clang API Documentation
00001 //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file defines a basic region store model. In this model, we do have field 00011 // sensitivity. But we assume nothing about the heap shape. So recursive data 00012 // structures are largely ignored. Basically we do 1-limiting analysis. 00013 // Parameter pointers are assumed with no aliasing. Pointee objects of 00014 // parameters are created lazily. 00015 // 00016 //===----------------------------------------------------------------------===// 00017 #include "clang/AST/Attr.h" 00018 #include "clang/AST/CharUnits.h" 00019 #include "clang/Analysis/Analyses/LiveVariables.h" 00020 #include "clang/Analysis/AnalysisContext.h" 00021 #include "clang/Basic/TargetInfo.h" 00022 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" 00023 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 00024 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" 00025 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 00026 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 00027 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h" 00028 #include "llvm/ADT/ImmutableList.h" 00029 #include "llvm/ADT/ImmutableMap.h" 00030 #include "llvm/ADT/Optional.h" 00031 #include "llvm/Support/raw_ostream.h" 00032 00033 using namespace clang; 00034 using namespace ento; 00035 00036 //===----------------------------------------------------------------------===// 00037 // Representation of binding keys. 00038 //===----------------------------------------------------------------------===// 00039 00040 namespace { 00041 class BindingKey { 00042 public: 00043 enum Kind { Default = 0x0, Direct = 0x1 }; 00044 private: 00045 enum { Symbolic = 0x2 }; 00046 00047 llvm::PointerIntPair<const MemRegion *, 2> P; 00048 uint64_t Data; 00049 00050 /// Create a key for a binding to region \p r, which has a symbolic offset 00051 /// from region \p Base. 00052 explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k) 00053 : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) { 00054 assert(r && Base && "Must have known regions."); 00055 assert(getConcreteOffsetRegion() == Base && "Failed to store base region"); 00056 } 00057 00058 /// Create a key for a binding at \p offset from base region \p r. 00059 explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k) 00060 : P(r, k), Data(offset) { 00061 assert(r && "Must have known regions."); 00062 assert(getOffset() == offset && "Failed to store offset"); 00063 assert((r == r->getBaseRegion() || isa<ObjCIvarRegion>(r)) && "Not a base"); 00064 } 00065 public: 00066 00067 bool isDirect() const { return P.getInt() & Direct; } 00068 bool hasSymbolicOffset() const { return P.getInt() & Symbolic; } 00069 00070 const MemRegion *getRegion() const { return P.getPointer(); } 00071 uint64_t getOffset() const { 00072 assert(!hasSymbolicOffset()); 00073 return Data; 00074 } 00075 00076 const SubRegion *getConcreteOffsetRegion() const { 00077 assert(hasSymbolicOffset()); 00078 return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data)); 00079 } 00080 00081 const MemRegion *getBaseRegion() const { 00082 if (hasSymbolicOffset()) 00083 return getConcreteOffsetRegion()->getBaseRegion(); 00084 return getRegion()->getBaseRegion(); 00085 } 00086 00087 void Profile(llvm::FoldingSetNodeID& ID) const { 00088 ID.AddPointer(P.getOpaqueValue()); 00089 ID.AddInteger(Data); 00090 } 00091 00092 static BindingKey Make(const MemRegion *R, Kind k); 00093 00094 bool operator<(const BindingKey &X) const { 00095 if (P.getOpaqueValue() < X.P.getOpaqueValue()) 00096 return true; 00097 if (P.getOpaqueValue() > X.P.getOpaqueValue()) 00098 return false; 00099 return Data < X.Data; 00100 } 00101 00102 bool operator==(const BindingKey &X) const { 00103 return P.getOpaqueValue() == X.P.getOpaqueValue() && 00104 Data == X.Data; 00105 } 00106 00107 void dump() const; 00108 }; 00109 } // end anonymous namespace 00110 00111 BindingKey BindingKey::Make(const MemRegion *R, Kind k) { 00112 const RegionOffset &RO = R->getAsOffset(); 00113 if (RO.hasSymbolicOffset()) 00114 return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k); 00115 00116 return BindingKey(RO.getRegion(), RO.getOffset(), k); 00117 } 00118 00119 namespace llvm { 00120 static inline 00121 raw_ostream &operator<<(raw_ostream &os, BindingKey K) { 00122 os << '(' << K.getRegion(); 00123 if (!K.hasSymbolicOffset()) 00124 os << ',' << K.getOffset(); 00125 os << ',' << (K.isDirect() ? "direct" : "default") 00126 << ')'; 00127 return os; 00128 } 00129 00130 template <typename T> struct isPodLike; 00131 template <> struct isPodLike<BindingKey> { 00132 static const bool value = true; 00133 }; 00134 } // end llvm namespace 00135 00136 LLVM_DUMP_METHOD void BindingKey::dump() const { llvm::errs() << *this; } 00137 00138 //===----------------------------------------------------------------------===// 00139 // Actual Store type. 00140 //===----------------------------------------------------------------------===// 00141 00142 typedef llvm::ImmutableMap<BindingKey, SVal> ClusterBindings; 00143 typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef; 00144 typedef std::pair<BindingKey, SVal> BindingPair; 00145 00146 typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings> 00147 RegionBindings; 00148 00149 namespace { 00150 class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *, 00151 ClusterBindings> { 00152 ClusterBindings::Factory &CBFactory; 00153 public: 00154 typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings> 00155 ParentTy; 00156 00157 RegionBindingsRef(ClusterBindings::Factory &CBFactory, 00158 const RegionBindings::TreeTy *T, 00159 RegionBindings::TreeTy::Factory *F) 00160 : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F), 00161 CBFactory(CBFactory) {} 00162 00163 RegionBindingsRef(const ParentTy &P, ClusterBindings::Factory &CBFactory) 00164 : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P), 00165 CBFactory(CBFactory) {} 00166 00167 RegionBindingsRef add(key_type_ref K, data_type_ref D) const { 00168 return RegionBindingsRef(static_cast<const ParentTy*>(this)->add(K, D), 00169 CBFactory); 00170 } 00171 00172 RegionBindingsRef remove(key_type_ref K) const { 00173 return RegionBindingsRef(static_cast<const ParentTy*>(this)->remove(K), 00174 CBFactory); 00175 } 00176 00177 RegionBindingsRef addBinding(BindingKey K, SVal V) const; 00178 00179 RegionBindingsRef addBinding(const MemRegion *R, 00180 BindingKey::Kind k, SVal V) const; 00181 00182 RegionBindingsRef &operator=(const RegionBindingsRef &X) { 00183 *static_cast<ParentTy*>(this) = X; 00184 return *this; 00185 } 00186 00187 const SVal *lookup(BindingKey K) const; 00188 const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const; 00189 const ClusterBindings *lookup(const MemRegion *R) const { 00190 return static_cast<const ParentTy*>(this)->lookup(R); 00191 } 00192 00193 RegionBindingsRef removeBinding(BindingKey K); 00194 00195 RegionBindingsRef removeBinding(const MemRegion *R, 00196 BindingKey::Kind k); 00197 00198 RegionBindingsRef removeBinding(const MemRegion *R) { 00199 return removeBinding(R, BindingKey::Direct). 00200 removeBinding(R, BindingKey::Default); 00201 } 00202 00203 Optional<SVal> getDirectBinding(const MemRegion *R) const; 00204 00205 /// getDefaultBinding - Returns an SVal* representing an optional default 00206 /// binding associated with a region and its subregions. 