%="; 01794 case BO_AddAssign: return "+="; 01795 case BO_SubAssign: return "-="; 01796 case BO_ShlAssign: return "<<="; 01797 case BO_ShrAssign: return ">>="; 01798 case BO_AndAssign: return "&="; 01799 case BO_XorAssign: return "^="; 01800 case BO_OrAssign: return "|="; 01801 case BO_Comma: return ","; 01802 } 01803 01804 llvm_unreachable("Invalid OpCode!"); 01805 } 01806 01807 BinaryOperatorKind 01808 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { 01809 switch (OO) { 01810 default: llvm_unreachable("Not an overloadable binary operator"); 01811 case OO_Plus: return BO_Add; 01812 case OO_Minus: return BO_Sub; 01813 case OO_Star: return BO_Mul; 01814 case OO_Slash: return BO_Div; 01815 case OO_Percent: return BO_Rem; 01816 case OO_Caret: return BO_Xor; 01817 case OO_Amp: return BO_And; 01818 case OO_Pipe: return BO_Or; 01819 case OO_Equal: return BO_Assign; 01820 case OO_Less: return BO_LT; 01821 case OO_Greater: return BO_GT; 01822 case OO_PlusEqual: return BO_AddAssign; 01823 case OO_MinusEqual: return BO_SubAssign; 01824 case OO_StarEqual: return BO_MulAssign; 01825 case OO_SlashEqual: return BO_DivAssign; 01826 case OO_PercentEqual: return BO_RemAssign; 01827 case OO_CaretEqual: return BO_XorAssign; 01828 case OO_AmpEqual: return BO_AndAssign; 01829 case OO_PipeEqual: return BO_OrAssign; 01830 case OO_LessLess: return BO_Shl; 01831 case OO_GreaterGreater: return BO_Shr; 01832 case OO_LessLessEqual: return BO_ShlAssign; 01833 case OO_GreaterGreaterEqual: return BO_ShrAssign; 01834 case OO_EqualEqual: return BO_EQ; 01835 case OO_ExclaimEqual: return BO_NE; 01836 case OO_LessEqual: return BO_LE; 01837 case OO_GreaterEqual: return BO_GE; 01838 case OO_AmpAmp: return BO_LAnd; 01839 case OO_PipePipe: return BO_LOr; 01840 case OO_Comma: return BO_Comma; 01841 case OO_ArrowStar: return BO_PtrMemI; 01842 } 01843 } 01844 01845 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { 01846 static const OverloadedOperatorKind OverOps[] = { 01847 /* .* Cannot be overloaded */OO_None, OO_ArrowStar, 01848 OO_Star, OO_Slash, OO_Percent, 01849 OO_Plus, OO_Minus, 01850 OO_LessLess, OO_GreaterGreater, 01851 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, 01852 OO_EqualEqual, OO_ExclaimEqual, 01853 OO_Amp, 01854 OO_Caret, 01855 OO_Pipe, 01856 OO_AmpAmp, 01857 OO_PipePipe, 01858 OO_Equal, OO_StarEqual, 01859 OO_SlashEqual, OO_PercentEqual, 01860 OO_PlusEqual, OO_MinusEqual, 01861 OO_LessLessEqual, OO_GreaterGreaterEqual, 01862 OO_AmpEqual, OO_CaretEqual, 01863 OO_PipeEqual, 01864 OO_Comma 01865 }; 01866 return OverOps[Opc]; 01867 } 01868 01869 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc, 01870 ArrayRef<Expr*> initExprs, SourceLocation rbraceloc) 01871 : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false, 01872 false, false), 01873 InitExprs(C, initExprs.size()), 01874 LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true) 01875 { 01876 sawArrayRangeDesignator(false); 01877 for (unsigned I = 0; I != initExprs.size(); ++I) { 01878 if (initExprs[I]->isTypeDependent()) 01879 ExprBits.TypeDependent = true; 01880 if (initExprs[I]->isValueDependent()) 01881 ExprBits.ValueDependent = true; 01882 if (initExprs[I]->isInstantiationDependent()) 01883 ExprBits.InstantiationDependent = true; 01884 if (initExprs[I]->containsUnexpandedParameterPack()) 01885 ExprBits.ContainsUnexpandedParameterPack = true; 01886 } 01887 01888 InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end()); 01889 } 01890 01891 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) { 01892 if (NumInits > InitExprs.size()) 01893 InitExprs.reserve(C, NumInits); 01894 } 01895 01896 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) { 01897 InitExprs.resize(C, NumInits, nullptr); 01898 } 01899 01900 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) { 01901 if (Init >= InitExprs.size()) { 01902 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr); 01903 setInit(Init, expr); 01904 return nullptr; 01905 } 01906 01907 Expr *Result = cast_or_null<Expr>(InitExprs[Init]); 01908 setInit(Init, expr); 01909 return Result; 01910 } 01911 01912 void InitListExpr::setArrayFiller(Expr *filler) { 01913 assert(!hasArrayFiller() && "Filler already set!"); 01914 ArrayFillerOrUnionFieldInit = filler; 01915 // Fill out any "holes" in the array due to designated initializers. 01916 Expr **inits = getInits(); 01917 for (unsigned i = 0, e = getNumInits(); i != e; ++i) 01918 if (inits[i] == nullptr) 01919 inits[i] = filler; 01920 } 01921 01922 bool InitListExpr::isStringLiteralInit() const { 01923 if (getNumInits() != 1) 01924 return false; 01925 const ArrayType *AT = getType()->getAsArrayTypeUnsafe(); 01926 if (!AT || !AT->getElementType()->isIntegerType()) 01927 return false; 01928 // It is possible for getInit() to return null. 01929 const Expr *Init = getInit(0); 01930 if (!Init) 01931 return false; 01932 Init = Init->IgnoreParens(); 01933 return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init); 01934 } 01935 01936 SourceLocation InitListExpr::getLocStart() const { 01937 if (InitListExpr *SyntacticForm = getSyntacticForm()) 01938 return SyntacticForm->getLocStart(); 01939 SourceLocation Beg = LBraceLoc; 01940 if (Beg.isInvalid()) { 01941 // Find the first non-null initializer. 01942 for (InitExprsTy::const_iterator I = InitExprs.begin(), 01943 E = InitExprs.end(); 01944 I != E; ++I) { 01945 if (Stmt *S = *I) { 01946 Beg = S->getLocStart(); 01947 break; 01948 } 01949 } 01950 } 01951 return Beg; 01952 } 01953 01954 SourceLocation InitListExpr::getLocEnd() const { 01955 if (InitListExpr *SyntacticForm = getSyntacticForm()) 01956 return SyntacticForm->getLocEnd(); 01957 SourceLocation End = RBraceLoc; 01958 if (End.isInvalid()) { 01959 // Find the first non-null initializer from the end. 01960 for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(), 01961 E = InitExprs.rend(); 01962 I != E; ++I) { 01963 if (Stmt *S = *I) { 01964 End = S->getLocEnd(); 01965 break; 01966 } 01967 } 01968 } 01969 return End; 01970 } 01971 01972 /// getFunctionType - Return the underlying function type for this block. 01973 /// 01974 const FunctionProtoType *BlockExpr::getFunctionType() const { 01975 // The block pointer is never sugared, but the function type might be. 01976 return cast<BlockPointerType>(getType()) 01977 ->getPointeeType()->castAs<FunctionProtoType>(); 01978 } 01979 01980 SourceLocation BlockExpr::getCaretLocation() const { 01981 return TheBlock->getCaretLocation(); 01982 } 01983 const Stmt *BlockExpr::getBody() const { 01984 return TheBlock->getBody(); 01985 } 01986 Stmt *BlockExpr::getBody() { 01987 return TheBlock->getBody(); 01988 } 01989 01990 01991 //===----------------------------------------------------------------------===// 01992 // Generic Expression Routines 01993 //===----------------------------------------------------------------------===// 01994 01995 /// isUnusedResultAWarning - Return true if this immediate expression should 01996 /// be warned about if the result is unused. If so, fill in Loc and Ranges 01997 /// with location to warn on and the source range[s] to report with the 01998 /// warning. 01999 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc, 02000 SourceRange &R1, SourceRange &R2, 02001 ASTContext &Ctx) const { 02002 // Don't warn if the expr is type dependent. The type could end up 02003 // instantiating to void. 02004 if (isTypeDependent()) 02005 return false; 02006 02007 switch (getStmtClass()) { 02008 default: 02009 if (getType()->isVoidType()) 02010 return false; 02011 WarnE = this; 02012 Loc = getExprLoc(); 02013 R1 = getSourceRange(); 02014 return true; 02015 case ParenExprClass: 02016 return cast<ParenExpr>(this)->getSubExpr()-> 02017 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 02018 case GenericSelectionExprClass: 02019 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 02020 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 02021 case ChooseExprClass: 02022 return cast<ChooseExpr>(this)->getChosenSubExpr()-> 02023 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 02024 case UnaryOperatorClass: { 02025 const UnaryOperator *UO = cast<UnaryOperator>(this); 02026 02027 switch (UO->getOpcode()) { 02028 case UO_Plus: 02029 case UO_Minus: 02030 case UO_AddrOf: 02031 case UO_Not: 02032 case UO_LNot: 02033 case UO_Deref: 02034 break; 02035 case UO_PostInc: 02036 case UO_PostDec: 02037 case UO_PreInc: 02038 case UO_PreDec: // ++/-- 02039 return false; // Not a warning. 02040 case UO_Real: 02041 case UO_Imag: 02042 // accessing a piece of a volatile complex is a side-effect. 02043 if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) 02044 .isVolatileQualified()) 02045 return false; 02046 break; 02047 case UO_Extension: 02048 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 02049 } 02050 WarnE = this; 02051 Loc = UO->getOperatorLoc(); 02052 R1 = UO->getSubExpr()->getSourceRange(); 02053 return true; 02054 } 02055 case BinaryOperatorClass: { 02056 const BinaryOperator *BO = cast<BinaryOperator>(this); 02057 switch (BO->getOpcode()) { 02058 default: 02059 break; 02060 // Consider the RHS of comma for side effects. LHS was checked by 02061 // Sema::CheckCommaOperands. 02062 case BO_Comma: 02063 // ((foo = <blah>), 0) is an idiom for hiding the result (and 02064 // lvalue-ness) of an assignment written in a macro. 02065 if (IntegerLiteral *IE = 02066 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens())) 02067 if (IE->getValue() == 0) 02068 return false; 02069 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 02070 // Consider '||', '&&' to have side effects if the LHS or RHS does. 02071 case BO_LAnd: 02072 case BO_LOr: 02073 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) || 02074 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) 02075 return false; 02076 break; 02077 } 02078 if (BO->isAssignmentOp()) 02079 return false; 02080 WarnE = this; 02081 Loc = BO->getOperatorLoc(); 02082 R1 = BO->getLHS()->getSourceRange(); 02083 R2 = BO->getRHS()->getSourceRange(); 02084 return true; 02085 } 02086 case CompoundAssignOperatorClass: 02087 case VAArgExprClass: 02088 case AtomicExprClass: 02089 return false; 02090 02091 case ConditionalOperatorClass: { 02092 // If only one of the LHS or RHS is a warning, the operator might 02093 // be being used for control flow. Only warn if both the LHS and 02094 // RHS are warnings. 