clang API Documentation
00001 //= ProgramState.cpp - Path-Sensitive "State" for tracking values --*- C++ -*--= 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements ProgramState and ProgramStateManager. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 00015 #include "clang/Analysis/CFG.h" 00016 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 00017 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 00018 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h" 00019 #include "clang/StaticAnalyzer/Core/PathSensitive/TaintManager.h" 00020 #include "llvm/Support/raw_ostream.h" 00021 00022 using namespace clang; 00023 using namespace ento; 00024 00025 namespace clang { namespace ento { 00026 /// Increments the number of times this state is referenced. 00027 00028 void ProgramStateRetain(const ProgramState *state) { 00029 ++const_cast<ProgramState*>(state)->refCount; 00030 } 00031 00032 /// Decrement the number of times this state is referenced. 00033 void ProgramStateRelease(const ProgramState *state) { 00034 assert(state->refCount > 0); 00035 ProgramState *s = const_cast<ProgramState*>(state); 00036 if (--s->refCount == 0) { 00037 ProgramStateManager &Mgr = s->getStateManager(); 00038 Mgr.StateSet.RemoveNode(s); 00039 s->~ProgramState(); 00040 Mgr.freeStates.push_back(s); 00041 } 00042 } 00043 }} 00044 00045 ProgramState::ProgramState(ProgramStateManager *mgr, const Environment& env, 00046 StoreRef st, GenericDataMap gdm) 00047 : stateMgr(mgr), 00048 Env(env), 00049 store(st.getStore()), 00050 GDM(gdm), 00051 refCount(0) { 00052 stateMgr->getStoreManager().incrementReferenceCount(store); 00053 } 00054 00055 ProgramState::ProgramState(const ProgramState &RHS) 00056 : llvm::FoldingSetNode(), 00057 stateMgr(RHS.stateMgr), 00058 Env(RHS.Env), 00059 store(RHS.store), 00060 GDM(RHS.GDM), 00061 refCount(0) { 00062 stateMgr->getStoreManager().incrementReferenceCount(store); 00063 } 00064 00065 ProgramState::~ProgramState() { 00066 if (store) 00067 stateMgr->getStoreManager().decrementReferenceCount(store); 00068 } 00069 00070 ProgramStateManager::ProgramStateManager(ASTContext &Ctx, 00071 StoreManagerCreator CreateSMgr, 00072 ConstraintManagerCreator CreateCMgr, 00073 llvm::BumpPtrAllocator &alloc, 00074 SubEngine *SubEng) 00075 : Eng(SubEng), EnvMgr(alloc), GDMFactory(alloc), 00076 svalBuilder(createSimpleSValBuilder(alloc, Ctx, *this)), 00077 CallEventMgr(new CallEventManager(alloc)), Alloc(alloc) { 00078 StoreMgr = (*CreateSMgr)(*this); 00079 ConstraintMgr = (*CreateCMgr)(*this, SubEng); 00080 } 00081 00082 00083 ProgramStateManager::~ProgramStateManager() { 00084 for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end(); 00085 I!=E; ++I) 00086 I->second.second(I->second.first); 00087 } 00088 00089 ProgramStateRef 00090 ProgramStateManager::removeDeadBindings(ProgramStateRef state, 00091 const StackFrameContext *LCtx, 00092 SymbolReaper& SymReaper) { 00093 00094 // This code essentially performs a "mark-and-sweep" of the VariableBindings. 00095 // The roots are any Block-level exprs and Decls that our liveness algorithm 00096 // tells us are live. We then see what Decls they may reference, and keep 00097 // those around. This code more than likely can be made faster, and the 00098 // frequency of which this method is called should be experimented with 00099 // for optimum performance. 