00207 Optional<SVal> getDefaultBinding(const MemRegion *R) const; 00208 00209 /// Return the internal tree as a Store. 00210 Store asStore() const { 00211 return asImmutableMap().getRootWithoutRetain(); 00212 } 00213 00214 void dump(raw_ostream &OS, const char *nl) const { 00215 for (iterator I = begin(), E = end(); I != E; ++I) { 00216 const ClusterBindings &Cluster = I.getData(); 00217 for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end(); 00218 CI != CE; ++CI) { 00219 OS << ' ' << CI.getKey() << " : " << CI.getData() << nl; 00220 } 00221 OS << nl; 00222 } 00223 } 00224 00225 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs(), "\n"); } 00226 }; 00227 } // end anonymous namespace 00228 00229 typedef const RegionBindingsRef& RegionBindingsConstRef; 00230 00231 Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const { 00232 return Optional<SVal>::create(lookup(R, BindingKey::Direct)); 00233 } 00234 00235 Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const { 00236 if (R->isBoundable()) 00237 if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) 00238 if (TR->getValueType()->isUnionType()) 00239 return UnknownVal(); 00240 00241 return Optional<SVal>::create(lookup(R, BindingKey::Default)); 00242 } 00243 00244 RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const { 00245 const MemRegion *Base = K.getBaseRegion(); 00246 00247 const ClusterBindings *ExistingCluster = lookup(Base); 00248 ClusterBindings Cluster = (ExistingCluster ? *ExistingCluster 00249 : CBFactory.getEmptyMap()); 00250 00251 ClusterBindings NewCluster = CBFactory.add(Cluster, K, V); 00252 return add(Base, NewCluster); 00253 } 00254 00255 00256 RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R, 00257 BindingKey::Kind k, 00258 SVal V) const { 00259 return addBinding(BindingKey::Make(R, k), V); 00260 } 00261 00262 const SVal *RegionBindingsRef::lookup(BindingKey K) const { 00263 const ClusterBindings *Cluster = lookup(K.getBaseRegion()); 00264 if (!Cluster) 00265 return nullptr; 00266 return Cluster->lookup(K); 00267 } 00268 00269 const SVal *RegionBindingsRef::lookup(const MemRegion *R, 00270 BindingKey::Kind k) const { 00271 return lookup(BindingKey::Make(R, k)); 00272 } 00273 00274 RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) { 00275 const MemRegion *Base = K.getBaseRegion(); 00276 const ClusterBindings *Cluster = lookup(Base); 00277 if (!Cluster) 00278 return *this; 00279 00280 ClusterBindings NewCluster = CBFactory.remove(*Cluster, K); 00281 if (NewCluster.isEmpty()) 00282 return remove(Base); 00283 return add(Base, NewCluster); 00284 } 00285 00286 RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R, 00287 BindingKey::Kind k){ 00288 return removeBinding(BindingKey::Make(R, k)); 00289 } 00290 00291 //===----------------------------------------------------------------------===// 00292 // Fine-grained control of RegionStoreManager. 00293 //===----------------------------------------------------------------------===// 00294 00295 namespace { 00296 struct minimal_features_tag {}; 00297 struct maximal_features_tag {}; 00298 00299 class RegionStoreFeatures { 00300 bool SupportsFields; 00301 public: 00302 RegionStoreFeatures(minimal_features_tag) : 00303 SupportsFields(false) {} 00304 00305 RegionStoreFeatures(maximal_features_tag) : 00306 SupportsFields(true) {} 00307 00308 void enableFields(bool t) { SupportsFields = t; } 00309 00310 bool supportsFields() const { return SupportsFields; } 00311 }; 00312 } 00313 00314 //===----------------------------------------------------------------------===// 00315 // Main RegionStore logic. 00316 //===----------------------------------------------------------------------===// 00317 00318 namespace { 00319 class invalidateRegionsWorker; 00320 00321 class RegionStoreManager : public StoreManager { 00322 public: 00323 const RegionStoreFeatures Features; 00324 00325 RegionBindings::Factory RBFactory; 00326 mutable ClusterBindings::Factory CBFactory; 00327 00328 typedef std::vector<SVal> SValListTy; 00329 private: 00330 typedef llvm::DenseMap<const LazyCompoundValData *, 00331 SValListTy> LazyBindingsMapTy; 00332 LazyBindingsMapTy LazyBindingsMap; 00333 00334 /// The largest number of fields a struct can have and still be 00335 /// considered "small". 00336 /// 00337 /// This is currently used to decide whether or not it is worth "forcing" a 00338 /// LazyCompoundVal on bind. 00339 /// 00340 /// This is controlled by 'region-store-small-struct-limit' option. 00341 /// To disable all small-struct-dependent behavior, set the option to "0". 00342 unsigned SmallStructLimit; 00343 00344 /// \brief A helper used to populate the work list with the given set of 00345 /// regions. 00346 void populateWorkList(invalidateRegionsWorker &W, 00347 ArrayRef<SVal> Values, 00348 InvalidatedRegions *TopLevelRegions); 00349 00350 public: 00351 RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f) 00352 : StoreManager(mgr), Features(f), 00353 RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()), 00354 SmallStructLimit(0) { 00355 if (SubEngine *Eng = StateMgr.getOwningEngine()) { 00356 AnalyzerOptions &Options = Eng->getAnalysisManager().options; 00357 SmallStructLimit = 00358 Options.getOptionAsInteger("region-store-small-struct-limit", 2); 00359 } 00360 } 00361 00362 00363 /// setImplicitDefaultValue - Set the default binding for the provided 00364 /// MemRegion to the value implicitly defined for compound literals when 00365 /// the value is not specified. 00366 RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B, 00367 const MemRegion *R, QualType T); 00368 00369 /// ArrayToPointer - Emulates the "decay" of an array to a pointer 00370 /// type. 'Array' represents the lvalue of the array being decayed 00371 /// to a pointer, and the returned SVal represents the decayed 00372 /// version of that lvalue (i.e., a pointer to the first element of 00373 /// the array). This is called by ExprEngine when evaluating 00374 /// casts from arrays to pointers. 00375 SVal ArrayToPointer(Loc Array, QualType ElementTy) override; 00376 00377 StoreRef getInitialStore(const LocationContext *InitLoc) override { 00378 return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this); 00379 } 00380 00381 //===-------------------------------------------------------------------===// 00382 // Binding values to regions. 00383 //===-------------------------------------------------------------------===// 00384 RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K, 00385 const Expr *Ex, 00386 unsigned Count, 00387 const LocationContext *LCtx, 00388 RegionBindingsRef B, 00389 InvalidatedRegions *Invalidated); 00390 00391 StoreRef invalidateRegions(Store store, 00392 ArrayRef<SVal> Values, 00393 const Expr *E, unsigned Count, 00394 const LocationContext *LCtx, 00395 const CallEvent *Call, 00396 InvalidatedSymbols &IS, 00397 RegionAndSymbolInvalidationTraits &ITraits, 00398 InvalidatedRegions *Invalidated, 00399 InvalidatedRegions *InvalidatedTopLevel) override; 00400 00401 bool scanReachableSymbols(Store S, const MemRegion *R, 00402 ScanReachableSymbols &Callbacks) override; 00403 00404 RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B, 00405 const SubRegion *R); 00406 00407 public: // Part of public interface to class. 