02095 const ConditionalOperator *Exp = cast<ConditionalOperator>(this); 02096 if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) 02097 return false; 02098 if (!Exp->getLHS()) 02099 return true; 02100 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 02101 } 02102 02103 case MemberExprClass: 02104 WarnE = this; 02105 Loc = cast<MemberExpr>(this)->getMemberLoc(); 02106 R1 = SourceRange(Loc, Loc); 02107 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); 02108 return true; 02109 02110 case ArraySubscriptExprClass: 02111 WarnE = this; 02112 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); 02113 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); 02114 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); 02115 return true; 02116 02117 case CXXOperatorCallExprClass: { 02118 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator 02119 // overloads as there is no reasonable way to define these such that they 02120 // have non-trivial, desirable side-effects. See the -Wunused-comparison 02121 // warning: operators == and != are commonly typo'ed, and so warning on them 02122 // provides additional value as well. If this list is updated, 02123 // DiagnoseUnusedComparison should be as well. 02124 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this); 02125 switch (Op->getOperator()) { 02126 default: 02127 break; 02128 case OO_EqualEqual: 02129 case OO_ExclaimEqual: 02130 case OO_Less: 02131 case OO_Greater: 02132 case OO_GreaterEqual: 02133 case OO_LessEqual: 02134 if (Op->getCallReturnType()->isReferenceType() || 02135 Op->getCallReturnType()->isVoidType()) 02136 break; 02137 WarnE = this; 02138 Loc = Op->getOperatorLoc(); 02139 R1 = Op->getSourceRange(); 02140 return true; 02141 } 02142 02143 // Fallthrough for generic call handling. 02144 } 02145 case CallExprClass: 02146 case CXXMemberCallExprClass: 02147 case UserDefinedLiteralClass: { 02148 // If this is a direct call, get the callee. 02149 const CallExpr *CE = cast<CallExpr>(this); 02150 if (const Decl *FD = CE->getCalleeDecl()) { 02151 // If the callee has attribute pure, const, or warn_unused_result, warn 02152 // about it. void foo() { strlen("bar"); } should warn. 02153 // 02154 // Note: If new cases are added here, DiagnoseUnusedExprResult should be 02155 // updated to match for QoI. 02156 if (FD->hasAttr<WarnUnusedResultAttr>() || 02157 FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) { 02158 WarnE = this; 02159 Loc = CE->getCallee()->getLocStart(); 02160 R1 = CE->getCallee()->getSourceRange(); 02161 02162 if (unsigned NumArgs = CE->getNumArgs()) 02163 R2 = SourceRange(CE->getArg(0)->getLocStart(), 02164 CE->getArg(NumArgs-1)->getLocEnd()); 02165 return true; 02166 } 02167 } 02168 return false; 02169 } 02170 02171 // If we don't know precisely what we're looking at, let's not warn. 02172 case UnresolvedLookupExprClass: 02173 case CXXUnresolvedConstructExprClass: 02174 return false; 02175 02176 case CXXTemporaryObjectExprClass: 02177 case CXXConstructExprClass: { 02178 if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) { 02179 if (Type->hasAttr<WarnUnusedAttr>()) { 02180 WarnE = this; 02181 Loc = getLocStart(); 02182 R1 = getSourceRange(); 02183 return true; 02184 } 02185 } 02186 return false; 02187 } 02188 02189 case ObjCMessageExprClass: { 02190 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this); 02191 if (Ctx.getLangOpts().ObjCAutoRefCount && 02192 ME->isInstanceMessage() && 02193 !ME->getType()->isVoidType() && 02194 ME->getMethodFamily() == OMF_init) { 02195 WarnE = this; 02196 Loc = getExprLoc(); 02197 R1 = ME->getSourceRange(); 02198 return true; 02199 } 02200 02201 if (const ObjCMethodDecl *MD = ME->getMethodDecl()) 02202 if (MD->hasAttr<WarnUnusedResultAttr>() || 02203 (MD->isPropertyAccessor() && !MD->getReturnType()->isVoidType() && 02204 !ME->getReceiverType()->isObjCIdType())) { 02205 WarnE = this; 02206 Loc = getExprLoc(); 02207 return true; 02208 } 02209 02210 return false; 02211 } 02212 02213 case ObjCPropertyRefExprClass: 02214 WarnE = this; 02215 Loc = getExprLoc(); 02216 R1 = getSourceRange(); 02217 return true; 02218 02219 case PseudoObjectExprClass: { 02220 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); 02221 02222 // Only complain about things that have the form of a getter. 02223 if (isa<UnaryOperator>(PO->getSyntacticForm()) || 02224 isa<BinaryOperator>(PO->getSyntacticForm())) 02225 return false; 02226 02227 WarnE = this; 02228 Loc = getExprLoc(); 02229 R1 = getSourceRange(); 02230 return true; 02231 } 02232 02233 case StmtExprClass: { 02234 // Statement exprs don't logically have side effects themselves, but are 02235 // sometimes used in macros in ways that give them a type that is unused. 02236 // For example ({ blah; foo(); }) will end up with a type if foo has a type. 02237 // however, if the result of the stmt expr is dead, we don't want to emit a 02238 // warning. 02239 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); 02240 if (!CS->body_empty()) { 02241 if (const Expr *E = dyn_cast<Expr>(CS->body_back())) 02242 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 02243 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back())) 02244 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt())) 02245 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 02246 } 02247 02248 if (getType()->isVoidType()) 02249 return false; 02250 WarnE = this; 02251 Loc = cast<StmtExpr>(this)->getLParenLoc(); 02252 R1 = getSourceRange(); 02253 return true; 02254 } 02255 case CXXFunctionalCastExprClass: 02256 case CStyleCastExprClass: { 02257 // Ignore an explicit cast to void unless the operand is a non-trivial 02258 // volatile lvalue. 02259 const CastExpr *CE = cast<CastExpr>(this); 02260 if (CE->getCastKind() == CK_ToVoid) { 02261 if (CE->getSubExpr()->isGLValue() && 02262 CE->getSubExpr()->getType().isVolatileQualified()) { 02263 const DeclRefExpr *DRE = 02264 dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens()); 02265 if (!(DRE && isa<VarDecl>(DRE->getDecl()) && 02266 cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) { 02267 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, 02268 R1, R2, Ctx); 02269 } 02270 } 02271 return false; 02272 } 02273 02274 // If this is a cast to a constructor conversion, check the operand. 02275 // Otherwise, the result of the cast is unused. 02276 if (CE->getCastKind() == CK_ConstructorConversion) 02277 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 02278 02279 WarnE = this; 02280 if (const CXXFunctionalCastExpr *CXXCE = 02281 dyn_cast<CXXFunctionalCastExpr>(this)) { 02282 Loc = CXXCE->getLocStart(); 02283 R1 = CXXCE->getSubExpr()->getSourceRange(); 02284 } else { 02285 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this); 02286 Loc = CStyleCE->getLParenLoc(); 02287 R1 = CStyleCE->getSubExpr()->getSourceRange(); 02288 } 02289 return true; 02290 } 02291 case ImplicitCastExprClass: { 02292 const CastExpr *ICE = cast<ImplicitCastExpr>(this); 02293 02294 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect. 02295 if (ICE->getCastKind() == CK_LValueToRValue && 02296 ICE->getSubExpr()->getType().isVolatileQualified()) 02297 return false; 02298 02299 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 02300 } 02301 case CXXDefaultArgExprClass: 02302 return (cast<CXXDefaultArgExpr>(this) 02303 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 02304 case CXXDefaultInitExprClass: 02305 return (cast<CXXDefaultInitExpr>(this) 02306 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 02307 02308 case CXXNewExprClass: 02309 // FIXME: In theory, there might be new expressions that don't have side 02310 // effects (e.g. a placement new with an uninitialized POD). 02311 case CXXDeleteExprClass: 02312 return false; 02313 case CXXBindTemporaryExprClass: 02314 return (cast<CXXBindTemporaryExpr>(this) 02315 ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 02316 case ExprWithCleanupsClass: 02317 return (cast<ExprWithCleanups>(this) 02318 ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 02319 } 02320 } 02321 02322 /// isOBJCGCCandidate - Check if an expression is objc gc'able. 02323 /// returns true, if it is; false otherwise. 02324 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { 02325 const Expr *E = IgnoreParens(); 02326 switch (E->getStmtClass()) { 02327 default: 02328 return false; 02329 case ObjCIvarRefExprClass: 02330 return true; 02331 case Expr::UnaryOperatorClass: 02332 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 02333 case ImplicitCastExprClass: 02334 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 02335 case MaterializeTemporaryExprClass: 02336 return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr() 02337 ->isOBJCGCCandidate(Ctx); 02338 case CStyleCastExprClass: 02339 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 02340 case DeclRefExprClass: { 02341 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 02342 02343 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 02344 if (VD->hasGlobalStorage()) 02345 return true; 02346 QualType T = VD->getType(); 02347 // dereferencing to a pointer is always a gc'able candidate, 02348 // unless it is __weak. 02349 return T->isPointerType() && 02350 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); 02351 } 02352 return false; 02353 } 02354 case MemberExprClass: { 02355 const MemberExpr *M = cast<MemberExpr>(E); 02356 return M->getBase()->isOBJCGCCandidate(Ctx); 02357 } 02358 case ArraySubscriptExprClass: 02359 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx); 02360 } 02361 } 02362 02363 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const { 02364 if (isTypeDependent()) 02365 return false; 02366 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction; 02367 } 02368 02369 QualType Expr::findBoundMemberType(const Expr *expr) { 02370 assert(expr->hasPlaceholderType(BuiltinType::BoundMember)); 02371 02372 // Bound member expressions are always one of these possibilities: 02373 // x->m x.m x->*y x.*y 02374 // (possibly parenthesized) 02375 02376 expr = expr->IgnoreParens(); 02377 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) { 02378 assert(isa<CXXMethodDecl>(mem->getMemberDecl())); 02379 return mem->getMemberDecl()->getType(); 02380 } 02381 02382 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) { 02383 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>() 02384 ->getPointeeType(); 02385 assert(type->isFunctionType()); 02386 return type; 02387 } 02388 02389 assert(isa<UnresolvedMemberExpr>(expr)); 02390 return QualType(); 02391 } 02392 02393 Expr* Expr::IgnoreParens() { 02394 Expr* E = this; 02395 while (true) { 02396 if (ParenExpr* P = dyn_cast<ParenExpr>(E)) { 02397 E = P->getSubExpr(); 02398 continue; 02399 } 02400 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { 02401 if (P->getOpcode() == UO_Extension) { 02402 E = P->getSubExpr(); 02403 continue; 02404 } 02405 } 02406 if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { 02407 if (!P->isResultDependent()) { 02408 E = P->getResultExpr(); 02409 continue; 02410 } 02411 } 02412 if (ChooseExpr* P = dyn_cast<ChooseExpr>(E)) { 02413 if (!P->isConditionDependent()) { 02414 E = P->getChosenSubExpr(); 02415 continue; 02416 } 02417 } 02418 return E; 02419 } 02420 } 02421 02422 /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr 02423 /// or CastExprs or ImplicitCastExprs, returning their operand. 