clang API Documentation
00001 //=- ReachableCodePathInsensitive.cpp ---------------------------*- C++ --*-==// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements a flow-sensitive, path-insensitive analysis of 00011 // determining reachable blocks within a CFG. 00012 // 00013 //===----------------------------------------------------------------------===// 00014 00015 #include "clang/Analysis/Analyses/ReachableCode.h" 00016 #include "clang/Lex/Preprocessor.h" 00017 #include "clang/AST/Expr.h" 00018 #include "clang/AST/ExprCXX.h" 00019 #include "clang/AST/ExprObjC.h" 00020 #include "clang/AST/StmtCXX.h" 00021 #include "clang/AST/ParentMap.h" 00022 #include "clang/Analysis/AnalysisContext.h" 00023 #include "clang/Analysis/CFG.h" 00024 #include "clang/Basic/SourceManager.h" 00025 #include "llvm/ADT/BitVector.h" 00026 #include "llvm/ADT/SmallVector.h" 00027 00028 using namespace clang; 00029 00030 //===----------------------------------------------------------------------===// 00031 // Core Reachability Analysis routines. 00032 //===----------------------------------------------------------------------===// 00033 00034 static bool isEnumConstant(const Expr *Ex) { 00035 const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex); 00036 if (!DR) 00037 return false; 00038 return isa<EnumConstantDecl>(DR->getDecl()); 00039 } 00040 00041 static bool isTrivialExpression(const Expr *Ex) { 00042 Ex = Ex->IgnoreParenCasts(); 00043 return isa<IntegerLiteral>(Ex) || isa<StringLiteral>(Ex) || 00044 isa<CXXBoolLiteralExpr>(Ex) || isa<ObjCBoolLiteralExpr>(Ex) || 00045 isa<CharacterLiteral>(Ex) || 00046 isEnumConstant(Ex); 00047 } 00048 00049 static bool isTrivialDoWhile(const CFGBlock *B, const Stmt *S) { 00050 // Check if the block ends with a do...while() and see if 'S' is the 00051 // condition. 00052 if (const Stmt *Term = B->getTerminator()) { 00053 if (const DoStmt *DS = dyn_cast<DoStmt>(Term)) { 00054 const Expr *Cond = DS->getCond()->IgnoreParenCasts(); 00055 return Cond == S && isTrivialExpression(Cond); 00056 } 00057 } 00058 return false; 00059 } 00060 00061 static bool isDeadReturn(const CFGBlock *B, const Stmt *S) { 00062 // Look to see if the current control flow ends with a 'return', and see if 00063 // 'S' is a substatement. The 'return' may not be the last element in the 00064 // block, or may be in a subsequent block because of destructors. 00065 const CFGBlock *Current = B; 00066 while (true) { 00067 for (CFGBlock::const_reverse_iterator I = Current->rbegin(), 00068 E = Current->rend(); 00069 I != E; ++I) { 00070 if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) { 00071 if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(CS->getStmt())) { 00072 if (RS == S) 00073 return true; 00074 if (const Expr *RE = RS->getRetValue()) { 00075 RE = RE->IgnoreParenCasts(); 00076 if (RE == S) 00077 return true; 00078 ParentMap PM(const_cast<Expr *>(RE)); 00079 // If 'S' is in the ParentMap, it is a subexpression of 00080 // the return statement. 00081 return PM.getParent(S); 00082 } 00083 } 00084 break; 00085 } 00086 } 00087 // Note also that we are restricting the search for the return statement 00088 // to stop at control-flow; only part of a return statement may be dead, 00089 // without the whole return statement being dead. 00090 if (Current->getTerminator().isTemporaryDtorsBranch()) { 00091 // Temporary destructors have a predictable control flow, thus we want to 00092 // look into the next block for the return statement. 