00408 00409 StoreRef Bind(Store store, Loc LV, SVal V) override { 00410 return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this); 00411 } 00412 00413 RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V); 00414 00415 // BindDefault is only used to initialize a region with a default value. 00416 StoreRef BindDefault(Store store, const MemRegion *R, SVal V) override { 00417 RegionBindingsRef B = getRegionBindings(store); 00418 assert(!B.lookup(R, BindingKey::Direct)); 00419 00420 BindingKey Key = BindingKey::Make(R, BindingKey::Default); 00421 if (B.lookup(Key)) { 00422 const SubRegion *SR = cast<SubRegion>(R); 00423 assert(SR->getAsOffset().getOffset() == 00424 SR->getSuperRegion()->getAsOffset().getOffset() && 00425 "A default value must come from a super-region"); 00426 B = removeSubRegionBindings(B, SR); 00427 } else { 00428 B = B.addBinding(Key, V); 00429 } 00430 00431 return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this); 00432 } 00433 00434 /// Attempt to extract the fields of \p LCV and bind them to the struct region 00435 /// \p R. 00436 /// 00437 /// This path is used when it seems advantageous to "force" loading the values 00438 /// within a LazyCompoundVal to bind memberwise to the struct region, rather 00439 /// than using a Default binding at the base of the entire region. This is a 00440 /// heuristic attempting to avoid building long chains of LazyCompoundVals. 00441 /// 00442 /// \returns The updated store bindings, or \c None if binding non-lazily 00443 /// would be too expensive. 00444 Optional<RegionBindingsRef> tryBindSmallStruct(RegionBindingsConstRef B, 00445 const TypedValueRegion *R, 00446 const RecordDecl *RD, 00447 nonloc::LazyCompoundVal LCV); 00448 00449 /// BindStruct - Bind a compound value to a structure. 00450 RegionBindingsRef bindStruct(RegionBindingsConstRef B, 00451 const TypedValueRegion* R, SVal V); 00452 00453 /// BindVector - Bind a compound value to a vector. 00454 RegionBindingsRef bindVector(RegionBindingsConstRef B, 00455 const TypedValueRegion* R, SVal V); 00456 00457 RegionBindingsRef bindArray(RegionBindingsConstRef B, 00458 const TypedValueRegion* R, 00459 SVal V); 00460 00461 /// Clears out all bindings in the given region and assigns a new value 00462 /// as a Default binding. 00463 RegionBindingsRef bindAggregate(RegionBindingsConstRef B, 00464 const TypedRegion *R, 00465 SVal DefaultVal); 00466 00467 /// \brief Create a new store with the specified binding removed. 00468 /// \param ST the original store, that is the basis for the new store. 00469 /// \param L the location whose binding should be removed. 00470 StoreRef killBinding(Store ST, Loc L) override; 00471 00472 void incrementReferenceCount(Store store) override { 00473 getRegionBindings(store).manualRetain(); 00474 } 00475 00476 /// If the StoreManager supports it, decrement the reference count of 00477 /// the specified Store object. If the reference count hits 0, the memory 00478 /// associated with the object is recycled. 00479 void decrementReferenceCount(Store store) override { 00480 getRegionBindings(store).manualRelease(); 00481 } 00482 00483 bool includedInBindings(Store store, const MemRegion *region) const override; 00484 00485 /// \brief Return the value bound to specified location in a given state. 00486 /// 00487 /// The high level logic for this method is this: 00488 /// getBinding (L) 00489 /// if L has binding 00490 /// return L's binding 00491 /// else if L is in killset 00492 /// return unknown 00493 /// else 00494 /// if L is on stack or heap 00495 /// return undefined 00496 /// else 00497 /// return symbolic 00498 SVal getBinding(Store S, Loc L, QualType T) override { 00499 return getBinding(getRegionBindings(S), L, T); 00500 } 00501 00502 SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType()); 00503 00504 SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R); 00505 00506 SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R); 00507 00508 SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R); 00509 00510 SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R); 00511 00512 SVal getBindingForLazySymbol(const TypedValueRegion *R); 00513 00514 SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B, 00515 const TypedValueRegion *R, 00516 QualType Ty); 00517 00518 SVal getLazyBinding(const SubRegion *LazyBindingRegion, 00519 RegionBindingsRef LazyBinding); 00520 00521 /// Get bindings for the values in a struct and return a CompoundVal, used 00522 /// when doing struct copy: 00523 /// struct s x, y; 00524 /// x = y; 00525 /// y's value is retrieved by this method. 00526 SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R); 00527 SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R); 00528 NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R); 00529 00530 /// Used to lazily generate derived symbols for bindings that are defined 00531 /// implicitly by default bindings in a super region. 00532 /// 00533 /// Note that callers may need to specially handle LazyCompoundVals, which 00534 /// are returned as is in case the caller needs to treat them differently. 00535 Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B, 00536 const MemRegion *superR, 00537 const TypedValueRegion *R, 00538 QualType Ty); 00539 00540 /// Get the state and region whose binding this region \p R corresponds to. 00541 /// 00542 /// If there is no lazy binding for \p R, the returned value will have a null 00543 /// \c second. Note that a null pointer can represents a valid Store. 00544 std::pair<Store, const SubRegion *> 00545 findLazyBinding(RegionBindingsConstRef B, const SubRegion *R, 00546 const SubRegion *originalRegion); 00547 00548 /// Returns the cached set of interesting SVals contained within a lazy 00549 /// binding. 00550 /// 00551 /// The precise value of "interesting" is determined for the purposes of 00552 /// RegionStore's internal analysis. It must always contain all regions and 00553 /// symbols, but may omit constants and other kinds of SVal. 00554 const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV); 00555 00556 //===------------------------------------------------------------------===// 00557 // State pruning. 00558 //===------------------------------------------------------------------===// 00559 00560 /// removeDeadBindings - Scans the RegionStore of 'state' for dead values. 00561 /// It returns a new Store with these values removed. 00562 StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx, 00563 SymbolReaper& SymReaper) override; 00564 00565 //===------------------------------------------------------------------===// 00566 // Region "extents". 00567 //===------------------------------------------------------------------===// 00568 00569 // FIXME: This method will soon be eliminated; see the note in Store.h. 00570 DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state, 00571 const MemRegion* R, 00572 QualType EleTy) override; 00573 00574 //===------------------------------------------------------------------===// 00575 // Utility methods. 