02424 Expr *Expr::IgnoreParenCasts() { 02425 Expr *E = this; 02426 while (true) { 02427 E = E->IgnoreParens(); 02428 if (CastExpr *P = dyn_cast<CastExpr>(E)) { 02429 E = P->getSubExpr(); 02430 continue; 02431 } 02432 if (MaterializeTemporaryExpr *Materialize 02433 = dyn_cast<MaterializeTemporaryExpr>(E)) { 02434 E = Materialize->GetTemporaryExpr(); 02435 continue; 02436 } 02437 if (SubstNonTypeTemplateParmExpr *NTTP 02438 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 02439 E = NTTP->getReplacement(); 02440 continue; 02441 } 02442 return E; 02443 } 02444 } 02445 02446 Expr *Expr::IgnoreCasts() { 02447 Expr *E = this; 02448 while (true) { 02449 if (CastExpr *P = dyn_cast<CastExpr>(E)) { 02450 E = P->getSubExpr(); 02451 continue; 02452 } 02453 if (MaterializeTemporaryExpr *Materialize 02454 = dyn_cast<MaterializeTemporaryExpr>(E)) { 02455 E = Materialize->GetTemporaryExpr(); 02456 continue; 02457 } 02458 if (SubstNonTypeTemplateParmExpr *NTTP 02459 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 02460 E = NTTP->getReplacement(); 02461 continue; 02462 } 02463 return E; 02464 } 02465 } 02466 02467 /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue 02468 /// casts. This is intended purely as a temporary workaround for code 02469 /// that hasn't yet been rewritten to do the right thing about those 02470 /// casts, and may disappear along with the last internal use. 02471 Expr *Expr::IgnoreParenLValueCasts() { 02472 Expr *E = this; 02473 while (true) { 02474 E = E->IgnoreParens(); 02475 if (CastExpr *P = dyn_cast<CastExpr>(E)) { 02476 if (P->getCastKind() == CK_LValueToRValue) { 02477 E = P->getSubExpr(); 02478 continue; 02479 } 02480 } else if (MaterializeTemporaryExpr *Materialize 02481 = dyn_cast<MaterializeTemporaryExpr>(E)) { 02482 E = Materialize->GetTemporaryExpr(); 02483 continue; 02484 } else if (SubstNonTypeTemplateParmExpr *NTTP 02485 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 02486 E = NTTP->getReplacement(); 02487 continue; 02488 } 02489 break; 02490 } 02491 return E; 02492 } 02493 02494 Expr *Expr::ignoreParenBaseCasts() { 02495 Expr *E = this; 02496 while (true) { 02497 E = E->IgnoreParens(); 02498 if (CastExpr *CE = dyn_cast<CastExpr>(E)) { 02499 if (CE->getCastKind() == CK_DerivedToBase || 02500 CE->getCastKind() == CK_UncheckedDerivedToBase || 02501 CE->getCastKind() == CK_NoOp) { 02502 E = CE->getSubExpr(); 02503 continue; 02504 } 02505 } 02506 02507 return E; 02508 } 02509 } 02510 02511 Expr *Expr::IgnoreParenImpCasts() { 02512 Expr *E = this; 02513 while (true) { 02514 E = E->IgnoreParens(); 02515 if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) { 02516 E = P->getSubExpr(); 02517 continue; 02518 } 02519 if (MaterializeTemporaryExpr *Materialize 02520 = dyn_cast<MaterializeTemporaryExpr>(E)) { 02521 E = Materialize->GetTemporaryExpr(); 02522 continue; 02523 } 02524 if (SubstNonTypeTemplateParmExpr *NTTP 02525 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 02526 E = NTTP->getReplacement(); 02527 continue; 02528 } 02529 return E; 02530 } 02531 } 02532 02533 Expr *Expr::IgnoreConversionOperator() { 02534 if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) { 02535 if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl())) 02536 return MCE->getImplicitObjectArgument(); 02537 } 02538 return this; 02539 } 02540 02541 /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the 02542 /// value (including ptr->int casts of the same size). Strip off any 02543 /// ParenExpr or CastExprs, returning their operand. 02544 Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) { 02545 Expr *E = this; 02546 while (true) { 02547 E = E->IgnoreParens(); 02548 02549 if (CastExpr *P = dyn_cast<CastExpr>(E)) { 02550 // We ignore integer <-> casts that are of the same width, ptr<->ptr and 02551 // ptr<->int casts of the same width. We also ignore all identity casts. 02552 Expr *SE = P->getSubExpr(); 02553 02554 if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) { 02555 E = SE; 02556 continue; 02557 } 02558 02559 if ((E->getType()->isPointerType() || 02560 E->getType()->isIntegralType(Ctx)) && 02561 (SE->getType()->isPointerType() || 02562 SE->getType()->isIntegralType(Ctx)) && 02563 Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) { 02564 E = SE; 02565 continue; 02566 } 02567 } 02568 02569 if (SubstNonTypeTemplateParmExpr *NTTP 02570 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 02571 E = NTTP->getReplacement(); 02572 continue; 02573 } 02574 02575 return E; 02576 } 02577 } 02578 02579 bool Expr::isDefaultArgument() const { 02580 const Expr *E = this; 02581 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 02582 E = M->GetTemporaryExpr(); 02583 02584 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 02585 E = ICE->getSubExprAsWritten(); 02586 02587 return isa<CXXDefaultArgExpr>(E); 02588 } 02589 02590 /// \brief Skip over any no-op casts and any temporary-binding 02591 /// expressions. 02592 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) { 02593 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 02594 E = M->GetTemporaryExpr(); 02595 02596 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 02597 if (ICE->getCastKind() == CK_NoOp) 02598 E = ICE->getSubExpr(); 02599 else 02600 break; 02601 } 02602 02603 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) 02604 E = BE->getSubExpr(); 02605 02606 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 02607 if (ICE->getCastKind() == CK_NoOp) 02608 E = ICE->getSubExpr(); 02609 else 02610 break; 02611 } 02612 02613 return E->IgnoreParens(); 02614 } 02615 02616 /// isTemporaryObject - Determines if this expression produces a 02617 /// temporary of the given class type. 02618 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const { 02619 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy))) 02620 return false; 02621 02622 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this); 02623 02624 // Temporaries are by definition pr-values of class type. 02625 if (!E->Classify(C).isPRValue()) { 02626 // In this context, property reference is a message call and is pr-value. 02627 if (!isa<ObjCPropertyRefExpr>(E)) 02628 return false; 02629 } 02630 02631 // Black-list a few cases which yield pr-values of class type that don't 02632 // refer to temporaries of that type: 02633 02634 // - implicit derived-to-base conversions 02635 if (isa<ImplicitCastExpr>(E)) { 02636 switch (cast<ImplicitCastExpr>(E)->getCastKind()) { 02637 case CK_DerivedToBase: 02638 case CK_UncheckedDerivedToBase: 02639 return false; 02640 default: 02641 break; 02642 } 02643 } 02644 02645 // - member expressions (all) 02646 if (isa<MemberExpr>(E)) 02647 return false; 02648 02649 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) 02650 if (BO->isPtrMemOp()) 02651 return false; 02652 02653 // - opaque values (all) 02654 if (isa<OpaqueValueExpr>(E)) 02655 return false; 02656 02657 return true; 02658 } 02659 02660 bool Expr::isImplicitCXXThis() const { 02661 const Expr *E = this; 02662 02663 // Strip away parentheses and casts we don't care about. 02664 while (true) { 02665 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) { 02666 E = Paren->getSubExpr(); 02667 continue; 02668 } 02669 02670 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 02671 if (ICE->getCastKind() == CK_NoOp || 02672 ICE->getCastKind() == CK_LValueToRValue || 02673 ICE->getCastKind() == CK_DerivedToBase || 02674 ICE->getCastKind() == CK_UncheckedDerivedToBase) { 02675 E = ICE->getSubExpr(); 02676 continue; 02677 } 02678 } 02679 02680 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) { 02681 if (UnOp->getOpcode() == UO_Extension) { 02682 E = UnOp->getSubExpr(); 02683 continue; 02684 } 02685 } 02686 02687 if (const MaterializeTemporaryExpr *M 02688 = dyn_cast<MaterializeTemporaryExpr>(E)) { 02689 E = M->GetTemporaryExpr(); 02690 continue; 02691 } 02692 02693 break; 02694 } 02695 02696 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E)) 02697 return This->isImplicit(); 02698 02699 return false; 02700 } 02701 02702 /// hasAnyTypeDependentArguments - Determines if any of the expressions 02703 /// in Exprs is type-dependent. 02704 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) { 02705 for (unsigned I = 0; I < Exprs.size(); ++I) 02706 if (Exprs[I]->isTypeDependent()) 02707 return true; 02708 02709 return false; 02710 } 02711 02712 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef, 02713 const Expr **Culprit) const { 02714 // This function is attempting whether an expression is an initializer 02715 // which can be evaluated at compile-time. It very closely parallels 02716 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it 02717 // will lead to unexpected results. Like ConstExprEmitter, it falls back 02718 // to isEvaluatable most of the time. 02719 // 02720 // If we ever capture reference-binding directly in the AST, we can 02721 // kill the second parameter. 02722 02723 if (IsForRef) { 02724 EvalResult Result; 02725 if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects) 02726 return true; 02727 if (Culprit) 02728 *Culprit = this; 02729 return false; 02730 } 02731 02732 switch (getStmtClass()) { 02733 default: break; 02734 case StringLiteralClass: 02735 case ObjCEncodeExprClass: 02736 return true; 02737 case CXXTemporaryObjectExprClass: 02738 case CXXConstructExprClass: { 02739 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 02740 02741 if (CE->getConstructor()->isTrivial() && 02742 CE->getConstructor()->getParent()->hasTrivialDestructor()) { 02743 // Trivial default constructor 02744 if (!CE->getNumArgs()) return true; 02745 02746 // Trivial copy constructor 02747 assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 02748 return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit); 02749 } 02750 02751 break; 02752 } 02753 case CompoundLiteralExprClass: { 02754 // This handles gcc's extension that allows global initializers like 02755 // "struct x {int x;} x = (struct x) {};". 02756 // FIXME: This accepts other cases it shouldn't! 02757 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); 02758 return Exp->isConstantInitializer(Ctx, false, Culprit); 02759 } 02760 case InitListExprClass: { 02761 const InitListExpr *ILE = cast<InitListExpr>(this); 02762 if (ILE->getType()->isArrayType()) { 02763 unsigned numInits = ILE->getNumInits(); 02764 for (unsigned i = 0; i < numInits; i++) { 02765 if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit)) 02766 return false; 02767 } 02768 return true; 02769 } 02770 02771 if (ILE->getType()->isRecordType()) { 02772 unsigned ElementNo = 0; 02773 RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl(); 02774 for (const auto *Field : RD->fields()) { 02775 // If this is a union, skip all the fields that aren't being initialized. 