00093 // We look into the false branch, as we know the true branch only contains 00094 // the call to the destructor. 00095 assert(Current->succ_size() == 2); 00096 Current = *(Current->succ_begin() + 1); 00097 } else if (!Current->getTerminator() && Current->succ_size() == 1) { 00098 // If there is only one successor, we're not dealing with outgoing control 00099 // flow. Thus, look into the next block. 00100 Current = *Current->succ_begin(); 00101 if (Current->pred_size() > 1) { 00102 // If there is more than one predecessor, we're dealing with incoming 00103 // control flow - if the return statement is in that block, it might 00104 // well be reachable via a different control flow, thus it's not dead. 00105 return false; 00106 } 00107 } else { 00108 // We hit control flow or a dead end. Stop searching. 00109 return false; 00110 } 00111 } 00112 llvm_unreachable("Broke out of infinite loop."); 00113 } 00114 00115 static SourceLocation getTopMostMacro(SourceLocation Loc, SourceManager &SM) { 00116 assert(Loc.isMacroID()); 00117 SourceLocation Last; 00118 while (Loc.isMacroID()) { 00119 Last = Loc; 00120 Loc = SM.getImmediateMacroCallerLoc(Loc); 00121 } 00122 return Last; 00123 } 00124 00125 /// Returns true if the statement is expanded from a configuration macro. 00126 static bool isExpandedFromConfigurationMacro(const Stmt *S, 00127 Preprocessor &PP, 00128 bool IgnoreYES_NO = false) { 00129 // FIXME: This is not very precise. Here we just check to see if the 00130 // value comes from a macro, but we can do much better. This is likely 00131 // to be over conservative. This logic is factored into a separate function 00132 // so that we can refine it later. 00133 SourceLocation L = S->getLocStart(); 00134 if (L.isMacroID()) { 00135 if (IgnoreYES_NO) { 00136 // The Objective-C constant 'YES' and 'NO' 00137 // are defined as macros. Do not treat them 00138 // as configuration values. 00139 SourceManager &SM = PP.getSourceManager(); 00140 SourceLocation TopL = getTopMostMacro(L, SM); 00141 StringRef MacroName = PP.getImmediateMacroName(TopL); 00142 if (MacroName == "YES" || MacroName == "NO") 00143 return false; 00144 } 00145 return true; 00146 } 00147 return false; 00148 } 00149 00150 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP); 00151 00152 /// Returns true if the statement represents a configuration value. 00153 /// 00154 /// A configuration value is something usually determined at compile-time 00155 /// to conditionally always execute some branch. Such guards are for 00156 /// "sometimes unreachable" code. Such code is usually not interesting 00157 /// to report as unreachable, and may mask truly unreachable code within 00158 /// those blocks. 00159 static bool isConfigurationValue(const Stmt *S, 00160 Preprocessor &PP, 00161 SourceRange *SilenceableCondVal = nullptr, 00162 bool IncludeIntegers = true, 00163 bool WrappedInParens = false) { 00164 if (!S) 00165 return false; 00166 00167 if (const Expr *Ex = dyn_cast<Expr>(S)) 00168 S = Ex->IgnoreCasts(); 00169 00170 // Special case looking for the sigil '()' around an integer literal. 