00100 ProgramState NewState = *state; 00101 00102 NewState.Env = EnvMgr.removeDeadBindings(NewState.Env, SymReaper, state); 00103 00104 // Clean up the store. 00105 StoreRef newStore = StoreMgr->removeDeadBindings(NewState.getStore(), LCtx, 00106 SymReaper); 00107 NewState.setStore(newStore); 00108 SymReaper.setReapedStore(newStore); 00109 00110 ProgramStateRef Result = getPersistentState(NewState); 00111 return ConstraintMgr->removeDeadBindings(Result, SymReaper); 00112 } 00113 00114 ProgramStateRef ProgramState::bindLoc(Loc LV, SVal V, bool notifyChanges) const { 00115 ProgramStateManager &Mgr = getStateManager(); 00116 ProgramStateRef newState = makeWithStore(Mgr.StoreMgr->Bind(getStore(), 00117 LV, V)); 00118 const MemRegion *MR = LV.getAsRegion(); 00119 if (MR && Mgr.getOwningEngine() && notifyChanges) 00120 return Mgr.getOwningEngine()->processRegionChange(newState, MR); 00121 00122 return newState; 00123 } 00124 00125 ProgramStateRef ProgramState::bindDefault(SVal loc, SVal V) const { 00126 ProgramStateManager &Mgr = getStateManager(); 00127 const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion(); 00128 const StoreRef &newStore = Mgr.StoreMgr->BindDefault(getStore(), R, V); 00129 ProgramStateRef new_state = makeWithStore(newStore); 00130 return Mgr.getOwningEngine() ? 00131 Mgr.getOwningEngine()->processRegionChange(new_state, R) : 00132 new_state; 00133 } 00134 00135 typedef ArrayRef<const MemRegion *> RegionList; 00136 typedef ArrayRef<SVal> ValueList; 00137 00138 ProgramStateRef 00139 ProgramState::invalidateRegions(RegionList Regions, 00140 const Expr *E, unsigned Count, 00141 const LocationContext *LCtx, 00142 bool CausedByPointerEscape, 00143 InvalidatedSymbols *IS, 00144 const CallEvent *Call, 00145 RegionAndSymbolInvalidationTraits *ITraits) const { 00146 SmallVector<SVal, 8> Values; 00147 for (RegionList::const_iterator I = Regions.begin(), 00148 End = Regions.end(); I != End; ++I) 00149 Values.push_back(loc::MemRegionVal(*I)); 00150 00151 return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape, 00152 IS, ITraits, Call); 00153 } 00154 00155 ProgramStateRef 00156 ProgramState::invalidateRegions(ValueList Values, 00157 const Expr *E, unsigned Count, 00158 const LocationContext *LCtx, 00159 bool CausedByPointerEscape, 00160 InvalidatedSymbols *IS, 00161 const CallEvent *Call, 00162 RegionAndSymbolInvalidationTraits *ITraits) const { 00163 00164 return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape, 00165 IS, ITraits, Call); 00166 } 00167 00168 ProgramStateRef 00169 ProgramState::invalidateRegionsImpl(ValueList Values, 00170 const Expr *E, unsigned Count, 00171 const LocationContext *LCtx, 00172 bool CausedByPointerEscape, 00173 InvalidatedSymbols *IS, 00174 RegionAndSymbolInvalidationTraits *ITraits, 00175 const CallEvent *Call) const { 00176 ProgramStateManager &Mgr = getStateManager(); 00177 SubEngine* Eng = Mgr.getOwningEngine(); 00178 00179 InvalidatedSymbols Invalidated; 00180 if (!IS) 00181 IS = &Invalidated; 00182 00183 RegionAndSymbolInvalidationTraits ITraitsLocal; 00184 if (!ITraits) 00185 ITraits = &ITraitsLocal; 00186 00187 if (Eng) { 00188 StoreManager::InvalidatedRegions TopLevelInvalidated; 00189 StoreManager::InvalidatedRegions Invalidated; 00190 const StoreRef &newStore 