02776 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field) 02777 continue; 02778 02779 // Don't emit anonymous bitfields, they just affect layout. 02780 if (Field->isUnnamedBitfield()) 02781 continue; 02782 02783 if (ElementNo < ILE->getNumInits()) { 02784 const Expr *Elt = ILE->getInit(ElementNo++); 02785 if (Field->isBitField()) { 02786 // Bitfields have to evaluate to an integer. 02787 llvm::APSInt ResultTmp; 02788 if (!Elt->EvaluateAsInt(ResultTmp, Ctx)) { 02789 if (Culprit) 02790 *Culprit = Elt; 02791 return false; 02792 } 02793 } else { 02794 bool RefType = Field->getType()->isReferenceType(); 02795 if (!Elt->isConstantInitializer(Ctx, RefType, Culprit)) 02796 return false; 02797 } 02798 } 02799 } 02800 return true; 02801 } 02802 02803 break; 02804 } 02805 case ImplicitValueInitExprClass: 02806 return true; 02807 case ParenExprClass: 02808 return cast<ParenExpr>(this)->getSubExpr() 02809 ->isConstantInitializer(Ctx, IsForRef, Culprit); 02810 case GenericSelectionExprClass: 02811 return cast<GenericSelectionExpr>(this)->getResultExpr() 02812 ->isConstantInitializer(Ctx, IsForRef, Culprit); 02813 case ChooseExprClass: 02814 if (cast<ChooseExpr>(this)->isConditionDependent()) { 02815 if (Culprit) 02816 *Culprit = this; 02817 return false; 02818 } 02819 return cast<ChooseExpr>(this)->getChosenSubExpr() 02820 ->isConstantInitializer(Ctx, IsForRef, Culprit); 02821 case UnaryOperatorClass: { 02822 const UnaryOperator* Exp = cast<UnaryOperator>(this); 02823 if (Exp->getOpcode() == UO_Extension) 02824 return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 02825 break; 02826 } 02827 case CXXFunctionalCastExprClass: 02828 case CXXStaticCastExprClass: 02829 case ImplicitCastExprClass: 02830 case CStyleCastExprClass: 02831 case ObjCBridgedCastExprClass: 02832 case CXXDynamicCastExprClass: 02833 case CXXReinterpretCastExprClass: 02834 case CXXConstCastExprClass: { 02835 const CastExpr *CE = cast<CastExpr>(this); 02836 02837 // Handle misc casts we want to ignore. 02838 if (CE->getCastKind() == CK_NoOp || 02839 CE->getCastKind() == CK_LValueToRValue || 02840 CE->getCastKind() == CK_ToUnion || 02841 CE->getCastKind() == CK_ConstructorConversion || 02842 CE->getCastKind() == CK_NonAtomicToAtomic || 02843 CE->getCastKind() == CK_AtomicToNonAtomic) 02844 return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 02845 02846 break; 02847 } 02848 case MaterializeTemporaryExprClass: 02849 return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr() 02850 ->isConstantInitializer(Ctx, false, Culprit); 02851 02852 case SubstNonTypeTemplateParmExprClass: 02853 return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement() 02854 ->isConstantInitializer(Ctx, false, Culprit); 02855 case CXXDefaultArgExprClass: 02856 return cast<CXXDefaultArgExpr>(this)->getExpr() 02857 ->isConstantInitializer(Ctx, false, Culprit); 02858 case CXXDefaultInitExprClass: 02859 return cast<CXXDefaultInitExpr>(this)->getExpr() 02860 ->isConstantInitializer(Ctx, false, Culprit); 02861 } 02862 if (isEvaluatable(Ctx)) 02863 return true; 02864 if (Culprit) 02865 *Culprit = this; 02866 return false; 02867 } 02868 02869 bool Expr::HasSideEffects(const ASTContext &Ctx) const { 02870 if (isInstantiationDependent()) 02871 return true; 02872 02873 switch (getStmtClass()) { 02874 case NoStmtClass: 02875 #define ABSTRACT_STMT(Type) 02876 #define STMT(Type, Base) case Type##Class: 02877 #define EXPR(Type, Base) 02878 #include "clang/AST/StmtNodes.inc" 02879 llvm_unreachable("unexpected Expr kind"); 02880 02881 case DependentScopeDeclRefExprClass: 02882 case CXXUnresolvedConstructExprClass: 02883 case CXXDependentScopeMemberExprClass: 02884 case UnresolvedLookupExprClass: 02885 case UnresolvedMemberExprClass: 02886 case PackExpansionExprClass: 02887 case SubstNonTypeTemplateParmPackExprClass: 02888 case FunctionParmPackExprClass: 02889 case TypoExprClass: 02890 case CXXFoldExprClass: 02891 llvm_unreachable("shouldn't see dependent / unresolved nodes here"); 02892 02893 case DeclRefExprClass: 02894 case ObjCIvarRefExprClass: 02895 case PredefinedExprClass: 02896 case IntegerLiteralClass: 02897 case FloatingLiteralClass: 02898 case ImaginaryLiteralClass: 02899 case StringLiteralClass: 02900 case CharacterLiteralClass: 02901 case OffsetOfExprClass: 02902 case ImplicitValueInitExprClass: 02903 case UnaryExprOrTypeTraitExprClass: 02904 case AddrLabelExprClass: 02905 case GNUNullExprClass: 02906 case CXXBoolLiteralExprClass: 02907 case CXXNullPtrLiteralExprClass: 02908 case CXXThisExprClass: 02909 case CXXScalarValueInitExprClass: 02910 case TypeTraitExprClass: 02911 case ArrayTypeTraitExprClass: 02912 case ExpressionTraitExprClass: 02913 case CXXNoexceptExprClass: 02914 case SizeOfPackExprClass: 02915 case ObjCStringLiteralClass: 02916 case ObjCEncodeExprClass: 02917 case ObjCBoolLiteralExprClass: 02918 case CXXUuidofExprClass: 02919 case OpaqueValueExprClass: 02920 // These never have a side-effect. 02921 return false; 02922 02923 case CallExprClass: 02924 case MSPropertyRefExprClass: 02925 case CompoundAssignOperatorClass: 02926 case VAArgExprClass: 02927 case AtomicExprClass: 02928 case StmtExprClass: 02929 case CXXOperatorCallExprClass: 02930 case CXXMemberCallExprClass: 02931 case UserDefinedLiteralClass: 02932 case CXXThrowExprClass: 02933 case CXXNewExprClass: 02934 case CXXDeleteExprClass: 02935 case ExprWithCleanupsClass: 02936 case CXXBindTemporaryExprClass: 02937 case BlockExprClass: 02938 case CUDAKernelCallExprClass: 02939 // These always have a side-effect. 02940 return true; 02941 02942 case ParenExprClass: 02943 case ArraySubscriptExprClass: 02944 case MemberExprClass: 02945 case ConditionalOperatorClass: 02946 case BinaryConditionalOperatorClass: 02947 case CompoundLiteralExprClass: 02948 case ExtVectorElementExprClass: 02949 case DesignatedInitExprClass: 02950 case ParenListExprClass: 02951 case CXXPseudoDestructorExprClass: 02952 case CXXStdInitializerListExprClass: 02953 case SubstNonTypeTemplateParmExprClass: 02954 case MaterializeTemporaryExprClass: 02955 case ShuffleVectorExprClass: 02956 case ConvertVectorExprClass: 02957 case AsTypeExprClass: 02958 // These have a side-effect if any subexpression does. 02959 break; 02960 02961 case UnaryOperatorClass: 02962 if (cast<UnaryOperator>(this)->isIncrementDecrementOp()) 02963 return true; 02964 break; 02965 02966 case BinaryOperatorClass: 02967 if (cast<BinaryOperator>(this)->isAssignmentOp()) 02968 return true; 02969 break; 02970 02971 case InitListExprClass: 02972 // FIXME: The children for an InitListExpr doesn't include the array filler. 02973 if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller()) 02974 if (E->HasSideEffects(Ctx)) 02975 return true; 02976 break; 02977 02978 case GenericSelectionExprClass: 02979 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 02980 HasSideEffects(Ctx); 02981 02982 case ChooseExprClass: 02983 return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(Ctx); 02984 02985 case CXXDefaultArgExprClass: 02986 return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(Ctx); 02987 02988 case CXXDefaultInitExprClass: { 02989 const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField(); 02990 if (const Expr *E = FD->getInClassInitializer()) 02991 return E->HasSideEffects(Ctx); 02992 // If we've not yet parsed the initializer, assume it has side-effects. 02993 return true; 02994 } 02995 02996 case CXXDynamicCastExprClass: { 02997 // A dynamic_cast expression has side-effects if it can throw. 02998 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this); 02999 if (DCE->getTypeAsWritten()->isReferenceType() && 03000 DCE->getCastKind() == CK_Dynamic) 03001 return true; 03002 } // Fall through. 03003 case ImplicitCastExprClass: 03004 case CStyleCastExprClass: 03005 case CXXStaticCastExprClass: 03006 case CXXReinterpretCastExprClass: 03007 case CXXConstCastExprClass: 03008 case CXXFunctionalCastExprClass: { 03009 const CastExpr *CE = cast<CastExpr>(this); 03010 if (CE->getCastKind() == CK_LValueToRValue && 03011 CE->getSubExpr()->getType().isVolatileQualified()) 03012 return true; 03013 break; 03014 } 03015 03016 case CXXTypeidExprClass: 03017 // typeid might throw if its subexpression is potentially-evaluated, so has 03018 // side-effects in that case whether or not its subexpression does. 03019 return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated(); 03020 03021 case CXXConstructExprClass: 03022 case CXXTemporaryObjectExprClass: { 03023 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 03024 if (!CE->getConstructor()->isTrivial()) 03025 return true; 03026 // A trivial constructor does not add any side-effects of its own. Just look 03027 // at its arguments. 03028 break; 03029 } 03030 03031 case LambdaExprClass: { 03032 const LambdaExpr *LE = cast<LambdaExpr>(this); 03033 for (LambdaExpr::capture_iterator I = LE->capture_begin(), 03034 E = LE->capture_end(); I != E; ++I) 03035 if (I->getCaptureKind() == LCK_ByCopy) 03036 // FIXME: Only has a side-effect if the variable is volatile or if 03037 // the copy would invoke a non-trivial copy constructor. 03038 return true; 03039 return false; 03040 } 03041 03042 case PseudoObjectExprClass: { 03043 // Only look for side-effects in the semantic form, and look past 03044 // OpaqueValueExpr bindings in that form. 03045 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); 03046 for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(), 03047 E = PO->semantics_end(); 03048 I != E; ++I) { 03049 const Expr *Subexpr = *I; 03050 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr)) 03051 Subexpr = OVE->getSourceExpr(); 03052 if (Subexpr->HasSideEffects(Ctx)) 03053 return true; 03054 } 03055 return false; 03056 } 03057 03058 case ObjCBoxedExprClass: 03059 case ObjCArrayLiteralClass: 03060 case ObjCDictionaryLiteralClass: 03061 case ObjCMessageExprClass: 03062 case ObjCSelectorExprClass: 03063 case ObjCProtocolExprClass: 03064 case ObjCPropertyRefExprClass: 03065 case ObjCIsaExprClass: 03066 case ObjCIndirectCopyRestoreExprClass: 03067 case ObjCSubscriptRefExprClass: 03068 case ObjCBridgedCastExprClass: 03069 // FIXME: Classify these cases better. 03070 return true; 03071 } 03072 03073 // Recurse to children. 03074 for (const_child_range SubStmts = children(); SubStmts; ++SubStmts) 03075 if (const Stmt *S = *SubStmts) 03076 if (cast<Expr>(S)->HasSideEffects(Ctx)) 03077 return true; 03078 03079 return false; 03080 } 03081 03082 namespace { 03083 /// \brief Look for a call to a non-trivial function within an expression. 