00171 if (const ParenExpr *PE = dyn_cast<ParenExpr>(S)) 00172 if (!PE->getLocStart().isMacroID()) 00173 return isConfigurationValue(PE->getSubExpr(), PP, SilenceableCondVal, 00174 IncludeIntegers, true); 00175 00176 if (const Expr *Ex = dyn_cast<Expr>(S)) 00177 S = Ex->IgnoreCasts(); 00178 00179 bool IgnoreYES_NO = false; 00180 00181 switch (S->getStmtClass()) { 00182 case Stmt::CallExprClass: { 00183 const FunctionDecl *Callee = 00184 dyn_cast_or_null<FunctionDecl>(cast<CallExpr>(S)->getCalleeDecl()); 00185 return Callee ? Callee->isConstexpr() : false; 00186 } 00187 case Stmt::DeclRefExprClass: 00188 return isConfigurationValue(cast<DeclRefExpr>(S)->getDecl(), PP); 00189 case Stmt::ObjCBoolLiteralExprClass: 00190 IgnoreYES_NO = true; 00191 // Fallthrough. 00192 case Stmt::CXXBoolLiteralExprClass: 00193 case Stmt::IntegerLiteralClass: { 00194 const Expr *E = cast<Expr>(S); 00195 if (IncludeIntegers) { 00196 if (SilenceableCondVal && !SilenceableCondVal->getBegin().isValid()) 00197 *SilenceableCondVal = E->getSourceRange(); 00198 return WrappedInParens || isExpandedFromConfigurationMacro(E, PP, IgnoreYES_NO); 00199 } 00200 return false; 00201 } 00202 case Stmt::MemberExprClass: 00203 return isConfigurationValue(cast<MemberExpr>(S)->getMemberDecl(), PP); 00204 case Stmt::UnaryExprOrTypeTraitExprClass: 00205 return true; 00206 case Stmt::BinaryOperatorClass: { 00207 const BinaryOperator *B = cast<BinaryOperator>(S); 00208 // Only include raw integers (not enums) as configuration 00209 // values if they are used in a logical or comparison operator 00210 // (not arithmetic). 00211 IncludeIntegers &= (B->isLogicalOp() || B->isComparisonOp()); 00212 return isConfigurationValue(B->getLHS(), PP, SilenceableCondVal, 00213 IncludeIntegers) || 00214 isConfigurationValue(B->getRHS(), PP, SilenceableCondVal, 00215 IncludeIntegers); 00216 } 00217 case Stmt::UnaryOperatorClass: { 00218 const UnaryOperator *UO = cast<UnaryOperator>(S); 00219 if (SilenceableCondVal) 00220 *SilenceableCondVal = UO->getSourceRange(); 00221 return UO->getOpcode() == UO_LNot && 00222 isConfigurationValue(UO->getSubExpr(), PP, SilenceableCondVal, 00223 IncludeIntegers, WrappedInParens); 00224 } 00225 default: 00226 return false; 00227 } 00228 } 00229 00230 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP) { 00231 if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) 00232 return isConfigurationValue(ED->getInitExpr(), PP); 00233 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 00234 // As a heuristic, treat globals as configuration values. Note 00235 // that we only will get here if Sema evaluated this 00236 // condition to a constant expression, which means the global 00237 // had to be declared in a way to be a truly constant value. 00238 // We could generalize this to local variables, but it isn't 00239 // clear if those truly represent configuration values that 00240 // gate unreachable code. 00241 if (!VD->hasLocalStorage()) 00242 return true; 00243 00244 // As a heuristic, locals that have been marked 'const' explicitly 00245 // can be treated as configuration values as well. 00246 return VD->getType().isLocalConstQualified(); 00247 } 00248 return false; 00249 } 00250 00251 /// Returns true if we should always explore all successors of a block. 00252 static bool shouldTreatSuccessorsAsReachable(const CFGBlock *B, 00253 Preprocessor &PP) { 00254 if (const Stmt *Term = B->getTerminator()) { 00255 if (isa<SwitchStmt>(Term)) 00256 return true; 00257 // Specially handle '||' and '&&'. 