00191 = Mgr.StoreMgr->invalidateRegions(getStore(), Values, E, Count, LCtx, Call, 00192 *IS, *ITraits, &TopLevelInvalidated, 00193 &Invalidated); 00194 00195 ProgramStateRef newState = makeWithStore(newStore); 00196 00197 if (CausedByPointerEscape) { 00198 newState = Eng->notifyCheckersOfPointerEscape(newState, IS, 00199 TopLevelInvalidated, 00200 Invalidated, Call, 00201 *ITraits); 00202 } 00203 00204 return Eng->processRegionChanges(newState, IS, TopLevelInvalidated, 00205 Invalidated, Call); 00206 } 00207 00208 const StoreRef &newStore = 00209 Mgr.StoreMgr->invalidateRegions(getStore(), Values, E, Count, LCtx, Call, 00210 *IS, *ITraits, nullptr, nullptr); 00211 return makeWithStore(newStore); 00212 } 00213 00214 ProgramStateRef ProgramState::killBinding(Loc LV) const { 00215 assert(!LV.getAs<loc::MemRegionVal>() && "Use invalidateRegion instead."); 00216 00217 Store OldStore = getStore(); 00218 const StoreRef &newStore = 00219 getStateManager().StoreMgr->killBinding(OldStore, LV); 00220 00221 if (newStore.getStore() == OldStore) 00222 return this; 00223 00224 return makeWithStore(newStore); 00225 } 00226 00227 ProgramStateRef 00228 ProgramState::enterStackFrame(const CallEvent &Call, 00229 const StackFrameContext *CalleeCtx) const { 00230 const StoreRef &NewStore = 00231 getStateManager().StoreMgr->enterStackFrame(getStore(), Call, CalleeCtx); 00232 return makeWithStore(NewStore); 00233 } 00234 00235 SVal ProgramState::getSValAsScalarOrLoc(const MemRegion *R) const { 00236 // We only want to do fetches from regions that we can actually bind 00237 // values. For example, SymbolicRegions of type 'id<...>' cannot 00238 // have direct bindings (but their can be bindings on their subregions). 00239 if (!R->isBoundable()) 00240 return UnknownVal(); 00241 00242 if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) { 00243 QualType T = TR->getValueType(); 00244 if (Loc::isLocType(T) || T->isIntegralOrEnumerationType()) 00245 return getSVal(R); 00246 } 00247 00248 return UnknownVal(); 00249 } 00250 00251 SVal ProgramState::getSVal(Loc location, QualType T) const { 00252 SVal V = getRawSVal(cast<Loc>(location), T); 00253 00254 // If 'V' is a symbolic value that is *perfectly* constrained to 00255 // be a constant value, use that value instead to lessen the burden 00256 // on later analysis stages (so we have less symbolic values to reason 00257 // about). 00258 if (!T.isNull()) { 00259 if (SymbolRef sym = V.getAsSymbol()) { 00260 if (const llvm::APSInt *Int = getStateManager() 00261 .getConstraintManager() 00262 .getSymVal(this, sym)) { 00263 // FIXME: Because we don't correctly model (yet) sign-extension 00264 // and truncation of symbolic values, we need to convert 00265 // the integer value to the correct signedness and bitwidth. 00266 // 00267 // This shows up in the following: 00268 // 00269 // char foo(); 00270 // unsigned x = foo(); 00271 // if (x == 54) 00272 // ... 00273 // 00274 // The symbolic value stored to 'x' is actually the conjured 00275 // symbol for the call to foo(); the type of that symbol is 'char', 00276 // not unsigned. 