03084 class NonTrivialCallFinder : public EvaluatedExprVisitor<NonTrivialCallFinder> 03085 { 03086 typedef EvaluatedExprVisitor<NonTrivialCallFinder> Inherited; 03087 03088 bool NonTrivial; 03089 03090 public: 03091 explicit NonTrivialCallFinder(ASTContext &Context) 03092 : Inherited(Context), NonTrivial(false) { } 03093 03094 bool hasNonTrivialCall() const { return NonTrivial; } 03095 03096 void VisitCallExpr(CallExpr *E) { 03097 if (CXXMethodDecl *Method 03098 = dyn_cast_or_null<CXXMethodDecl>(E->getCalleeDecl())) { 03099 if (Method->isTrivial()) { 03100 // Recurse to children of the call. 03101 Inherited::VisitStmt(E); 03102 return; 03103 } 03104 } 03105 03106 NonTrivial = true; 03107 } 03108 03109 void VisitCXXConstructExpr(CXXConstructExpr *E) { 03110 if (E->getConstructor()->isTrivial()) { 03111 // Recurse to children of the call. 03112 Inherited::VisitStmt(E); 03113 return; 03114 } 03115 03116 NonTrivial = true; 03117 } 03118 03119 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 03120 if (E->getTemporary()->getDestructor()->isTrivial()) { 03121 Inherited::VisitStmt(E); 03122 return; 03123 } 03124 03125 NonTrivial = true; 03126 } 03127 }; 03128 } 03129 03130 bool Expr::hasNonTrivialCall(ASTContext &Ctx) { 03131 NonTrivialCallFinder Finder(Ctx); 03132 Finder.Visit(this); 03133 return Finder.hasNonTrivialCall(); 03134 } 03135 03136 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null 03137 /// pointer constant or not, as well as the specific kind of constant detected. 03138 /// Null pointer constants can be integer constant expressions with the 03139 /// value zero, casts of zero to void*, nullptr (C++0X), or __null 03140 /// (a GNU extension). 03141 Expr::NullPointerConstantKind 03142 Expr::isNullPointerConstant(ASTContext &Ctx, 03143 NullPointerConstantValueDependence NPC) const { 03144 if (isValueDependent() && 03145 (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) { 03146 switch (NPC) { 03147 case NPC_NeverValueDependent: 03148 llvm_unreachable("Unexpected value dependent expression!"); 03149 case NPC_ValueDependentIsNull: 03150 if (isTypeDependent() || getType()->isIntegralType(Ctx)) 03151 return NPCK_ZeroExpression; 03152 else 03153 return NPCK_NotNull; 03154 03155 case NPC_ValueDependentIsNotNull: 03156 return NPCK_NotNull; 03157 } 03158 } 03159 03160 // Strip off a cast to void*, if it exists. Except in C++. 03161 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { 03162 if (!Ctx.getLangOpts().CPlusPlus) { 03163 // Check that it is a cast to void*. 03164 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { 03165 QualType Pointee = PT->getPointeeType(); 03166 if (!Pointee.hasQualifiers() && 03167 Pointee->isVoidType() && // to void* 03168 CE->getSubExpr()->getType()->isIntegerType()) // from int. 03169 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 03170 } 03171 } 03172 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { 03173 // Ignore the ImplicitCastExpr type entirely. 03174 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 03175 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { 03176 // Accept ((void*)0) as a null pointer constant, as many other 03177 // implementations do. 03178 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 03179 } else if (const GenericSelectionExpr *GE = 03180 dyn_cast<GenericSelectionExpr>(this)) { 03181 if (GE->isResultDependent()) 03182 return NPCK_NotNull; 03183 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC); 03184 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) { 03185 if (CE->isConditionDependent()) 03186 return NPCK_NotNull; 03187 return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC); 03188 } else if (const CXXDefaultArgExpr *DefaultArg 03189 = dyn_cast<CXXDefaultArgExpr>(this)) { 03190 // See through default argument expressions. 03191 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); 03192 } else if (const CXXDefaultInitExpr *DefaultInit 03193 = dyn_cast<CXXDefaultInitExpr>(this)) { 03194 // See through default initializer expressions. 03195 return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC); 03196 } else if (isa<GNUNullExpr>(this)) { 03197 // The GNU __null extension is always a null pointer constant. 03198 return NPCK_GNUNull; 03199 } else if (const MaterializeTemporaryExpr *M 03200 = dyn_cast<MaterializeTemporaryExpr>(this)) { 03201 return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC); 03202 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) { 03203 if (const Expr *Source = OVE->getSourceExpr()) 03204 return Source->isNullPointerConstant(Ctx, NPC); 03205 } 03206 03207 // C++11 nullptr_t is always a null pointer constant. 03208 if (getType()->isNullPtrType()) 03209 return NPCK_CXX11_nullptr; 03210 03211 if (const RecordType *UT = getType()->getAsUnionType()) 03212 if (!Ctx.getLangOpts().CPlusPlus11 && 03213 UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) 03214 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){ 03215 const Expr *InitExpr = CLE->getInitializer(); 03216 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr)) 03217 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC); 03218 } 03219 // This expression must be an integer type. 03220 if (!getType()->isIntegerType() || 03221 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType())) 03222 return NPCK_NotNull; 03223 03224 if (Ctx.getLangOpts().CPlusPlus11) { 03225 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with 03226 // value zero or a prvalue of type std::nullptr_t. 03227 // Microsoft mode permits C++98 rules reflecting MSVC behavior. 03228 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this); 03229 if (Lit && !Lit->getValue()) 03230 return NPCK_ZeroLiteral; 03231 else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx)) 03232 return NPCK_NotNull; 03233 } else { 03234 // If we have an integer constant expression, we need to *evaluate* it and 03235 // test for the value 0. 03236 if (!isIntegerConstantExpr(Ctx)) 03237 return NPCK_NotNull; 03238 } 03239 03240 if (EvaluateKnownConstInt(Ctx) != 0) 03241 return NPCK_NotNull; 03242 03243 if (isa<IntegerLiteral>(this)) 03244 return NPCK_ZeroLiteral; 03245 return NPCK_ZeroExpression; 03246 } 03247 03248 /// \brief If this expression is an l-value for an Objective C 03249 /// property, find the underlying property reference expression. 03250 const ObjCPropertyRefExpr *Expr::getObjCProperty() const { 03251 const Expr *E = this; 03252 while (true) { 03253 assert((E->getValueKind() == VK_LValue && 03254 E->getObjectKind() == OK_ObjCProperty) && 03255 "expression is not a property reference"); 03256 E = E->IgnoreParenCasts(); 03257 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 03258 if (BO->getOpcode() == BO_Comma) { 03259 E = BO->getRHS(); 03260 continue; 03261 } 03262 } 03263 03264 break; 03265 } 03266 03267 return cast<ObjCPropertyRefExpr>(E); 03268 } 03269 03270 bool Expr::isObjCSelfExpr() const { 03271 const Expr *E = IgnoreParenImpCasts(); 03272 03273 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); 03274 if (!DRE) 03275 return false; 03276 03277 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl()); 03278 if (!Param) 03279 return false; 03280 03281 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext()); 03282 if (!M) 03283 return false; 03284 03285 return M->getSelfDecl() == Param; 03286 } 03287 03288 FieldDecl *Expr::getSourceBitField() { 03289 Expr *E = this->IgnoreParens(); 03290 03291 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 03292 if (ICE->getCastKind() == CK_LValueToRValue || 03293 (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp)) 03294 E = ICE->getSubExpr()->IgnoreParens(); 03295 else 03296 break; 03297 } 03298 03299 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) 03300 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) 03301 if (Field->isBitField()) 03302 return Field; 03303 03304 if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) 03305 if (FieldDecl *Ivar = dyn_cast<FieldDecl>(IvarRef->getDecl())) 03306 if (Ivar->isBitField()) 03307 return Ivar; 03308 03309 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) 03310 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl())) 03311 if (Field->isBitField()) 03312 return Field; 03313 03314 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) { 03315 if (BinOp->isAssignmentOp() && BinOp->getLHS()) 03316 return BinOp->getLHS()->getSourceBitField(); 03317 03318 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS()) 03319 return BinOp->getRHS()->getSourceBitField(); 03320 } 03321 03322 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) 03323 if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp()) 03324 return UnOp->getSubExpr()->getSourceBitField(); 03325 03326 return nullptr; 03327 } 03328 03329 bool Expr::refersToVectorElement() const { 03330 const Expr *E = this->IgnoreParens(); 03331 03332 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 03333 if (ICE->getValueKind() != VK_RValue && 03334 ICE->getCastKind() == CK_NoOp) 03335 E = ICE->getSubExpr()->IgnoreParens(); 03336 else 03337 break; 03338 } 03339 03340 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) 03341 return ASE->getBase()->getType()->isVectorType(); 03342 03343 if (isa<ExtVectorElementExpr>(E)) 03344 return true; 03345 03346 return false; 03347 } 03348 03349 /// isArrow - Return true if the base expression is a pointer to vector, 03350 /// return false if the base expression is a vector. 03351 bool ExtVectorElementExpr::isArrow() const { 03352 return getBase()->getType()->isPointerType(); 03353 } 03354 03355 unsigned ExtVectorElementExpr::getNumElements() const { 03356 if (const VectorType *VT = getType()->getAs<VectorType>()) 03357 return VT->getNumElements(); 03358 return 1; 03359 } 03360 03361 /// containsDuplicateElements - Return true if any element access is repeated. 03362 bool ExtVectorElementExpr::containsDuplicateElements() const { 03363 // FIXME: Refactor this code to an accessor on the AST node which returns the 03364 // "type" of component access, and share with code below and in Sema. 03365 StringRef Comp = Accessor->getName(); 03366 03367 // Halving swizzles do not contain duplicate elements. 03368 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") 03369 return false; 03370 03371 // Advance past s-char prefix on hex swizzles. 03372 if (Comp[0] == 's' || Comp[0] == 'S') 03373 Comp = Comp.substr(1); 03374 03375 for (unsigned i = 0, e = Comp.size(); i != e; ++i) 03376 if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos) 03377 return true; 03378 03379 return false; 03380 } 03381 03382 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. 