00258 if (isa<BinaryOperator>(Term)) { 00259 return isConfigurationValue(Term, PP); 00260 } 00261 } 00262 00263 const Stmt *Cond = B->getTerminatorCondition(/* stripParens */ false); 00264 return isConfigurationValue(Cond, PP); 00265 } 00266 00267 static unsigned scanFromBlock(const CFGBlock *Start, 00268 llvm::BitVector &Reachable, 00269 Preprocessor *PP, 00270 bool IncludeSometimesUnreachableEdges) { 00271 unsigned count = 0; 00272 00273 // Prep work queue 00274 SmallVector<const CFGBlock*, 32> WL; 00275 00276 // The entry block may have already been marked reachable 00277 // by the caller. 00278 if (!Reachable[Start->getBlockID()]) { 00279 ++count; 00280 Reachable[Start->getBlockID()] = true; 00281 } 00282 00283 WL.push_back(Start); 00284 00285 // Find the reachable blocks from 'Start'. 00286 while (!WL.empty()) { 00287 const CFGBlock *item = WL.pop_back_val(); 00288 00289 // There are cases where we want to treat all successors as reachable. 00290 // The idea is that some "sometimes unreachable" code is not interesting, 00291 // and that we should forge ahead and explore those branches anyway. 00292 // This allows us to potentially uncover some "always unreachable" code 00293 // within the "sometimes unreachable" code. 00294 // Look at the successors and mark then reachable. 00295 Optional<bool> TreatAllSuccessorsAsReachable; 00296 if (!IncludeSometimesUnreachableEdges) 00297 TreatAllSuccessorsAsReachable = false; 00298 00299 for (CFGBlock::const_succ_iterator I = item->succ_begin(), 00300 E = item->succ_end(); I != E; ++I) { 00301 const CFGBlock *B = *I; 00302 if (!B) do { 00303 const CFGBlock *UB = I->getPossiblyUnreachableBlock(); 00304 if (!UB) 00305 break; 00306 00307 if (!TreatAllSuccessorsAsReachable.hasValue()) { 00308 assert(PP); 00309 TreatAllSuccessorsAsReachable = 00310 shouldTreatSuccessorsAsReachable(item, *PP); 00311 } 00312 00313 if (TreatAllSuccessorsAsReachable.getValue()) { 00314 B = UB; 00315 break; 00316 } 00317 } 00318 while (false); 00319 00320 if (B) { 00321 unsigned blockID = B->getBlockID(); 00322 if (!Reachable[blockID]) { 00323 Reachable.set(blockID); 00324 WL.push_back(B); 00325 ++count; 00326 } 00327 } 00328 } 00329 } 00330 return count; 00331 } 00332 00333 static unsigned scanMaybeReachableFromBlock(const CFGBlock *Start, 00334 Preprocessor &PP, 00335 llvm::BitVector &Reachable) { 00336 return scanFromBlock(Start, Reachable, &PP, true); 00337 } 00338 00339 //===----------------------------------------------------------------------===// 00340 // Dead Code Scanner. 00341 //===----------------------------------------------------------------------===// 00342 00343 namespace { 00344 class DeadCodeScan { 00345 llvm::BitVector Visited; 00346 llvm::BitVector &Reachable; 00347 SmallVector<const CFGBlock *, 10> WorkList; 00348 Preprocessor &PP; 00349 00350 typedef SmallVector<std::pair<const CFGBlock *, const Stmt *>, 12> 00351 DeferredLocsTy; 00352 00353 DeferredLocsTy DeferredLocs; 00354 00355 public: 00356 DeadCodeScan(llvm::BitVector &reachable, Preprocessor &PP) 00357 : Visited(reachable.size()), 00358 Reachable(reachable), 00359 PP(PP) {} 00360 00361 void enqueue(const CFGBlock *block); 00362 unsigned scanBackwards(const CFGBlock *Start, 00363 clang::reachable_code::Callback &CB); 00364 00365 bool isDeadCodeRoot(const CFGBlock *Block); 00366 00367 const Stmt *findDeadCode(const CFGBlock *Block); 00368 00369 void reportDeadCode(const CFGBlock *B, 00370 const Stmt *S, 00371 clang::reachable_code::Callback &CB); 00372 }; 00373 } 00374 00375 void DeadCodeScan::enqueue(const CFGBlock *block) { 00376 unsigned blockID = block->getBlockID(); 00377 if (Reachable[blockID] || Visited[blockID]) 00378 return; 00379 Visited[blockID] = true; 00380 WorkList.push_back(block); 00381 } 00382 00383 bool DeadCodeScan::isDeadCodeRoot(const clang::CFGBlock *Block) { 00384 bool isDeadRoot = true; 00385 00386 for (CFGBlock::const_pred_iterator I = Block->pred_begin(), 00387 E = Block->pred_end(); I != E; ++I) { 00388 if (const CFGBlock *PredBlock = *I) { 00389 unsigned blockID = PredBlock->getBlockID(); 00390 if (Visited[blockID]) { 00391 isDeadRoot = false; 00392 continue; 00393 } 00394 if (!Reachable[blockID]) { 00395 isDeadRoot = false; 00396 Visited[blockID] = true; 00397 WorkList.push_back(PredBlock); 00398 continue; 00399 } 00400 } 00401 } 00402 00403 return isDeadRoot; 00404 } 00405 00406 static bool isValidDeadStmt(const Stmt *S) { 00407 if (S->getLocStart().isInvalid()) 00408 return false; 00409 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) 00410 return BO->getOpcode() != BO_Comma; 00411 return true; 00412 } 00413 00414 const Stmt *DeadCodeScan::findDeadCode(const clang::CFGBlock *Block) { 00415 for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I!=E; ++I) 00416 if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) { 00417 const Stmt *S = CS->getStmt(); 00418 if (isValidDeadStmt(S)) 00419 return S; 00420 } 00421 00422 if (CFGTerminator T = Block->getTerminator()) { 00423 if (!T.isTemporaryDtorsBranch()) { 00424 const Stmt *S = T.getStmt(); 00425 if (isValidDeadStmt(S)) 00426 return S; 00427 } 00428 } 00429 00430 return nullptr; 00431 } 00432 00433 static int SrcCmp(const std::pair<const CFGBlock *, const Stmt *> *p1, 00434 const std::pair<const CFGBlock *, const Stmt *> *p2) { 00435 if (p1->second->getLocStart() < p2->second->getLocStart()) 00436 return -1; 00437 if (p2->second->getLocStart() < p1->second->getLocStart()) 00438 return 1; 00439 return 0; 00440 } 00441 00442 unsigned DeadCodeScan::scanBackwards(const clang::CFGBlock *Start, 00443 clang::reachable_code::Callback &CB) { 00444 00445 unsigned count = 0; 00446 enqueue(Start); 00447 00448 while (!WorkList.empty()) { 00449 const CFGBlock *Block = WorkList.pop_back_val(); 00450 00451 // It is possible that this block has been marked reachable after 00452 // it was enqueued. 00453 if (Reachable[Block->getBlockID()]) 00454 continue; 00455 00456 // Look for any dead code within the block. 00457 const Stmt *S = findDeadCode(Block); 00458 00459 if (!S) { 00460 // No dead code. Possibly an empty block. Look at dead predecessors. 00461 for (CFGBlock::const_pred_iterator I = Block->pred_begin(), 00462 E = Block->pred_end(); I != E; ++I) { 00463 if (const CFGBlock *predBlock = *I) 00464 enqueue(predBlock); 00465 } 00466 continue; 00467 } 00468 00469 // Specially handle macro-expanded code. 00470 if (S->getLocStart().isMacroID()) { 00471 count += scanMaybeReachableFromBlock(Block, PP, Reachable); 00472 continue; 00473 } 00474 00475 if (isDeadCodeRoot(Block)) { 00476 reportDeadCode(Block, S, CB); 00477 count += scanMaybeReachableFromBlock(Block, PP, Reachable); 00478 } 00479 else { 00480 // Record this statement as the possibly best location in a 00481 // strongly-connected component of dead code for emitting a 00482 // warning. 