00277 const llvm::APSInt &NewV = getBasicVals().Convert(T, *Int); 00278 00279 if (V.getAs<Loc>()) 00280 return loc::ConcreteInt(NewV); 00281 else 00282 return nonloc::ConcreteInt(NewV); 00283 } 00284 } 00285 } 00286 00287 return V; 00288 } 00289 00290 ProgramStateRef ProgramState::BindExpr(const Stmt *S, 00291 const LocationContext *LCtx, 00292 SVal V, bool Invalidate) const{ 00293 Environment NewEnv = 00294 getStateManager().EnvMgr.bindExpr(Env, EnvironmentEntry(S, LCtx), V, 00295 Invalidate); 00296 if (NewEnv == Env) 00297 return this; 00298 00299 ProgramState NewSt = *this; 00300 NewSt.Env = NewEnv; 00301 return getStateManager().getPersistentState(NewSt); 00302 } 00303 00304 ProgramStateRef ProgramState::assumeInBound(DefinedOrUnknownSVal Idx, 00305 DefinedOrUnknownSVal UpperBound, 00306 bool Assumption, 00307 QualType indexTy) const { 00308 if (Idx.isUnknown() || UpperBound.isUnknown()) 00309 return this; 00310 00311 // Build an expression for 0 <= Idx < UpperBound. 00312 // This is the same as Idx + MIN < UpperBound + MIN, if overflow is allowed. 00313 // FIXME: This should probably be part of SValBuilder. 00314 ProgramStateManager &SM = getStateManager(); 00315 SValBuilder &svalBuilder = SM.getSValBuilder(); 00316 ASTContext &Ctx = svalBuilder.getContext(); 00317 00318 // Get the offset: the minimum value of the array index type. 00319 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 00320 // FIXME: This should be using ValueManager::ArrayindexTy...somehow. 00321 if (indexTy.isNull()) 00322 indexTy = Ctx.IntTy; 00323 nonloc::ConcreteInt Min(BVF.getMinValue(indexTy)); 00324 00325 // Adjust the index. 00326 SVal newIdx = svalBuilder.evalBinOpNN(this, BO_Add, 00327 Idx.castAs<NonLoc>(), Min, indexTy); 00328 if (newIdx.isUnknownOrUndef()) 00329 return this; 00330 00331 // Adjust the upper bound. 00332 SVal newBound = 00333 svalBuilder.evalBinOpNN(this, BO_Add, UpperBound.castAs<NonLoc>(), 00334 Min, indexTy); 00335 00336 if (newBound.isUnknownOrUndef()) 00337 return this; 00338 00339 // Build the actual comparison. 00340 SVal inBound = svalBuilder.evalBinOpNN(this, BO_LT, newIdx.castAs<NonLoc>(), 00341 newBound.castAs<NonLoc>(), Ctx.IntTy); 00342 if (inBound.isUnknownOrUndef()) 00343 return this; 00344 00345 // Finally, let the constraint manager take care of it. 00346 ConstraintManager &CM = SM.getConstraintManager(); 00347 return CM.assume(this, inBound.castAs<DefinedSVal>(), Assumption); 00348 } 00349 00350 ConditionTruthVal ProgramState::isNull(SVal V) const { 00351 if (V.isZeroConstant()) 00352 return true; 00353 00354 if (V.isConstant()) 00355 return false; 00356 00357 SymbolRef Sym = V.getAsSymbol(/* IncludeBaseRegion */ true); 00358 if (!Sym) 00359 return ConditionTruthVal(); 00360 00361 return getStateManager().ConstraintMgr->isNull(this, Sym); 00362 } 00363 00364 ProgramStateRef ProgramStateManager::getInitialState(const LocationContext *InitLoc) { 00365 ProgramState State(this, 00366 EnvMgr.getInitialEnvironment(), 00367 StoreMgr->getInitialStore(InitLoc), 00368 GDMFactory.getEmptyMap()); 00369 00370 return getPersistentState(State); 00371 } 00372 00373 ProgramStateRef ProgramStateManager::getPersistentStateWithGDM( 00374 ProgramStateRef FromState, 00375 ProgramStateRef GDMState) { 00376 ProgramState NewState(*FromState); 00377 NewState.GDM = GDMState->GDM; 00378 return getPersistentState(NewState); 00379 } 00380 00381 ProgramStateRef ProgramStateManager::getPersistentState(ProgramState &State) { 00382 00383 llvm::FoldingSetNodeID ID; 00384 State.Profile(ID); 00385 