03383 void ExtVectorElementExpr::getEncodedElementAccess( 03384 SmallVectorImpl<unsigned> &Elts) const { 03385 StringRef Comp = Accessor->getName(); 03386 if (Comp[0] == 's' || Comp[0] == 'S') 03387 Comp = Comp.substr(1); 03388 03389 bool isHi = Comp == "hi"; 03390 bool isLo = Comp == "lo"; 03391 bool isEven = Comp == "even"; 03392 bool isOdd = Comp == "odd"; 03393 03394 for (unsigned i = 0, e = getNumElements(); i != e; ++i) { 03395 uint64_t Index; 03396 03397 if (isHi) 03398 Index = e + i; 03399 else if (isLo) 03400 Index = i; 03401 else if (isEven) 03402 Index = 2 * i; 03403 else if (isOdd) 03404 Index = 2 * i + 1; 03405 else 03406 Index = ExtVectorType::getAccessorIdx(Comp[i]); 03407 03408 Elts.push_back(Index); 03409 } 03410 } 03411 03412 ObjCMessageExpr::ObjCMessageExpr(QualType T, 03413 ExprValueKind VK, 03414 SourceLocation LBracLoc, 03415 SourceLocation SuperLoc, 03416 bool IsInstanceSuper, 03417 QualType SuperType, 03418 Selector Sel, 03419 ArrayRef<SourceLocation> SelLocs, 03420 SelectorLocationsKind SelLocsK, 03421 ObjCMethodDecl *Method, 03422 ArrayRef<Expr *> Args, 03423 SourceLocation RBracLoc, 03424 bool isImplicit) 03425 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, 03426 /*TypeDependent=*/false, /*ValueDependent=*/false, 03427 /*InstantiationDependent=*/false, 03428 /*ContainsUnexpandedParameterPack=*/false), 03429 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method 03430 : Sel.getAsOpaquePtr())), 03431 Kind(IsInstanceSuper? SuperInstance : SuperClass), 03432 HasMethod(Method != nullptr), IsDelegateInitCall(false), 03433 IsImplicit(isImplicit), SuperLoc(SuperLoc), LBracLoc(LBracLoc), 03434 RBracLoc(RBracLoc) 03435 { 03436 initArgsAndSelLocs(Args, SelLocs, SelLocsK); 03437 setReceiverPointer(SuperType.getAsOpaquePtr()); 03438 } 03439 03440 ObjCMessageExpr::ObjCMessageExpr(QualType T, 03441 ExprValueKind VK, 03442 SourceLocation LBracLoc, 03443 TypeSourceInfo *Receiver, 03444 Selector Sel, 03445 ArrayRef<SourceLocation> SelLocs, 03446 SelectorLocationsKind SelLocsK, 03447 ObjCMethodDecl *Method, 03448 ArrayRef<Expr *> Args, 03449 SourceLocation RBracLoc, 03450 bool isImplicit) 03451 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(), 03452 T->isDependentType(), T->isInstantiationDependentType(), 03453 T->containsUnexpandedParameterPack()), 03454 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method 03455 : Sel.getAsOpaquePtr())), 03456 Kind(Class), 03457 HasMethod(Method != nullptr), IsDelegateInitCall(false), 03458 IsImplicit(isImplicit), LBracLoc(LBracLoc), RBracLoc(RBracLoc) 03459 { 03460 initArgsAndSelLocs(Args, SelLocs, SelLocsK); 03461 setReceiverPointer(Receiver); 03462 } 03463 03464 ObjCMessageExpr::ObjCMessageExpr(QualType T, 03465 ExprValueKind VK, 03466 SourceLocation LBracLoc, 03467 Expr *Receiver, 03468 Selector Sel, 03469 ArrayRef<SourceLocation> SelLocs, 03470 SelectorLocationsKind SelLocsK, 03471 ObjCMethodDecl *Method, 03472 ArrayRef<Expr *> Args, 03473 SourceLocation RBracLoc, 03474 bool isImplicit) 03475 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(), 03476 Receiver->isTypeDependent(), 03477 Receiver->isInstantiationDependent(), 03478 Receiver->containsUnexpandedParameterPack()), 03479 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method 03480 : Sel.getAsOpaquePtr())), 03481 Kind(Instance), 03482 HasMethod(Method != nullptr), IsDelegateInitCall(false), 03483 IsImplicit(isImplicit), LBracLoc(LBracLoc), RBracLoc(RBracLoc) 03484 { 03485 initArgsAndSelLocs(Args, SelLocs, SelLocsK); 03486 setReceiverPointer(Receiver); 03487 } 03488 03489 void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args, 03490 ArrayRef<SourceLocation> SelLocs, 03491 SelectorLocationsKind SelLocsK) { 03492 setNumArgs(Args.size()); 03493 Expr **MyArgs = getArgs(); 03494 for (unsigned I = 0; I != Args.size(); ++I) { 03495 if (Args[I]->isTypeDependent()) 03496 ExprBits.TypeDependent = true; 03497 if (Args[I]->isValueDependent()) 03498 ExprBits.ValueDependent = true; 03499 if (Args[I]->isInstantiationDependent()) 03500 ExprBits.InstantiationDependent = true; 03501 if (Args[I]->containsUnexpandedParameterPack()) 03502 ExprBits.ContainsUnexpandedParameterPack = true; 03503 03504 MyArgs[I] = Args[I]; 03505 } 03506 03507 SelLocsKind = SelLocsK; 03508 if (!isImplicit()) { 03509 if (SelLocsK == SelLoc_NonStandard) 03510 std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs()); 03511 } 03512 } 03513 03514 ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T, 03515 ExprValueKind VK, 03516 SourceLocation LBracLoc, 03517 SourceLocation SuperLoc, 03518 bool IsInstanceSuper, 03519 QualType SuperType, 03520 Selector Sel, 03521 ArrayRef<SourceLocation> SelLocs, 03522 ObjCMethodDecl *Method, 03523 ArrayRef<Expr *> Args, 03524 SourceLocation RBracLoc, 03525 bool isImplicit) { 03526 assert((!SelLocs.empty() || isImplicit) && 03527 "No selector locs for non-implicit message"); 03528 ObjCMessageExpr *Mem; 03529 SelectorLocationsKind SelLocsK = SelectorLocationsKind(); 03530 if (isImplicit) 03531 Mem = alloc(Context, Args.size(), 0); 03532 else 03533 Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK); 03534 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper, 03535 SuperType, Sel, SelLocs, SelLocsK, 03536 Method, Args, RBracLoc, isImplicit); 03537 } 03538 03539 ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T, 03540 ExprValueKind VK, 03541 SourceLocation LBracLoc, 03542 TypeSourceInfo *Receiver, 03543 Selector Sel, 03544 ArrayRef<SourceLocation> SelLocs, 03545 ObjCMethodDecl *Method, 03546 ArrayRef<Expr *> Args, 03547 SourceLocation RBracLoc, 03548 bool isImplicit) { 03549 assert((!SelLocs.empty() || isImplicit) && 03550 "No selector locs for non-implicit message"); 03551 ObjCMessageExpr *Mem; 03552 SelectorLocationsKind SelLocsK = SelectorLocationsKind(); 03553 if (isImplicit) 03554 Mem = alloc(Context, Args.size(), 0); 03555 else 03556 Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK); 03557 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, 03558 SelLocs, SelLocsK, Method, Args, RBracLoc, 03559 isImplicit); 03560 } 03561 03562 ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T, 03563 ExprValueKind VK, 03564 SourceLocation LBracLoc, 03565 Expr *Receiver, 03566 Selector Sel, 03567 ArrayRef<SourceLocation> SelLocs, 03568 ObjCMethodDecl *Method, 03569 ArrayRef<Expr *> Args, 03570 SourceLocation RBracLoc, 03571 bool isImplicit) { 03572 assert((!SelLocs.empty() || isImplicit) && 03573 "No selector locs for non-implicit message"); 03574 ObjCMessageExpr *Mem; 03575 SelectorLocationsKind SelLocsK = SelectorLocationsKind(); 03576 if (isImplicit) 03577 Mem = alloc(Context, Args.size(), 0); 03578 else 03579 Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK); 03580 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, 03581 SelLocs, SelLocsK, Method, Args, RBracLoc, 03582 isImplicit); 03583 } 03584 03585 ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(const ASTContext &Context, 03586 unsigned NumArgs, 03587 unsigned NumStoredSelLocs) { 03588 ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs); 03589 return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs); 03590 } 03591 03592 ObjCMessageExpr *ObjCMessageExpr::alloc(const ASTContext &C, 03593 ArrayRef<Expr *> Args, 03594 SourceLocation RBraceLoc, 03595 ArrayRef<SourceLocation> SelLocs, 03596 Selector Sel, 03597 SelectorLocationsKind &SelLocsK) { 03598 SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc); 03599 unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size() 03600 : 0; 03601 return alloc(C, Args.size(), NumStoredSelLocs); 03602 } 03603 03604 ObjCMessageExpr *ObjCMessageExpr::alloc(const ASTContext &C, 03605 unsigned NumArgs, 03606 unsigned NumStoredSelLocs) { 03607 unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) + 03608 NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation); 03609 return (ObjCMessageExpr *)C.Allocate(Size, 03610 llvm::AlignOf<ObjCMessageExpr>::Alignment); 03611 } 03612 03613 void ObjCMessageExpr::getSelectorLocs( 03614 SmallVectorImpl<SourceLocation> &SelLocs) const { 03615 for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i) 03616 SelLocs.push_back(getSelectorLoc(i)); 03617 } 03618 03619 SourceRange ObjCMessageExpr::getReceiverRange() const { 03620 switch (getReceiverKind()) { 03621 case Instance: 03622 return getInstanceReceiver()->getSourceRange(); 03623 03624 case Class: 03625 return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange(); 03626 03627 case SuperInstance: 03628 case SuperClass: 03629 return getSuperLoc(); 03630 } 03631 03632 llvm_unreachable("Invalid ReceiverKind!"); 03633 } 03634 03635 Selector ObjCMessageExpr::getSelector() const { 03636 if (HasMethod) 03637 return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod) 03638 ->getSelector(); 03639 return Selector(SelectorOrMethod); 03640 } 03641 03642 QualType ObjCMessageExpr::getReceiverType() const { 03643 switch (getReceiverKind()) { 03644 case Instance: 03645 return getInstanceReceiver()->getType(); 03646 case Class: 03647 return getClassReceiver(); 03648 case SuperInstance: 03649 case SuperClass: 03650 return getSuperType(); 03651 } 03652 03653 llvm_unreachable("unexpected receiver kind"); 03654 } 03655 03656 ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const { 03657 QualType T = getReceiverType(); 03658 03659 if (const ObjCObjectPointerType *Ptr = T->getAs<ObjCObjectPointerType>()) 03660 return Ptr->getInterfaceDecl(); 03661 03662 if (const ObjCObjectType *Ty = T->getAs<ObjCObjectType>()) 03663 return Ty->getInterface(); 03664 03665 return nullptr; 03666 } 03667 03668 StringRef ObjCBridgedCastExpr::getBridgeKindName() const { 03669 switch (getBridgeKind()) { 03670 case OBC_Bridge: 03671 return "__bridge"; 03672 case OBC_BridgeTransfer: 03673 return "__bridge_transfer"; 03674 case OBC_BridgeRetained: 03675 return "__bridge_retained"; 03676 } 03677 03678 llvm_unreachable("Invalid BridgeKind!"); 03679 } 03680 03681 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args, 03682 QualType Type, SourceLocation BLoc, 03683 SourceLocation RP) 03684 : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary, 03685 Type->isDependentType(), Type->isDependentType(), 03686 Type->isInstantiationDependentType(), 03687 Type->containsUnexpandedParameterPack()), 03688 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) 03689 { 03690 SubExprs = new (C) Stmt*[args.size()]; 03691 for (unsigned i = 0; i != args.size(); i++) { 03692 if (args[i]->isTypeDependent()) 03693 ExprBits.TypeDependent = true; 03694 if (args[i]->isValueDependent()) 03695 ExprBits.ValueDependent = true; 03696 if (args[i]->isInstantiationDependent()) 03697 ExprBits.InstantiationDependent = true; 03698 if (args[i]->containsUnexpandedParameterPack()) 03699 ExprBits.ContainsUnexpandedParameterPack = true; 03700 03701 SubExprs[i] = args[i]; 03702 } 03703 } 03704 03705 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) { 03706 if (SubExprs) C.Deallocate(SubExprs); 03707 03708 this->NumExprs = Exprs.size(); 03709 SubExprs = new (C) Stmt*[NumExprs]; 03710 memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size()); 03711 } 03712 03713 GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context, 03714 SourceLocation GenericLoc, Expr *ControllingExpr, 03715 ArrayRef<TypeSourceInfo*> AssocTypes, 03716 ArrayRef<Expr*> AssocExprs, 03717 SourceLocation DefaultLoc, 03718 SourceLocation RParenLoc, 03719 bool ContainsUnexpandedParameterPack, 03720 unsigned ResultIndex) 03721 : Expr(GenericSelectionExprClass, 03722 AssocExprs[ResultIndex]->getType(), 03723 AssocExprs[ResultIndex]->getValueKind(), 03724 AssocExprs[ResultIndex]->getObjectKind(), 03725 AssocExprs[ResultIndex]->isTypeDependent(), 03726 AssocExprs[ResultIndex]->isValueDependent(), 03727 AssocExprs[ResultIndex]->isInstantiationDependent(), 03728 ContainsUnexpandedParameterPack), 03729 AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]), 03730 SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]), 03731 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), 03732 GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 03733 SubExprs[CONTROLLING] = ControllingExpr; 03734 assert(AssocTypes.size() == AssocExprs.size()); 03735 std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes); 03736 std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR); 03737 } 03738 03739 GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context, 03740 SourceLocation GenericLoc, Expr *ControllingExpr, 03741 ArrayRef<TypeSourceInfo*> AssocTypes, 03742 ArrayRef<Expr*> AssocExprs, 03743 SourceLocation DefaultLoc, 03744 SourceLocation RParenLoc, 03745 bool ContainsUnexpandedParameterPack) 03746 : Expr(GenericSelectionExprClass, 03747 Context.DependentTy, 03748 VK_RValue, 03749 OK_Ordinary, 03750 /*isTypeDependent=*/true, 03751 /*isValueDependent=*/true, 03752 /*isInstantiationDependent=*/true, 03753 ContainsUnexpandedParameterPack), 03754 AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]), 03755 SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]), 03756 NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc), 03757 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 03758 SubExprs[CONTROLLING] = ControllingExpr; 03759 assert(AssocTypes.size() == AssocExprs.size()); 03760 std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes); 03761 std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR); 03762 } 03763 03764 //===----------------------------------------------------------------------===// 03765 // DesignatedInitExpr 03766 //===----------------------------------------------------------------------===// 03767 03768 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const { 03769 assert(Kind == FieldDesignator && "Only valid on a field designator"); 03770 if (Field.NameOrField & 0x01) 03771 return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01); 03772 else 03773 return getField()->getIdentifier(); 03774 } 03775 03776 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty, 03777 unsigned NumDesignators, 03778 const Designator *Designators, 03779 SourceLocation EqualOrColonLoc, 03780 bool GNUSyntax, 03781 ArrayRef<Expr*> IndexExprs, 03782 Expr *Init) 03783 : Expr(DesignatedInitExprClass, Ty, 03784 Init->getValueKind(), Init->getObjectKind(), 03785 Init->isTypeDependent(), Init->isValueDependent(), 03786 Init->isInstantiationDependent(), 03787 Init->containsUnexpandedParameterPack()), 03788 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), 03789 NumDesignators(NumDesignators), NumSubExprs(IndexExprs.size() + 1) { 03790 this->Designators = new (C) Designator[NumDesignators]; 03791 03792 // Record the initializer itself. 03793 child_range Child = children(); 03794 *Child++ = Init; 03795 03796 // Copy the designators and their subexpressions, computing 03797 // value-dependence along the way. 03798 unsigned IndexIdx = 0; 03799 for (unsigned I = 0; I != NumDesignators; ++I) { 03800 this->Designators[I] = Designators[I]; 03801 03802 if (this->Designators[I].isArrayDesignator()) { 03803 // Compute type- and value-dependence. 03804 Expr *Index = IndexExprs[IndexIdx]; 03805 if (Index->isTypeDependent() || Index->isValueDependent()) 03806 ExprBits.ValueDependent = true; 03807 if (Index->isInstantiationDependent()) 03808 ExprBits.InstantiationDependent = true; 03809 // Propagate unexpanded parameter packs. 03810 if (Index->containsUnexpandedParameterPack()) 03811 ExprBits.ContainsUnexpandedParameterPack = true; 03812 03813 // Copy the index expressions into permanent storage. 03814 *Child++ = IndexExprs[IndexIdx++]; 03815 } else if (this->Designators[I].isArrayRangeDesignator()) { 03816 // Compute type- and value-dependence. 03817 Expr *Start = IndexExprs[IndexIdx]; 03818 Expr *End = IndexExprs[IndexIdx + 1]; 03819 if (Start->isTypeDependent() || Start->isValueDependent() || 03820 End->isTypeDependent() || End->isValueDependent()) { 03821 ExprBits.ValueDependent = true; 03822 ExprBits.InstantiationDependent = true; 03823 } else if (Start->isInstantiationDependent() || 03824 End->isInstantiationDependent()) { 03825 ExprBits.InstantiationDependent = true; 03826 } 03827 03828 // Propagate unexpanded parameter packs. 03829 if (Start->containsUnexpandedParameterPack() || 03830 End->containsUnexpandedParameterPack()) 03831 ExprBits.ContainsUnexpandedParameterPack = true; 03832 03833 // Copy the start/end expressions into permanent storage. 03834 *Child++ = IndexExprs[IndexIdx++]; 03835 *Child++ = IndexExprs[IndexIdx++]; 03836 } 03837 } 03838 03839 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions"); 03840 } 03841 03842 DesignatedInitExpr * 03843 DesignatedInitExpr::Create(const ASTContext &C, Designator *Designators, 03844 unsigned NumDesignators, 03845 ArrayRef<Expr*> IndexExprs, 03846 SourceLocation ColonOrEqualLoc, 03847 bool UsesColonSyntax, Expr *Init) { 03848 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) + 03849 sizeof(Stmt *) * (IndexExprs.size() + 1), 8); 03850 return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators, 03851 ColonOrEqualLoc, UsesColonSyntax, 03852 IndexExprs, Init); 03853 } 03854 03855 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C, 03856 unsigned NumIndexExprs) { 03857 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) + 03858 sizeof(Stmt *) * (NumIndexExprs + 1), 8); 03859 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); 03860 } 03861 03862 void DesignatedInitExpr::setDesignators(const ASTContext &C, 03863 const Designator *Desigs, 03864 unsigned NumDesigs) { 03865 Designators = new (C) Designator[NumDesigs]; 03866 NumDesignators = NumDesigs; 03867 for (unsigned I = 0; I != NumDesigs; ++I) 03868 Designators[I] = Desigs[I]; 03869 } 03870 03871 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const { 03872 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this); 03873 if (size() == 1) 03874 return DIE->getDesignator(0)->getSourceRange(); 03875 return SourceRange(DIE->getDesignator(0)->getLocStart(), 03876 DIE->getDesignator(size()-1)->getLocEnd()); 03877 } 03878 03879 SourceLocation DesignatedInitExpr::getLocStart() const { 03880 SourceLocation StartLoc; 03881 Designator &First = 03882 *const_cast<DesignatedInitExpr*>(this)->designators_begin(); 03883 if (First.isFieldDesignator()) { 03884 if (GNUSyntax) 03885 StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc); 03886 else 03887 StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc); 03888 } else 03889 StartLoc = 03890 SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc); 03891 return StartLoc; 03892 } 03893 03894 SourceLocation DesignatedInitExpr::getLocEnd() const { 03895 return getInit()->getLocEnd(); 03896 } 03897 03898 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const { 03899 assert(D.Kind == Designator::ArrayDesignator && "Requires array designator"); 03900 Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1); 03901 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1)); 03902 } 03903 03904 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const { 03905 assert(D.Kind == Designator::ArrayRangeDesignator && 03906 "Requires array range designator"); 03907 Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1); 03908 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1)); 03909 } 03910 03911 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const { 03912 assert(D.Kind == Designator::ArrayRangeDesignator && 03913 "Requires array range designator"); 03914 Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1); 03915 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2)); 03916 } 03917 03918 /// \brief Replaces the designator at index @p Idx with the series 03919 /// of designators in [First, Last). 03920 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx, 03921 const Designator *First, 03922 const Designator *Last) { 03923 unsigned NumNewDesignators = Last - First; 03924 if (NumNewDesignators == 0) { 03925 std::copy_backward(Designators + Idx + 1, 03926 Designators + NumDesignators, 03927 Designators + Idx); 03928 --NumNewDesignators; 03929 return; 03930 } else if (NumNewDesignators == 1) { 03931 Designators[Idx] = *First; 03932 return; 03933 } 03934 03935 Designator *NewDesignators 03936 = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; 03937 std::copy(Designators, Designators + Idx, NewDesignators); 03938 std::copy(First, Last, NewDesignators + Idx); 03939 std::copy(Designators + Idx + 1, Designators + NumDesignators, 03940 NewDesignators + Idx + NumNewDesignators); 03941 Designators = NewDesignators; 03942 NumDesignators = NumDesignators - 1 + NumNewDesignators; 03943 } 03944 03945 ParenListExpr::ParenListExpr(const ASTContext& C, SourceLocation lparenloc, 03946 ArrayRef<Expr*> exprs, 03947 SourceLocation rparenloc) 03948 : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary, 03949 false, false, false, false), 03950 NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) { 03951 Exprs = new (C) Stmt*[exprs.size()]; 03952 for (unsigned i = 0; i != exprs.size(); ++i) { 03953 if (exprs[i]->isTypeDependent()) 03954 ExprBits.TypeDependent = true; 03955 if (exprs[i]->isValueDependent()) 03956 ExprBits.ValueDependent = true; 03957 if (exprs[i]->isInstantiationDependent()) 03958 ExprBits.InstantiationDependent = true; 03959 if (exprs[i]->containsUnexpandedParameterPack()) 03960 ExprBits.ContainsUnexpandedParameterPack = true; 03961 03962 Exprs[i] = exprs[i]; 03963 } 03964 } 03965 03966 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) { 03967 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e)) 03968 e = ewc->getSubExpr(); 03969 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e)) 03970 e = m->GetTemporaryExpr(); 03971 e = cast<CXXConstructExpr>(e)->getArg(0); 03972 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) 03973 e = ice->getSubExpr(); 03974 return cast<OpaqueValueExpr>(e); 03975 } 03976 03977 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context, 03978 EmptyShell sh, 03979 unsigned