00576 //===------------------------------------------------------------------===// 00577 00578 RegionBindingsRef getRegionBindings(Store store) const { 00579 return RegionBindingsRef(CBFactory, 00580 static_cast<const RegionBindings::TreeTy*>(store), 00581 RBFactory.getTreeFactory()); 00582 } 00583 00584 void print(Store store, raw_ostream &Out, const char* nl, 00585 const char *sep) override; 00586 00587 void iterBindings(Store store, BindingsHandler& f) override { 00588 RegionBindingsRef B = getRegionBindings(store); 00589 for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) { 00590 const ClusterBindings &Cluster = I.getData(); 00591 for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end(); 00592 CI != CE; ++CI) { 00593 const BindingKey &K = CI.getKey(); 00594 if (!K.isDirect()) 00595 continue; 00596 if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) { 00597 // FIXME: Possibly incorporate the offset? 00598 if (!f.HandleBinding(*this, store, R, CI.getData())) 00599 return; 00600 } 00601 } 00602 } 00603 } 00604 }; 00605 00606 } // end anonymous namespace 00607 00608 //===----------------------------------------------------------------------===// 00609 // RegionStore creation. 00610 //===----------------------------------------------------------------------===// 00611 00612 std::unique_ptr<StoreManager> 00613 ento::CreateRegionStoreManager(ProgramStateManager &StMgr) { 00614 RegionStoreFeatures F = maximal_features_tag(); 00615 return llvm::make_unique<RegionStoreManager>(StMgr, F); 00616 } 00617 00618 std::unique_ptr<StoreManager> 00619 ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) { 00620 RegionStoreFeatures F = minimal_features_tag(); 00621 F.enableFields(true); 00622 return llvm::make_unique<RegionStoreManager>(StMgr, F); 00623 } 00624 00625 00626 //===----------------------------------------------------------------------===// 00627 // Region Cluster analysis. 00628 //===----------------------------------------------------------------------===// 00629 00630 namespace { 00631 /// Used to determine which global regions are automatically included in the 00632 /// initial worklist of a ClusterAnalysis. 00633 enum GlobalsFilterKind { 00634 /// Don't include any global regions. 00635 GFK_None, 00636 /// Only include system globals. 00637 GFK_SystemOnly, 00638 /// Include all global regions. 00639 GFK_All 00640 }; 00641 00642 template <typename DERIVED> 00643 class ClusterAnalysis { 00644 protected: 00645 typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap; 00646 typedef const MemRegion * WorkListElement; 00647 typedef SmallVector<WorkListElement, 10> WorkList; 00648 00649 llvm::SmallPtrSet<const ClusterBindings *, 16> Visited; 00650 00651 WorkList WL; 00652 00653 RegionStoreManager &RM; 00654 ASTContext &Ctx; 00655 SValBuilder &svalBuilder; 00656 00657 RegionBindingsRef B; 00658 00659 private: 00660 GlobalsFilterKind GlobalsFilter; 00661 00662 protected: 00663 const ClusterBindings *getCluster(const MemRegion *R) { 00664 return B.lookup(R); 00665 } 00666 00667 /// Returns true if the memory space of the given region is one of the global 00668 /// regions specially included at the start of analysis. 00669 bool isInitiallyIncludedGlobalRegion(const MemRegion *R) { 00670 switch (GlobalsFilter) { 00671 case GFK_None: 00672 return false; 00673 case GFK_SystemOnly: 00674 return isa<GlobalSystemSpaceRegion>(R->getMemorySpace()); 00675 case GFK_All: 00676 return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace()); 00677 } 00678 00679 llvm_unreachable("unknown globals filter"); 00680 } 00681 00682 public: 00683 ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr, 00684 RegionBindingsRef b, GlobalsFilterKind GFK) 00685 : RM(rm), Ctx(StateMgr.getContext()), 00686 svalBuilder(StateMgr.getSValBuilder()), 00687 B(b), GlobalsFilter(GFK) {} 00688 00689 RegionBindingsRef getRegionBindings() const { return B; } 00690 00691 bool isVisited(const MemRegion *R) { 00692 return Visited.count(getCluster(R)); 00693 } 00694 00695 void GenerateClusters() { 00696 // Scan the entire set of bindings and record the region clusters. 00697 for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); 00698 RI != RE; ++RI){ 00699 const MemRegion *Base = RI.getKey(); 00700 00701 const ClusterBindings &Cluster = RI.getData(); 00702 assert(!Cluster.isEmpty() && "Empty clusters should be removed"); 00703 static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster); 00704 00705 // If this is an interesting global region, add it the work list up front. 00706 if (isInitiallyIncludedGlobalRegion(Base)) 00707 AddToWorkList(WorkListElement(Base), &Cluster); 00708 } 00709 } 00710 00711 bool AddToWorkList(WorkListElement E, const ClusterBindings *C) { 00712 if (C && !Visited.insert(C)) 00713 return false; 00714 WL.push_back(E); 00715 return true; 00716 } 00717 00718 bool AddToWorkList(const MemRegion *R) { 00719 const MemRegion *BaseR = R->getBaseRegion(); 00720 return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR)); 00721 } 00722 00723 void RunWorkList() { 00724 while (!WL.empty()) { 00725 WorkListElement E = WL.pop_back_val(); 00726 const MemRegion *BaseR = E; 00727 00728 static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR)); 00729 } 00730 } 00731 00732 void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {} 00733 void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {} 00734 00735 void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C, 00736 bool Flag) { 00737 static_cast<DERIVED*>(this)->VisitCluster(BaseR, C); 00738 } 00739 }; 00740 } 00741 00742 //===----------------------------------------------------------------------===// 00743 // Binding invalidation. 00744 //===----------------------------------------------------------------------===// 00745 00746 bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R, 00747 ScanReachableSymbols &Callbacks) { 00748 assert(R == R->getBaseRegion() && "Should only be called for base regions"); 00749 RegionBindingsRef B = getRegionBindings(S); 00750 const ClusterBindings *Cluster = B.lookup(R); 00751 00752 if (!Cluster) 00753 return true; 00754 00755 for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end(); 00756 RI != RE; ++RI) { 00757 if (!Callbacks.scan(RI.getData())) 00758 return false; 00759 } 00760 00761 return true; 00762 } 00763 00764 static inline bool isUnionField(const FieldRegion *FR) { 00765 return FR->getDecl()->getParent()->isUnion(); 00766 } 00767 00768 typedef SmallVector<const FieldDecl *, 8> FieldVector; 00769 00770 void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) { 00771 assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys"); 00772 00773 const MemRegion *Base = K.getConcreteOffsetRegion(); 00774 const MemRegion *R = K.getRegion(); 00775 00776 while (R != Base) { 00777 if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) 00778 if (!isUnionField(FR)) 00779 Fields.push_back(FR->getDecl()); 00780 00781 R = cast<SubRegion>(R)->getSuperRegion(); 00782 } 00783 } 00784 00785 static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) { 00786 assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys"); 00787 00788 if (Fields.empty()) 00789 return true; 00790 00791 FieldVector FieldsInBindingKey; 00792 getSymbolicOffsetFields(K, FieldsInBindingKey); 00793 00794 ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size(); 00795 if (Delta >= 0) 00796 return std::equal(FieldsInBindingKey.begin() + Delta, 00797 FieldsInBindingKey.end(), 00798 Fields.begin()); 00799 else 00800 return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(), 00801 Fields.begin() - Delta); 00802 } 00803 00804 /// Collects all bindings in \p Cluster that may refer to bindings within 00805 /// \p Top. 00806 /// 00807 /// Each binding is a pair whose \c first is the key (a BindingKey) and whose 00808 /// \c second is the value (an SVal). 