void *InsertPos; 00386 00387 if (ProgramState *I = StateSet.FindNodeOrInsertPos(ID, InsertPos)) 00388 return I; 00389 00390 ProgramState *newState = nullptr; 00391 if (!freeStates.empty()) { 00392 newState = freeStates.back(); 00393 freeStates.pop_back(); 00394 } 00395 else { 00396 newState = (ProgramState*) Alloc.Allocate<ProgramState>(); 00397 } 00398 new (newState) ProgramState(State); 00399 StateSet.InsertNode(newState, InsertPos); 00400 return newState; 00401 } 00402 00403 ProgramStateRef ProgramState::makeWithStore(const StoreRef &store) const { 00404 ProgramState NewSt(*this); 00405 NewSt.setStore(store); 00406 return getStateManager().getPersistentState(NewSt); 00407 } 00408 00409 void ProgramState::setStore(const StoreRef &newStore) { 00410 Store newStoreStore = newStore.getStore(); 00411 if (newStoreStore) 00412 stateMgr->getStoreManager().incrementReferenceCount(newStoreStore); 00413 if (store) 00414 stateMgr->getStoreManager().decrementReferenceCount(store); 00415 store = newStoreStore; 00416 } 00417 00418 //===----------------------------------------------------------------------===// 00419 // State pretty-printing. 00420 //===----------------------------------------------------------------------===// 00421 00422 void ProgramState::print(raw_ostream &Out, 00423 const char *NL, const char *Sep) const { 00424 // Print the store. 00425 ProgramStateManager &Mgr = getStateManager(); 00426 Mgr.getStoreManager().print(getStore(), Out, NL, Sep); 00427 00428 // Print out the environment. 00429 Env.print(Out, NL, Sep); 00430 00431 // Print out the constraints. 00432 Mgr.getConstraintManager().print(this, Out, NL, Sep); 00433 00434 // Print checker-specific data. 00435 Mgr.getOwningEngine()->printState(Out, this, NL, Sep); 00436 } 00437 00438 void ProgramState::printDOT(raw_ostream &Out) const { 00439 print(Out, "\\l", "\\|"); 00440 } 00441 00442 void ProgramState::dump() const { 00443 print(llvm::errs()); 00444 } 00445 00446 void ProgramState::printTaint(raw_ostream &Out, 00447 const char *NL, const char *Sep) const { 00448 TaintMapImpl TM = get<TaintMap>(); 00449 00450 if (!TM.isEmpty()) 00451 Out <<"Tainted Symbols:" << NL; 00452 00453 for (TaintMapImpl::iterator I = TM.begin(), E = TM.end(); I != E; ++I) { 00454 Out << I->first << " : " << I->second << NL; 00455 } 00456 } 00457 00458 void ProgramState::dumpTaint() const { 00459 printTaint(llvm::errs()); 00460 } 00461 00462 //===----------------------------------------------------------------------===// 00463 // Generic Data Map. 00464 //===----------------------------------------------------------------------===// 00465 00466 void *const* ProgramState::FindGDM(void *K) const { 00467 return GDM.lookup(K); 00468 } 00469 00470 void* 00471 ProgramStateManager::FindGDMContext(void *K, 00472 void *(*CreateContext)(llvm::BumpPtrAllocator&), 00473 void (*DeleteContext)(void*)) { 00474 00475 std::pair<void*, void (*)(void*)>& p = GDMContexts[K]; 00476 if (!p.first) { 00477 p.first = CreateContext(Alloc); 00478 p.second = DeleteContext; 00479 } 00480 00481 return p.first; 00482 } 00483 00484 ProgramStateRef ProgramStateManager::addGDM(ProgramStateRef St, void *Key, void *Data){ 00485 ProgramState::GenericDataMap M1 = St->getGDM(); 00486 ProgramState::GenericDataMap M2 = GDMFactory.add(M1, Key, Data); 00487 00488 if (M1 == M2) 00489 return St; 00490 00491 ProgramState NewSt = *St; 00492 NewSt.GDM = M2; 00493 return getPersistentState(NewSt); 00494 } 00495 00496 ProgramStateRef ProgramStateManager::removeGDM(ProgramStateRef state, void *Key) { 00497 ProgramState::GenericDataMap OldM = state->getGDM(); 00498 ProgramState::GenericDataMap NewM = GDMFactory.remove(OldM, Key); 00499 00500 if (NewM == OldM) 00501 return state; 00502 00503 ProgramState NewState = *state; 00504 NewState.GDM = NewM; 00505 return getPersistentState(NewState); 00506 } 00507 00508 bool ScanReachableSymbols::scan(nonloc::LazyCompoundVal val) { 00509 bool wasVisited = !visited.insert(val.getCVData()).second; 00510 if (wasVisited) 00511 return true; 00512 00513 StoreManager &StoreMgr = state->getStateManager().getStoreManager(); 00514 // FIXME: We don't really want to use getBaseRegion() here because pointer 00515 // arithmetic doesn't apply, but scanReachableSymbols only accepts base 00516 // regions right now. 00517 const MemRegion *R = val.getRegion()->getBaseRegion(); 00518 return StoreMgr.scanReachableSymbols(val.getStore(), R, *this); 00519 } 00520 00521 bool ScanReachableSymbols::scan(nonloc::CompoundVal val) { 00522 for (nonloc::CompoundVal::iterator I=val.begin(), E=val.end(); I!=E; ++I) 00523 if (!scan(*I)) 00524 return false; 00525 00526 return true; 00527 } 00528 00529 bool ScanReachableSymbols::scan(const SymExpr *sym) { 00530 bool wasVisited = !visited.insert(sym).second; 00531 if (wasVisited) 00532 return true; 00533 00534 if (!visitor.VisitSymbol(sym)) 00535 return false; 00536 00537 // TODO: should be rewritten using SymExpr::symbol_iterator. 00538 switch (sym->getKind()) { 00539 case SymExpr::RegionValueKind: 00540 case SymExpr::ConjuredKind: 00541 case SymExpr::DerivedKind: 00542 case SymExpr::ExtentKind: 00543 case SymExpr::MetadataKind: 00544 break; 00545 case SymExpr::CastSymbolKind: 00546 return scan(cast<SymbolCast>(sym)->getOperand()); 00547 case SymExpr::SymIntKind: 00548 return scan(cast<SymIntExpr>(sym)->getLHS()); 00549 case SymExpr::IntSymKind: 00550 return scan(cast<IntSymExpr>(sym)->getRHS()); 00551 case SymExpr::SymSymKind: { 00552 const SymSymExpr *x = cast<SymSymExpr>(sym); 00553 return scan(x->getLHS()) && scan(x->getRHS()); 00554 } 00555 } 00556 return true; 00557 } 00558 00559 bool ScanReachableSymbols::scan(SVal val) { 00560 if (Optional<loc::MemRegionVal> X = val.getAs<loc::MemRegionVal>()) 00561 return scan(X->getRegion()); 00562 00563 if (Optional<nonloc::LazyCompoundVal> X = 00564 val.getAs<nonloc::LazyCompoundVal>()) 00565 return scan(*X); 00566 00567 if (Optional<nonloc::LocAsInteger> X = val.getAs<nonloc::LocAsInteger>()) 00568 return scan(X->getLoc()); 00569 00570 if (SymbolRef Sym = val.getAsSymbol()) 00571 return scan(Sym); 00572 00573 if (const SymExpr *Sym = val.getAsSymbolicExpression()) 00574 return scan(Sym); 00575 00576 if (Optional<nonloc::CompoundVal> X = val.getAs<nonloc::CompoundVal>()) 00577 return scan(*X); 00578 00579 return true; 00580 } 00581 00582 bool ScanReachableSymbols::scan(const MemRegion *R) { 00583 if (isa<MemSpaceRegion>(R)) 00584 return true; 00585 00586 bool wasVisited = !visited.insert(R).second; 00587 if (wasVisited) 00588 return true; 00589 00590 if (!visitor.VisitMemRegion(R)) 00591 return false; 00592 00593 // If this is a symbolic region, visit the symbol for the region. 