00483 DeferredLocs.push_back(std::make_pair(Block, S)); 00484 } 00485 } 00486 00487 // If we didn't find a dead root, then report the dead code with the 00488 // earliest location. 00489 if (!DeferredLocs.empty()) { 00490 llvm::array_pod_sort(DeferredLocs.begin(), DeferredLocs.end(), SrcCmp); 00491 for (DeferredLocsTy::iterator I = DeferredLocs.begin(), 00492 E = DeferredLocs.end(); I != E; ++I) { 00493 const CFGBlock *Block = I->first; 00494 if (Reachable[Block->getBlockID()]) 00495 continue; 00496 reportDeadCode(Block, I->second, CB); 00497 count += scanMaybeReachableFromBlock(Block, PP, Reachable); 00498 } 00499 } 00500 00501 return count; 00502 } 00503 00504 static SourceLocation GetUnreachableLoc(const Stmt *S, 00505 SourceRange &R1, 00506 SourceRange &R2) { 00507 R1 = R2 = SourceRange(); 00508 00509 if (const Expr *Ex = dyn_cast<Expr>(S)) 00510 S = Ex->IgnoreParenImpCasts(); 00511 00512 switch (S->getStmtClass()) { 00513 case Expr::BinaryOperatorClass: { 00514 const BinaryOperator *BO = cast<BinaryOperator>(S); 00515 return BO->getOperatorLoc(); 00516 } 00517 case Expr::UnaryOperatorClass: { 00518 const UnaryOperator *UO = cast<UnaryOperator>(S); 00519 R1 = UO->getSubExpr()->getSourceRange(); 00520 return UO->getOperatorLoc(); 00521 } 00522 case Expr::CompoundAssignOperatorClass: { 00523 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S); 00524 R1 = CAO->getLHS()->getSourceRange(); 00525 R2 = CAO->getRHS()->getSourceRange(); 00526 return CAO->getOperatorLoc(); 00527 } 00528 case Expr::BinaryConditionalOperatorClass: 00529 case Expr::ConditionalOperatorClass: { 00530 const AbstractConditionalOperator *CO = 00531 cast<AbstractConditionalOperator>(S); 00532 return CO->getQuestionLoc(); 00533 } 00534 case Expr::MemberExprClass: { 00535 const MemberExpr *ME = cast<MemberExpr>(S); 00536 R1 = ME->getSourceRange(); 00537 return ME->getMemberLoc(); 00538 } 00539 case Expr::ArraySubscriptExprClass: { 00540 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(S); 00541 R1 = ASE->getLHS()->getSourceRange(); 00542 R2 = ASE->getRHS()->getSourceRange(); 00543 return ASE->getRBracketLoc(); 00544 } 00545 case Expr::CStyleCastExprClass: { 00546 const CStyleCastExpr *CSC = cast<CStyleCastExpr>(S); 00547 R1 = CSC->getSubExpr()->getSourceRange(); 00548 return CSC->getLParenLoc(); 00549 } 00550 case Expr::CXXFunctionalCastExprClass: { 00551 const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(S); 00552 R1 = CE->getSubExpr()->getSourceRange(); 00553 return CE->getLocStart(); 00554 } 00555 case Stmt::CXXTryStmtClass: { 00556 return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc(); 00557 } 00558 case Expr::ObjCBridgedCastExprClass: { 00559 const ObjCBridgedCastExpr *CSC = cast<ObjCBridgedCastExpr>(S); 00560 R1 = CSC->getSubExpr()->getSourceRange(); 00561 return CSC->getLParenLoc(); 00562 } 00563 default: ; 00564 } 00565 R1 = S->getSourceRange(); 00566 return S->getLocStart(); 00567 } 00568 00569 void DeadCodeScan::reportDeadCode(const CFGBlock *B, 00570 const Stmt *S, 00571 clang::reachable_code::Callback &CB) { 00572 // Classify the unreachable code found, or suppress it in some cases. 