00809 /// 00810 /// The \p IncludeAllDefaultBindings parameter specifies whether to include 00811 /// default bindings that may extend beyond \p Top itself, e.g. if \p Top is 00812 /// an aggregate within a larger aggregate with a default binding. 00813 static void 00814 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings, 00815 SValBuilder &SVB, const ClusterBindings &Cluster, 00816 const SubRegion *Top, BindingKey TopKey, 00817 bool IncludeAllDefaultBindings) { 00818 FieldVector FieldsInSymbolicSubregions; 00819 if (TopKey.hasSymbolicOffset()) { 00820 getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions); 00821 Top = cast<SubRegion>(TopKey.getConcreteOffsetRegion()); 00822 TopKey = BindingKey::Make(Top, BindingKey::Default); 00823 } 00824 00825 // Find the length (in bits) of the region being invalidated. 00826 uint64_t Length = UINT64_MAX; 00827 SVal Extent = Top->getExtent(SVB); 00828 if (Optional<nonloc::ConcreteInt> ExtentCI = 00829 Extent.getAs<nonloc::ConcreteInt>()) { 00830 const llvm::APSInt &ExtentInt = ExtentCI->getValue(); 00831 assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned()); 00832 // Extents are in bytes but region offsets are in bits. Be careful! 00833 Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth(); 00834 } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) { 00835 if (FR->getDecl()->isBitField()) 00836 Length = FR->getDecl()->getBitWidthValue(SVB.getContext()); 00837 } 00838 00839 for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end(); 00840 I != E; ++I) { 00841 BindingKey NextKey = I.getKey(); 00842 if (NextKey.getRegion() == TopKey.getRegion()) { 00843 // FIXME: This doesn't catch the case where we're really invalidating a 00844 // region with a symbolic offset. Example: 00845 // R: points[i].y 00846 // Next: points[0].x 00847 00848 if (NextKey.getOffset() > TopKey.getOffset() && 00849 NextKey.getOffset() - TopKey.getOffset() < Length) { 00850 // Case 1: The next binding is inside the region we're invalidating. 00851 // Include it. 00852 Bindings.push_back(*I); 00853 00854 } else if (NextKey.getOffset() == TopKey.getOffset()) { 00855 // Case 2: The next binding is at the same offset as the region we're 00856 // invalidating. In this case, we need to leave default bindings alone, 00857 // since they may be providing a default value for a regions beyond what 00858 // we're invalidating. 00859 // FIXME: This is probably incorrect; consider invalidating an outer 00860 // struct whose first field is bound to a LazyCompoundVal. 00861 if (IncludeAllDefaultBindings || NextKey.isDirect()) 00862 Bindings.push_back(*I); 00863 } 00864 00865 } else if (NextKey.hasSymbolicOffset()) { 00866 const MemRegion *Base = NextKey.getConcreteOffsetRegion(); 00867 if (Top->isSubRegionOf(Base)) { 00868 // Case 3: The next key is symbolic and we just changed something within 00869 // its concrete region. We don't know if the binding is still valid, so 00870 // we'll be conservative and include it. 00871 if (IncludeAllDefaultBindings || NextKey.isDirect()) 00872 if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions)) 00873 Bindings.push_back(*I); 00874 } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) { 00875 // Case 4: The next key is symbolic, but we changed a known 00876 // super-region. In this case the binding is certainly included. 00877 if (Top == Base || BaseSR->isSubRegionOf(Top)) 00878 if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions)) 00879 Bindings.push_back(*I); 00880 } 00881 } 00882 } 00883 } 00884 00885 static void 00886 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings, 00887 SValBuilder &SVB, const ClusterBindings &Cluster, 00888 const SubRegion *Top, bool IncludeAllDefaultBindings) { 00889 collectSubRegionBindings(Bindings, SVB, Cluster, Top, 00890 BindingKey::Make(Top, BindingKey::Default), 00891 IncludeAllDefaultBindings); 00892 } 00893 00894 RegionBindingsRef 00895 RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B, 00896 const SubRegion *Top) { 00897 BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default); 00898 const MemRegion *ClusterHead = TopKey.getBaseRegion(); 00899 00900 if (Top == ClusterHead) { 00901 // We can remove an entire cluster's bindings all in one go. 00902 return B.remove(Top); 00903 } 00904 00905 const ClusterBindings *Cluster = B.lookup(ClusterHead); 00906 if (!Cluster) { 00907 // If we're invalidating a region with a symbolic offset, we need to make 00908 // sure we don't treat the base region as uninitialized anymore. 00909 if (TopKey.hasSymbolicOffset()) { 00910 const SubRegion *Concrete = TopKey.getConcreteOffsetRegion(); 00911 return B.addBinding(Concrete, BindingKey::Default, UnknownVal()); 00912 } 00913 return B; 00914 } 00915 00916 SmallVector<BindingPair, 32> Bindings; 00917 collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey, 00918 /*IncludeAllDefaultBindings=*/false); 00919 00920 ClusterBindingsRef Result(*Cluster, CBFactory); 00921 for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(), 00922 E = Bindings.end(); 00923 I != E; ++I) 00924 Result = Result.remove(I->first); 00925 00926 // If we're invalidating a region with a symbolic offset, we need to make sure 00927 // we don't treat the base region as uninitialized anymore. 00928 // FIXME: This isn't very precise; see the example in 00929 // collectSubRegionBindings. 00930 if (TopKey.hasSymbolicOffset()) { 00931 const SubRegion *Concrete = TopKey.getConcreteOffsetRegion(); 00932 Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default), 00933 UnknownVal()); 00934 } 00935 00936 if (Result.isEmpty()) 00937 return B.remove(ClusterHead); 00938 return B.add(ClusterHead, Result.asImmutableMap()); 00939 } 00940 00941 namespace { 00942 class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker> 00943 { 00944 const Expr *Ex; 00945 unsigned Count; 00946 const LocationContext *LCtx; 00947 InvalidatedSymbols &IS; 00948 RegionAndSymbolInvalidationTraits &ITraits; 00949 StoreManager::InvalidatedRegions *Regions; 00950 public: 00951 invalidateRegionsWorker(RegionStoreManager &rm, 00952 ProgramStateManager &stateMgr, 00953 RegionBindingsRef b, 00954 const Expr *ex, unsigned count, 00955 const LocationContext *lctx, 00956 InvalidatedSymbols &is, 00957 RegionAndSymbolInvalidationTraits &ITraitsIn, 00958 StoreManager::InvalidatedRegions *r, 00959 GlobalsFilterKind GFK) 00960 : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b, GFK), 00961 Ex(ex), Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r){} 00962 00963 void VisitCluster(const MemRegion *baseR, const ClusterBindings *C); 00964 void VisitBinding(SVal V); 00965 }; 00966 } 00967 00968 void invalidateRegionsWorker::VisitBinding(SVal V) { 00969 // A symbol? Mark it touched by the invalidation. 00970 if (SymbolRef Sym = V.getAsSymbol()) 00971 IS.insert(Sym); 00972 00973 if (const MemRegion *R = V.getAsRegion()) { 00974 AddToWorkList(R); 00975 return; 00976 } 00977 00978 // Is it a LazyCompoundVal? All references get invalidated as well. 00979 if (Optional<nonloc::LazyCompoundVal> LCS = 00980 V.getAs<nonloc::LazyCompoundVal>()) { 00981 00982 const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS); 00983 00984 for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(), 00985 E = Vals.end(); 00986 I != E; ++I) 00987 VisitBinding(*I); 00988 00989 return; 00990 } 00991 } 00992 00993 void invalidateRegionsWorker::VisitCluster(const MemRegion *baseR, 00994 const ClusterBindings *C) { 00995 00996 bool PreserveRegionsContents = 00997 ITraits.hasTrait(baseR, 00998 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 00999 01000 if (C) { 01001 for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I) 01002 VisitBinding(I.getData()); 01003 01004 // Invalidate regions contents. 