00594 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) 00595 if (!visitor.VisitSymbol(SR->getSymbol())) 00596 return false; 00597 00598 // If this is a subregion, also visit the parent regions. 00599 if (const SubRegion *SR = dyn_cast<SubRegion>(R)) { 00600 const MemRegion *Super = SR->getSuperRegion(); 00601 if (!scan(Super)) 00602 return false; 00603 00604 // When we reach the topmost region, scan all symbols in it. 00605 if (isa<MemSpaceRegion>(Super)) { 00606 StoreManager &StoreMgr = state->getStateManager().getStoreManager(); 00607 if (!StoreMgr.scanReachableSymbols(state->getStore(), SR, *this)) 00608 return false; 00609 } 00610 } 00611 00612 // Regions captured by a block are also implicitly reachable. 00613 if (const BlockDataRegion *BDR = dyn_cast<BlockDataRegion>(R)) { 00614 BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(), 00615 E = BDR->referenced_vars_end(); 00616 for ( ; I != E; ++I) { 00617 if (!scan(I.getCapturedRegion())) 00618 return false; 00619 } 00620 } 00621 00622 return true; 00623 } 00624 00625 bool ProgramState::scanReachableSymbols(SVal val, SymbolVisitor& visitor) const { 00626 ScanReachableSymbols S(this, visitor); 00627 return S.scan(val); 00628 } 00629 00630 bool ProgramState::scanReachableSymbols(const SVal *I, const SVal *E, 00631 SymbolVisitor &visitor) const { 00632 ScanReachableSymbols S(this, visitor); 00633 for ( ; I != E; ++I) { 00634 if (!S.scan(*I)) 00635 return false; 00636 } 00637 return true; 00638 } 00639 00640 bool ProgramState::scanReachableSymbols(const MemRegion * const *I, 00641 const MemRegion * const *E, 00642 SymbolVisitor &visitor) const { 00643 ScanReachableSymbols S(this, visitor); 00644 for ( ; I != E; ++I) { 00645 if (!S.scan(*I)) 00646 return false; 00647 } 00648 return true; 00649 } 00650 00651 ProgramStateRef ProgramState::addTaint(const Stmt *S, 00652 const LocationContext *LCtx, 00653 TaintTagType Kind) const { 00654 if (const Expr *E = dyn_cast_or_null<Expr>(S)) 00655 S = E->IgnoreParens(); 00656 00657 SymbolRef Sym = getSVal(S, LCtx).getAsSymbol(); 00658 if (Sym) 00659 return addTaint(Sym, Kind); 00660 00661 const MemRegion *R = getSVal(S, LCtx).getAsRegion(); 00662 addTaint(R, Kind); 00663 00664 // Cannot add taint, so just return the state. 00665 return this; 00666 } 00667 00668 ProgramStateRef ProgramState::addTaint(const MemRegion *R, 00669 TaintTagType Kind) const { 00670 if (const SymbolicRegion *SR = dyn_cast_or_null<SymbolicRegion>(R)) 00671 return addTaint(SR->getSymbol(), Kind); 00672 return this; 00673 } 00674 00675 ProgramStateRef ProgramState::addTaint(SymbolRef Sym, 00676 TaintTagType Kind) const { 00677 // If this is a symbol cast, remove the cast before adding the taint. Taint 00678 // is cast agnostic. 00679 while (const SymbolCast *SC = dyn_cast<SymbolCast>(Sym)) 00680 Sym = SC->getOperand(); 00681 00682 ProgramStateRef NewState = set<TaintMap>(Sym, Kind); 00683 assert(NewState); 00684 return NewState; 00685 } 00686 00687 bool ProgramState::isTainted(const Stmt *S, const LocationContext *LCtx, 00688 TaintTagType Kind) const { 00689 if (const Expr *E = dyn_cast_or_null<Expr>(S)) 00690 S = E->IgnoreParens(); 00691 00692 SVal val = getSVal(S, LCtx); 00693 return isTainted(val, Kind); 00694 } 00695 00696 bool ProgramState::isTainted(SVal V, TaintTagType Kind) const { 00697 if (const SymExpr *Sym = V.getAsSymExpr()) 00698 return isTainted(Sym, Kind); 00699 if (const MemRegion *Reg = V.getAsRegion()) 00700 return isTainted(Reg, Kind); 00701 return false; 00702 } 00703 00704 bool ProgramState::isTainted(const MemRegion *Reg, TaintTagType K) const { 00705 if (!Reg) 00706 return false; 00707 00708 // Element region (array element) is tainted if either the base or the offset 00709 // are tainted. 