00573 reachable_code::UnreachableKind UK = reachable_code::UK_Other; 00574 00575 if (isa<BreakStmt>(S)) { 00576 UK = reachable_code::UK_Break; 00577 } 00578 else if (isTrivialDoWhile(B, S)) { 00579 return; 00580 } 00581 else if (isDeadReturn(B, S)) { 00582 UK = reachable_code::UK_Return; 00583 } 00584 00585 SourceRange SilenceableCondVal; 00586 00587 if (UK == reachable_code::UK_Other) { 00588 // Check if the dead code is part of the "loop target" of 00589 // a for/for-range loop. This is the block that contains 00590 // the increment code. 00591 if (const Stmt *LoopTarget = B->getLoopTarget()) { 00592 SourceLocation Loc = LoopTarget->getLocStart(); 00593 SourceRange R1(Loc, Loc), R2; 00594 00595 if (const ForStmt *FS = dyn_cast<ForStmt>(LoopTarget)) { 00596 const Expr *Inc = FS->getInc(); 00597 Loc = Inc->getLocStart(); 00598 R2 = Inc->getSourceRange(); 00599 } 00600 00601 CB.HandleUnreachable(reachable_code::UK_Loop_Increment, 00602 Loc, SourceRange(), SourceRange(Loc, Loc), R2); 00603 return; 00604 } 00605 00606 // Check if the dead block has a predecessor whose branch has 00607 // a configuration value that *could* be modified to 00608 // silence the warning. 00609 CFGBlock::const_pred_iterator PI = B->pred_begin(); 00610 if (PI != B->pred_end()) { 00611 if (const CFGBlock *PredBlock = PI->getPossiblyUnreachableBlock()) { 00612 const Stmt *TermCond = 00613 PredBlock->getTerminatorCondition(/* strip parens */ false); 00614 isConfigurationValue(TermCond, PP, &SilenceableCondVal); 00615 } 00616 } 00617 } 00618 00619 SourceRange R1, R2; 00620 SourceLocation Loc = GetUnreachableLoc(S, R1, R2); 00621 CB.HandleUnreachable(UK, Loc, SilenceableCondVal, R1, R2); 00622 } 00623 00624 //===----------------------------------------------------------------------===// 00625 // Reachability APIs. 00626 //===----------------------------------------------------------------------===// 00627 00628 namespace clang { namespace reachable_code { 00629 00630 void Callback::anchor() { } 00631 00632 unsigned ScanReachableFromBlock(const CFGBlock *Start, 00633 llvm::BitVector &Reachable) { 00634 return scanFromBlock(Start, Reachable, /* SourceManager* */ nullptr, false); 00635 } 00636 00637 void FindUnreachableCode(AnalysisDeclContext &AC, Preprocessor &PP, 00638 Callback &CB) { 00639 00640 CFG *cfg = AC.getCFG(); 00641 if (!cfg) 00642 return; 00643 00644 // Scan for reachable blocks from the entrance of the CFG. 00645 // If there are no unreachable blocks, we're done. 00646 llvm::BitVector reachable(cfg->getNumBlockIDs()); 00647 unsigned numReachable = 00648 scanMaybeReachableFromBlock(&cfg->getEntry(), PP, reachable); 00649 if (numReachable == cfg->getNumBlockIDs()) 00650 return; 00651 00652 // If there aren't explicit EH edges, we should include the 'try' dispatch 00653 // blocks as roots. 00654 if (!AC.getCFGBuildOptions().AddEHEdges) { 00655 for (CFG::try_block_iterator I = cfg->try_blocks_begin(), 00656 E = cfg->try_blocks_end() ; I != E; ++I) { 00657 numReachable += scanMaybeReachableFromBlock(*I, PP, reachable); 00658 } 00659 if (numReachable == cfg->getNumBlockIDs()) 00660 return; 00661 } 00662 00663 // There are some unreachable blocks. We need to find the root blocks that 00664 // contain code that should be considered unreachable. 00665 for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) { 00666 const CFGBlock *block = *I; 00667 // A block may have been marked reachable during this loop. 00668 if (reachable[block->getBlockID()]) 00669 continue; 00670 00671 DeadCodeScan DS(reachable, PP); 00672 numReachable += DS.scanBackwards(block, CB); 00673 00674 if (numReachable == cfg->getNumBlockIDs()) 00675 return; 00676 } 00677 } 00678 00679 }} // end namespace clang::reachable_code