01005 if (!PreserveRegionsContents) 01006 B = B.remove(baseR); 01007 } 01008 01009 // BlockDataRegion? If so, invalidate captured variables that are passed 01010 // by reference. 01011 if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) { 01012 for (BlockDataRegion::referenced_vars_iterator 01013 BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ; 01014 BI != BE; ++BI) { 01015 const VarRegion *VR = BI.getCapturedRegion(); 01016 const VarDecl *VD = VR->getDecl(); 01017 if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) { 01018 AddToWorkList(VR); 01019 } 01020 else if (Loc::isLocType(VR->getValueType())) { 01021 // Map the current bindings to a Store to retrieve the value 01022 // of the binding. If that binding itself is a region, we should 01023 // invalidate that region. This is because a block may capture 01024 // a pointer value, but the thing pointed by that pointer may 01025 // get invalidated. 01026 SVal V = RM.getBinding(B, loc::MemRegionVal(VR)); 01027 if (Optional<Loc> L = V.getAs<Loc>()) { 01028 if (const MemRegion *LR = L->getAsRegion()) 01029 AddToWorkList(LR); 01030 } 01031 } 01032 } 01033 return; 01034 } 01035 01036 // Symbolic region? 01037 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) 01038 IS.insert(SR->getSymbol()); 01039 01040 // Nothing else should be done in the case when we preserve regions context. 01041 if (PreserveRegionsContents) 01042 return; 01043 01044 // Otherwise, we have a normal data region. Record that we touched the region. 01045 if (Regions) 01046 Regions->push_back(baseR); 01047 01048 if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) { 01049 // Invalidate the region by setting its default value to 01050 // conjured symbol. The type of the symbol is irrelevant. 01051 DefinedOrUnknownSVal V = 01052 svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count); 01053 B = B.addBinding(baseR, BindingKey::Default, V); 01054 return; 01055 } 01056 01057 if (!baseR->isBoundable()) 01058 return; 01059 01060 const TypedValueRegion *TR = cast<TypedValueRegion>(baseR); 01061 QualType T = TR->getValueType(); 01062 01063 if (isInitiallyIncludedGlobalRegion(baseR)) { 01064 // If the region is a global and we are invalidating all globals, 01065 // erasing the entry is good enough. This causes all globals to be lazily 01066 // symbolicated from the same base symbol. 01067 return; 01068 } 01069 01070 if (T->isStructureOrClassType()) { 01071 // Invalidate the region by setting its default value to 01072 // conjured symbol. The type of the symbol is irrelevant. 01073 DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, 01074 Ctx.IntTy, Count); 01075 B = B.addBinding(baseR, BindingKey::Default, V); 01076 return; 01077 } 01078 01079 if (const ArrayType *AT = Ctx.getAsArrayType(T)) { 01080 // Set the default value of the array to conjured symbol. 01081 DefinedOrUnknownSVal V = 01082 svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, 01083 AT->getElementType(), Count); 01084 B = B.addBinding(baseR, BindingKey::Default, V); 01085 return; 01086 } 01087 01088 DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, 01089 T,Count); 01090 assert(SymbolManager::canSymbolicate(T) || V.isUnknown()); 01091 B = B.addBinding(baseR, BindingKey::Direct, V); 01092 } 01093 01094 RegionBindingsRef 01095 RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K, 01096 const Expr *Ex, 01097 unsigned Count, 01098 const LocationContext *LCtx, 01099 RegionBindingsRef B, 01100 InvalidatedRegions *Invalidated) { 01101 // Bind the globals memory space to a new symbol that we will use to derive 01102 // the bindings for all globals. 01103 const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K); 01104 SVal V = svalBuilder.conjureSymbolVal(/* SymbolTag = */ (const void*) GS, Ex, LCtx, 01105 /* type does not matter */ Ctx.IntTy, 01106 Count); 01107 01108 B = B.removeBinding(GS) 01109 .addBinding(BindingKey::Make(GS, BindingKey::Default), V); 01110 01111 // Even if there are no bindings in the global scope, we still need to 01112 // record that we touched it. 01113 if (Invalidated) 01114 Invalidated->push_back(GS); 01115 01116 return B; 01117 } 01118 01119 void RegionStoreManager::populateWorkList(invalidateRegionsWorker &W, 01120 ArrayRef<SVal> Values, 01121 InvalidatedRegions *TopLevelRegions) { 01122 for (ArrayRef<SVal>::iterator I = Values.begin(), 01123 E = Values.end(); I != E; ++I) { 01124 SVal V = *I; 01125 if (Optional<nonloc::LazyCompoundVal> LCS = 01126 V.getAs<nonloc::LazyCompoundVal>()) { 01127 01128 const SValListTy &Vals = getInterestingValues(*LCS); 01129 01130 for (SValListTy::const_iterator I = Vals.begin(), 01131 E = Vals.end(); I != E; ++I) { 01132 // Note: the last argument is false here because these are 01133 // non-top-level regions. 01134 if (const MemRegion *R = (*I).getAsRegion()) 01135 W.AddToWorkList(R); 01136 } 01137 continue; 01138 } 01139 01140 if (const MemRegion *R = V.getAsRegion()) { 01141 if (TopLevelRegions) 01142 TopLevelRegions->push_back(R); 01143 W.AddToWorkList(R); 01144 continue; 01145 } 01146 } 01147 } 01148 01149 StoreRef 01150 RegionStoreManager::invalidateRegions(Store store, 01151 ArrayRef<SVal> Values, 01152 const Expr *Ex, unsigned Count, 01153 const LocationContext *LCtx, 01154 const CallEvent *Call, 01155 InvalidatedSymbols &IS, 01156 RegionAndSymbolInvalidationTraits &ITraits, 01157 InvalidatedRegions *TopLevelRegions, 01158 InvalidatedRegions *Invalidated) { 01159 GlobalsFilterKind GlobalsFilter; 01160 if (Call) { 01161 if (Call->isInSystemHeader()) 01162 GlobalsFilter = GFK_SystemOnly; 01163 else 01164 GlobalsFilter = GFK_All; 01165 } else { 01166 GlobalsFilter = GFK_None; 01167 } 01168 01169 RegionBindingsRef B = getRegionBindings(store); 01170 invalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ITraits, 01171 Invalidated, GlobalsFilter); 01172 01173 // Scan the bindings and generate the clusters. 01174 W.GenerateClusters(); 01175 01176 // Add the regions to the worklist. 01177 populateWorkList(W, Values, TopLevelRegions); 01178 01179 W.RunWorkList(); 01180 01181 // Return the new bindings. 01182 B = W.getRegionBindings(); 01183 01184 // For calls, determine which global regions should be invalidated and 01185 // invalidate them. (Note that function-static and immutable globals are never 01186 // invalidated by this.) 01187 // TODO: This could possibly be more precise with modules. 01188 switch (GlobalsFilter) { 01189 case GFK_All: 01190 B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind, 01191 Ex, Count, LCtx, B, Invalidated); 01192 // FALLTHROUGH 01193 case GFK_SystemOnly: 01194 B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind, 01195 Ex, Count, LCtx, B, Invalidated); 01196 // FALLTHROUGH 01197 case GFK_None: 01198 break; 01199 } 01200 01201 return StoreRef(B.asStore(), *this); 01202 } 01203 01204 //===----------------------------------------------------------------------===// 01205 // Extents for regions. 