00710 if (const ElementRegion *ER = dyn_cast<ElementRegion>(Reg)) 00711 return isTainted(ER->getSuperRegion(), K) || isTainted(ER->getIndex(), K); 00712 00713 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg)) 00714 return isTainted(SR->getSymbol(), K); 00715 00716 if (const SubRegion *ER = dyn_cast<SubRegion>(Reg)) 00717 return isTainted(ER->getSuperRegion(), K); 00718 00719 return false; 00720 } 00721 00722 bool ProgramState::isTainted(SymbolRef Sym, TaintTagType Kind) const { 00723 if (!Sym) 00724 return false; 00725 00726 // Traverse all the symbols this symbol depends on to see if any are tainted. 00727 bool Tainted = false; 00728 for (SymExpr::symbol_iterator SI = Sym->symbol_begin(), SE =Sym->symbol_end(); 00729 SI != SE; ++SI) { 00730 if (!isa<SymbolData>(*SI)) 00731 continue; 00732 00733 const TaintTagType *Tag = get<TaintMap>(*SI); 00734 Tainted = (Tag && *Tag == Kind); 00735 00736 // If this is a SymbolDerived with a tainted parent, it's also tainted. 00737 if (const SymbolDerived *SD = dyn_cast<SymbolDerived>(*SI)) 00738 Tainted = Tainted || isTainted(SD->getParentSymbol(), Kind); 00739 00740 // If memory region is tainted, data is also tainted. 00741 if (const SymbolRegionValue *SRV = dyn_cast<SymbolRegionValue>(*SI)) 00742 Tainted = Tainted || isTainted(SRV->getRegion(), Kind); 00743 00744 // If If this is a SymbolCast from a tainted value, it's also tainted. 00745 if (const SymbolCast *SC = dyn_cast<SymbolCast>(*SI)) 00746 Tainted = Tainted || isTainted(SC->getOperand(), Kind); 00747 00748 if (Tainted) 00749 return true; 00750 } 00751 00752 return Tainted; 00753 } 00754 00755 /// The GDM component containing the dynamic type info. This is a map from a 00756 /// symbol to its most likely type. 00757 REGISTER_TRAIT_WITH_PROGRAMSTATE(DynamicTypeMap, 00758 CLANG_ENTO_PROGRAMSTATE_MAP(const MemRegion *, 00759 DynamicTypeInfo)) 00760 00761 DynamicTypeInfo ProgramState::getDynamicTypeInfo(const MemRegion *Reg) const { 00762 Reg = Reg->StripCasts(); 00763 00764 // Look up the dynamic type in the GDM. 00765 const DynamicTypeInfo *GDMType = get<DynamicTypeMap>(Reg); 00766 if (GDMType) 00767 return *GDMType; 00768 00769 // Otherwise, fall back to what we know about the region. 00770 if (const TypedRegion *TR = dyn_cast<TypedRegion>(Reg)) 00771 return DynamicTypeInfo(TR->getLocationType(), /*CanBeSubclass=*/false); 00772 00773 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg)) { 00774 SymbolRef Sym = SR->getSymbol(); 00775 return DynamicTypeInfo(Sym->getType()); 00776 } 00777 00778 return DynamicTypeInfo(); 00779 } 00780 00781 ProgramStateRef ProgramState::setDynamicTypeInfo(const MemRegion *Reg, 00782 DynamicTypeInfo NewTy) const { 00783 Reg = Reg->StripCasts(); 00784 ProgramStateRef NewState = set<DynamicTypeMap>(Reg, NewTy); 00785 assert(NewState); 00786 return NewState; 00787 }