numSemanticExprs) { 03980 void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) + 03981 (1 + numSemanticExprs) * sizeof(Expr*), 03982 llvm::alignOf<PseudoObjectExpr>()); 03983 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs); 03984 } 03985 03986 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs) 03987 : Expr(PseudoObjectExprClass, shell) { 03988 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1; 03989 } 03990 03991 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax, 03992 ArrayRef<Expr*> semantics, 03993 unsigned resultIndex) { 03994 assert(syntax && "no syntactic expression!"); 03995 assert(semantics.size() && "no semantic expressions!"); 03996 03997 QualType type; 03998 ExprValueKind VK; 03999 if (resultIndex == NoResult) { 04000 type = C.VoidTy; 04001 VK = VK_RValue; 04002 } else { 04003 assert(resultIndex < semantics.size()); 04004 type = semantics[resultIndex]->getType(); 04005 VK = semantics[resultIndex]->getValueKind(); 04006 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary); 04007 } 04008 04009 void *buffer = C.Allocate(sizeof(PseudoObjectExpr) + 04010 (1 + semantics.size()) * sizeof(Expr*), 04011 llvm::alignOf<PseudoObjectExpr>()); 04012 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics, 04013 resultIndex); 04014 } 04015 04016 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK, 04017 Expr *syntax, ArrayRef<Expr*> semantics, 04018 unsigned resultIndex) 04019 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary, 04020 /*filled in at end of ctor*/ false, false, false, false) { 04021 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1; 04022 PseudoObjectExprBits.ResultIndex = resultIndex + 1; 04023 04024 for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) { 04025 Expr *E = (i == 0 ? syntax : semantics[i-1]); 04026 getSubExprsBuffer()[i] = E; 04027 04028 if (E->isTypeDependent()) 04029 ExprBits.TypeDependent = true; 04030 if (E->isValueDependent()) 04031 ExprBits.ValueDependent = true; 04032 if (E->isInstantiationDependent()) 04033 ExprBits.InstantiationDependent = true; 04034 if (E->containsUnexpandedParameterPack()) 04035 ExprBits.ContainsUnexpandedParameterPack = true; 04036 04037 if (isa<OpaqueValueExpr>(E)) 04038 assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr && 04039 "opaque-value semantic expressions for pseudo-object " 04040 "operations must have sources"); 04041 } 04042 } 04043 04044 //===----------------------------------------------------------------------===// 04045 // ExprIterator. 04046 //===----------------------------------------------------------------------===// 04047 04048 Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); } 04049 Expr* ExprIterator::operator*() const { return cast<Expr>(*I); } 04050 Expr* ExprIterator::operator->() const { return cast<Expr>(*I); } 04051 const Expr* ConstExprIterator::operator[](size_t idx) const { 04052 return cast<Expr>(I[idx]); 04053 } 04054 const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); } 04055 const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); } 04056 04057 //===----------------------------------------------------------------------===// 04058 // Child Iterators for iterating over subexpressions/substatements 04059 //===----------------------------------------------------------------------===// 04060 04061 // UnaryExprOrTypeTraitExpr 04062 Stmt::child_range UnaryExprOrTypeTraitExpr::children() { 04063 // If this is of a type and the type is a VLA type (and not a typedef), the 04064 // size expression of the VLA needs to be treated as an executable expression. 04065 // Why isn't this weirdness documented better in StmtIterator? 04066 if (isArgumentType()) { 04067 if (const VariableArrayType* T = dyn_cast<VariableArrayType>( 04068 getArgumentType().getTypePtr())) 04069 return child_range(child_iterator(T), child_iterator()); 04070 return child_range(); 04071 } 04072 return child_range(&Argument.Ex, &Argument.Ex + 1); 04073 } 04074 04075 // ObjCMessageExpr 04076 Stmt::child_range ObjCMessageExpr::children() { 04077 Stmt **begin; 04078 if (getReceiverKind() == Instance) 04079 begin = reinterpret_cast<Stmt **>(this + 1); 04080 else 04081 begin = reinterpret_cast<Stmt **>(getArgs()); 04082 return child_range(begin, 04083 reinterpret_cast<Stmt **>(getArgs() + getNumArgs())); 04084 } 04085 04086 ObjCArrayLiteral::ObjCArrayLiteral(ArrayRef<Expr *> Elements, 04087 QualType T, ObjCMethodDecl *Method, 04088 SourceRange SR) 04089 : Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary, 04090 false, false, false, false), 04091 NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method) 04092 { 04093 Expr **SaveElements = getElements(); 04094 for (unsigned I = 0, N = Elements.size(); I != N; ++I) { 04095 if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent()) 04096 ExprBits.ValueDependent = true; 04097 if (Elements[I]->isInstantiationDependent()) 04098 ExprBits.InstantiationDependent = true; 04099 if (Elements[I]->containsUnexpandedParameterPack()) 04100 ExprBits.ContainsUnexpandedParameterPack = true; 04101 04102 SaveElements[I] = Elements[I]; 04103 } 04104 } 04105 04106 ObjCArrayLiteral *ObjCArrayLiteral::Create(const ASTContext &C, 04107 ArrayRef<Expr *> Elements, 04108 QualType T, ObjCMethodDecl * Method, 04109 SourceRange SR) { 04110 void *Mem = C.Allocate(sizeof(ObjCArrayLiteral) 04111 + Elements.size() * sizeof(Expr *)); 04112 return new (Mem) ObjCArrayLiteral(Elements, T, Method, SR); 04113 } 04114 04115 ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(const ASTContext &C, 04116 unsigned NumElements) { 04117 04118 void *Mem = C.Allocate(sizeof(ObjCArrayLiteral) 04119 + NumElements * sizeof(Expr *)); 04120 return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements); 04121 } 04122 04123 ObjCDictionaryLiteral::ObjCDictionaryLiteral( 04124 ArrayRef<ObjCDictionaryElement> VK, 04125 bool HasPackExpansions, 04126 QualType T, ObjCMethodDecl *method, 04127 SourceRange SR) 04128 : Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false, 04129 false, false), 04130 NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR), 04131 DictWithObjectsMethod(method) 04132 { 04133 KeyValuePair *KeyValues = getKeyValues(); 04134 ExpansionData *Expansions = getExpansionData(); 04135 for (unsigned I = 0; I < NumElements; I++) { 04136 if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() || 04137 VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent()) 04138 ExprBits.ValueDependent = true; 04139 if (VK[I].Key->isInstantiationDependent() || 04140 VK[I].Value->isInstantiationDependent()) 04141 ExprBits.InstantiationDependent = true; 04142 if (VK[I].EllipsisLoc.isInvalid() && 04143 (VK[I].Key->containsUnexpandedParameterPack() || 04144 VK[I].Value->containsUnexpandedParameterPack())) 04145 ExprBits.ContainsUnexpandedParameterPack = true; 04146 04147 KeyValues[I].Key = VK[I].Key; 04148 KeyValues[I].Value = VK[I].Value; 04149 if (Expansions) { 04150 Expansions[I].EllipsisLoc = VK[I].EllipsisLoc; 04151 if (VK[I].NumExpansions) 04152 Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1; 04153 else 04154 Expansions[I].NumExpansionsPlusOne = 0; 04155 } 04156 } 04157 } 04158 04159 ObjCDictionaryLiteral * 04160 ObjCDictionaryLiteral::Create(const ASTContext &C, 04161 ArrayRef<ObjCDictionaryElement> VK, 04162 bool HasPackExpansions, 04163 QualType T, ObjCMethodDecl *method, 04164 SourceRange SR) { 04165 unsigned ExpansionsSize = 0; 04166 if (HasPackExpansions) 04167 ExpansionsSize = sizeof(ExpansionData) * VK.size(); 04168 04169 void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) + 04170 sizeof(KeyValuePair) * VK.size() + ExpansionsSize); 04171 return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T, method, SR); 04172 } 04173 04174 ObjCDictionaryLiteral * 04175 ObjCDictionaryLiteral::CreateEmpty(const ASTContext &C, unsigned NumElements, 04176 bool HasPackExpansions) { 04177 unsigned ExpansionsSize = 0; 04178 if (HasPackExpansions) 04179 ExpansionsSize = sizeof(ExpansionData) * NumElements; 04180 void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) + 04181 sizeof(KeyValuePair) * NumElements + ExpansionsSize); 04182 return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements, 04183 HasPackExpansions); 04184 } 04185 04186 ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(const ASTContext &C, 04187 Expr *base, 04188 Expr *key, QualType T, 04189 ObjCMethodDecl *getMethod, 04190 ObjCMethodDecl *setMethod, 04191 SourceLocation RB) { 04192 void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr)); 04193 return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue, 04194 OK_ObjCSubscript, 04195 getMethod, setMethod, RB); 04196 } 04197 04198 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args, 04199 QualType t, AtomicOp op, SourceLocation RP) 04200 : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary, 04201 false, false, false, false), 04202 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) 04203 { 04204 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions"); 04205 for (unsigned i = 0; i != args.size(); i++) { 04206 if (args[i]->isTypeDependent()) 04207 ExprBits.TypeDependent = true; 04208 if (args[i]->isValueDependent()) 04209 ExprBits.ValueDependent = true; 04210 if (args[i]->isInstantiationDependent()) 04211 ExprBits.InstantiationDependent = true; 04212 if (args[i]->containsUnexpandedParameterPack()) 04213 ExprBits.ContainsUnexpandedParameterPack = true; 04214 04215 SubExprs[i] = args[i]; 04216 } 04217 } 04218 04219 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) { 04220 switch (Op) { 04221 case AO__c11_atomic_init: 04222 case AO__c11_atomic_load: 04223 case AO__atomic_load_n: 04224 return 2; 04225 04226 case AO__c11_atomic_store: 04227 case AO__c11_atomic_exchange: 04228 case AO__atomic_load: 04229 case AO__atomic_store: 04230 case AO__atomic_store_n: 04231 case AO__atomic_exchange_n: 04232 case AO__c11_atomic_fetch_add: 04233 case AO__c11_atomic_fetch_sub: 04234 case AO__c11_atomic_fetch_and: 04235 case AO__c11_atomic_fetch_or: 04236 case AO__c11_atomic_fetch_xor: 04237 case AO__atomic_fetch_add: 04238 case AO__atomic_fetch_sub: 04239 case AO__atomic_fetch_and: 04240 case AO__atomic_fetch_or: 04241 case AO__atomic_fetch_xor: 04242 case AO__atomic_fetch_nand: 04243 case AO__atomic_add_fetch: 04244 case AO__atomic_sub_fetch: 04245 case AO__atomic_and_fetch: 04246 case AO__atomic_or_fetch: 04247 case AO__atomic_xor_fetch: 04248 case AO__atomic_nand_fetch: 04249 return 3; 04250 04251 case AO__atomic_exchange: 04252 return 4; 04253 04254 case AO__c11_atomic_compare_exchange_strong: 04255 case AO__c11_atomic_compare_exchange_weak: 04256 return 5; 04257 04258 case AO__atomic_compare_exchange: 04259 case AO__atomic_compare_exchange_n: 04260 return 6; 04261 } 04262 llvm_unreachable("unknown atomic op"); 04263 }