01206 //===----------------------------------------------------------------------===// 01207 01208 DefinedOrUnknownSVal 01209 RegionStoreManager::getSizeInElements(ProgramStateRef state, 01210 const MemRegion *R, 01211 QualType EleTy) { 01212 SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder); 01213 const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size); 01214 if (!SizeInt) 01215 return UnknownVal(); 01216 01217 CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue()); 01218 01219 if (Ctx.getAsVariableArrayType(EleTy)) { 01220 // FIXME: We need to track extra state to properly record the size 01221 // of VLAs. Returning UnknownVal here, however, is a stop-gap so that 01222 // we don't have a divide-by-zero below. 01223 return UnknownVal(); 01224 } 01225 01226 CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy); 01227 01228 // If a variable is reinterpreted as a type that doesn't fit into a larger 01229 // type evenly, round it down. 01230 // This is a signed value, since it's used in arithmetic with signed indices. 01231 return svalBuilder.makeIntVal(RegionSize / EleSize, false); 01232 } 01233 01234 //===----------------------------------------------------------------------===// 01235 // Location and region casting. 01236 //===----------------------------------------------------------------------===// 01237 01238 /// ArrayToPointer - Emulates the "decay" of an array to a pointer 01239 /// type. 'Array' represents the lvalue of the array being decayed 01240 /// to a pointer, and the returned SVal represents the decayed 01241 /// version of that lvalue (i.e., a pointer to the first element of 01242 /// the array). This is called by ExprEngine when evaluating casts 01243 /// from arrays to pointers. 01244 SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) { 01245 if (!Array.getAs<loc::MemRegionVal>()) 01246 return UnknownVal(); 01247 01248 const MemRegion* R = Array.castAs<loc::MemRegionVal>().getRegion(); 01249 NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex(); 01250 return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx)); 01251 } 01252 01253 //===----------------------------------------------------------------------===// 01254 // Loading values from regions. 01255 //===----------------------------------------------------------------------===// 01256 01257 SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) { 01258 assert(!L.getAs<UnknownVal>() && "location unknown"); 01259 assert(!L.getAs<UndefinedVal>() && "location undefined"); 01260 01261 // For access to concrete addresses, return UnknownVal. Checks 01262 // for null dereferences (and similar errors) are done by checkers, not 01263 // the Store. 01264 // FIXME: We can consider lazily symbolicating such memory, but we really 01265 // should defer this when we can reason easily about symbolicating arrays 01266 // of bytes. 01267 if (L.getAs<loc::ConcreteInt>()) { 01268 return UnknownVal(); 01269 } 01270 if (!L.getAs<loc::MemRegionVal>()) { 01271 return UnknownVal(); 01272 } 01273 01274 const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion(); 01275 01276 if (isa<AllocaRegion>(MR) || 01277 isa<SymbolicRegion>(MR) || 01278 isa<CodeTextRegion>(MR)) { 01279 if (T.isNull()) { 01280 if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR)) 01281 T = TR->getLocationType(); 01282 else { 01283 const SymbolicRegion *SR = cast<SymbolicRegion>(MR); 01284 T = SR->getSymbol()->getType(); 01285 } 01286 } 01287 MR = GetElementZeroRegion(MR, T); 01288 } 01289 01290 // FIXME: Perhaps this method should just take a 'const MemRegion*' argument 01291 // instead of 'Loc', and have the other Loc cases handled at a higher level. 01292 const TypedValueRegion *R = cast<TypedValueRegion>(MR); 01293 QualType RTy = R->getValueType(); 01294 01295 // FIXME: we do not yet model the parts of a complex type, so treat the 01296 // whole thing as "unknown". 01297 if (RTy->isAnyComplexType()) 01298 return UnknownVal(); 01299 01300 // FIXME: We should eventually handle funny addressing. e.g.: 01301 // 01302 // int x = ...; 01303 // int *p = &x; 01304 // char *q = (char*) p; 01305 // char c = *q; // returns the first byte of 'x'. 01306 // 01307 // Such funny addressing will occur due to layering of regions. 01308 if (RTy->isStructureOrClassType()) 01309 return getBindingForStruct(B, R); 01310 01311 // FIXME: Handle unions. 01312 if (RTy->isUnionType()) 01313 return createLazyBinding(B, R); 01314 01315 if (RTy->isArrayType()) { 01316 if (RTy->isConstantArrayType()) 01317 return getBindingForArray(B, R); 01318 else 01319 return UnknownVal(); 01320 } 01321 01322 // FIXME: handle Vector types. 01323 if (RTy->isVectorType()) 01324 return UnknownVal(); 01325 01326 if (const FieldRegion* FR = dyn_cast<FieldRegion>(R)) 01327 return CastRetrievedVal(getBindingForField(B, FR), FR, T, false); 01328 01329 if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) { 01330 // FIXME: Here we actually perform an implicit conversion from the loaded 01331 // value to the element type. Eventually we want to compose these values 01332 // more intelligently. For example, an 'element' can encompass multiple 01333 // bound regions (e.g., several bound bytes), or could be a subset of 01334 // a larger value. 01335 return CastRetrievedVal(getBindingForElement(B, ER), ER, T, false); 01336 } 01337 01338 if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) { 01339 // FIXME: Here we actually perform an implicit conversion from the loaded 01340 // value to the ivar type. What we should model is stores to ivars 01341 // that blow past the extent of the ivar. If the address of the ivar is 01342 // reinterpretted, it is possible we stored a different value that could 01343 // fit within the ivar. Either we need to cast these when storing them 01344 // or reinterpret them lazily (as we do here). 01345 return CastRetrievedVal(getBindingForObjCIvar(B, IVR), IVR, T, false); 01346 } 01347 01348 if (const VarRegion *VR = dyn_cast<VarRegion>(R)) { 01349 // FIXME: Here we actually perform an implicit conversion from the loaded 01350 // value to the variable type. What we should model is stores to variables 01351 // that blow past the extent of the variable. If the address of the 01352 // variable is reinterpretted, it is possible we stored a different value 01353 // that could fit within the variable. Either we need to cast these when 01354 // storing them or reinterpret them lazily (as we do here). 01355 return CastRetrievedVal(getBindingForVar(B, VR), VR, T, false); 01356 } 01357 01358 const SVal *V = B.lookup(R, BindingKey::Direct); 01359 01360 // Check if the region has a binding. 01361 if (V) 01362 return *V; 01363 01364 // The location does not have a bound value. This means that it has 01365 // the value it had upon its creation and/or entry to the analyzed 01366 // function/method. These are either symbolic values or 'undefined'. 01367 if (R->hasStackNonParametersStorage()) { 01368 // All stack variables are considered to have undefined values 01369 // upon creation. All heap allocated blocks are considered to 01370 // have undefined values as well unless they are explicitly bound 01371 // to specific values. 01372 return UndefinedVal(); 01373 } 01374 01375 // All other values are symbolic. 01376 return svalBuilder.getRegionValueSymbolVal(R); 01377 } 01378 01379 static QualType getUnderlyingType(const SubRegion *R) { 01380 QualType RegionTy; 01381 if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R)) 01382 RegionTy = TVR->getValueType(); 01383 01384 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) 01385 RegionTy = SR->getSymbol()->getType(); 01386 01387 return RegionTy; 01388 } 01389 01390 /// Checks to see if store \p B has a lazy binding for region \p R. 01391 /// 01392 /// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected 01393 /// if there are additional bindings within \p R. 01394 /// 01395 /// Note that unlike RegionStoreManager::findLazyBinding, this will not search 01396 /// for lazy bindings for super-regions of \p R. 01397 static Optional<nonloc::LazyCompoundVal> 01398 getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B, 01399 const SubRegion *R, bool AllowSubregionBindings) { 01400 Optional<SVal> V = B.getDefaultBinding(R); 01401 if (!V) 01402 return None; 01403 01404 Optional<nonloc::LazyCompoundVal> LCV = V->getAs<nonloc::LazyCompoundVal>(); 01405 if (!LCV) 01406 return None; 01407 01408 // If the LCV is for a subregion, the types might not match, and we shouldn't 01409 // reuse the binding. 01410 QualType RegionTy = getUnderlyingType(R); 01411 if (!RegionTy.isNull() && 01412 !RegionTy->isVoidPointerType()) { 01413 QualType SourceRegionTy = LCV->getRegion()->getValueType(); 01414 if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy)) 01415 return None; 01416 } 01417 01418 if (!AllowSubregionBindings) { 01419 // If there are any other bindings within this region, we shouldn't reuse 01420 // the top-level binding. 01421 SmallVector<BindingPair, 16> Bindings; 01422 collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R, 01423 /*IncludeAllDefaultBindings=*/true); 01424 if (Bindings.size() > 1) 01425 return None; 01426 } 01427 01428 return *LCV; 01429 } 01430 01431 01432 std::pair<Store, const SubRegion *> 01433 RegionStoreManager::findLazyBinding(RegionBindingsConstRef B, 01434 const SubRegion *R, 01435 const SubRegion *originalRegion) { 01436 if (originalRegion != R) { 01437 if (Optional<nonloc::LazyCompoundVal> V = 01438 getExistingLazyBinding(svalBuilder, B, R, true)) 01439 return std::make_pair(V->getStore(), V->getRegion()); 01440 } 01441 01442 typedef std::pair<Store, const SubRegion *> StoreRegionPair; 01443 StoreRegionPair Result = StoreRegionPair(); 01444 01445 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { 01446 Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()), 01447 originalRegion); 01448 01449 if (Result.second) 01450 Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second); 01451 01452 } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) { 01453 Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()), 01454 originalRegion); 01455 01456 if (Result.second) 01457 Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second); 01458 01459 } else if (const CXXBaseObjectRegion *BaseReg = 01460 dyn_cast<CXXBaseObjectRegion>(R)) { 01461 // C++ base object region is another kind of region that we should blast 01462 // through to look for lazy compound value. It is like a field region. 01463 Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()), 01464 originalRegion); 01465 01466 if (Result.second) 01467 Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg, 01468 Result.second); 01469 } 01470 01471 return Result; 01472 } 01473 01474 SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B, 01475 const ElementRegion* R) { 01476 // We do not currently model bindings of the CompoundLiteralregion. 01477 if (isa<CompoundLiteralRegion>(R->getBaseRegion())) 01478 return UnknownVal(); 01479 01480 // Check if the region has a binding. 01481 if (const Optional<SVal> &V = B.getDirectBinding(R)) 01482 return *V; 01483 01484 const MemRegion* superR = R->getSuperRegion(); 01485 01486 // Check if the region is an element region of a string literal. 01487 if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) { 01488 // FIXME: Handle loads from strings where the literal is treated as 01489 // an integer, e.g., *((unsigned int*)"hello") 01490 QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType(); 01491 if (!Ctx.hasSameUnqualifiedType(T, R->getElementType())) 01492 return UnknownVal(); 01493 01494 const StringLiteral *Str = StrR->getStringLiteral(); 01495 SVal Idx = R->getIndex(); 01496 if (Optional<nonloc::ConcreteInt> CI = Idx.getAs<nonloc::ConcreteInt>()) { 01497 int64_t i = CI->getValue().getSExtValue(); 01498 // Abort on string underrun. This can be possible by arbitrary 01499 // clients of getBindingForElement(). 01500 if (i < 0) 01501 return UndefinedVal(); 01502 int64_t length = Str->getLength(); 01503 // Technically, only i == length is guaranteed to be null. 01504 // However, such overflows should be caught before reaching this point; 01505 // the only time such an access would be made is if a string literal was 01506 // used to initialize a larger array. 01507 char c = (i >= length) ? '\0' : Str->getCodeUnit(i); 01508 return svalBuilder.makeIntVal(c, T); 01509 } 01510 } 01511 01512 // Check for loads from a code text region. For such loads, just give up. 01513 if (isa<CodeTextRegion>(superR)) 01514 return UnknownVal(); 01515 01516 // Handle the case where we are indexing into a larger scalar object. 01517 // For example, this handles: 01518 // int x = ... 01519 // char *y = &x; 01520 // return *y; 01521 // FIXME: This is a hack, and doesn't do anything really intelligent yet. 01522 const RegionRawOffset &O = R->getAsArrayOffset(); 01523 01524 // If we cannot reason about the offset, return an unknown value. 01525 if (!O.getRegion()) 01526 return UnknownVal(); 01527 01528 if (const TypedValueRegion *baseR = 01529 dyn_cast_or_null<TypedValueRegion>(O.getRegion())) { 01530 QualType baseT = baseR->getValueType(); 01531 if (baseT->isScalarType()) { 01532 QualType elemT = R->getElementType(); 01533 if (elemT->isScalarType()) { 01534 if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) { 01535 if (const Optional<SVal> &V = B.getDirectBinding(superR)) { 01536 if (SymbolRef parentSym = V->getAsSymbol()) 01537 return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R); 01538 01539 if (V->isUnknownOrUndef()) 01540 return *V; 01541 // Other cases: give up. We are indexing into a larger object 01542 // that has some value, but we don't know how to handle that yet. 01543 return UnknownVal(); 01544 } 01545 } 01546 } 01547 } 01548 } 01549 return getBindingForFieldOrElementCommon(B, R, R->getElementType()); 01550 } 01551 01552 SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B, 01553 const FieldRegion* R) { 01554 01555 // Check if the region has a binding. 01556 if (const Optional<SVal> &V = B.getDirectBinding(R)) 01557 return *V; 01558 01559 QualType Ty = R->getValueType(); 01560 return getBindingForFieldOrElementCommon(B, R, Ty); 01561 } 01562 01563 Optional<SVal> 01564 RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B, 01565 const MemRegion *superR, 01566 const TypedValueRegion *R, 01567 QualType Ty) { 01568 01569 if (const Optional<SVal> &D = B.getDefaultBinding(superR)) { 01570 const SVal &val = D.getValue(); 01571 if (SymbolRef parentSym = val.getAsSymbol()) 01572 return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R); 01573 01574 if (val.isZeroConstant()) 01575 return svalBuilder.makeZeroVal(Ty); 01576 01577 if (val.isUnknownOrUndef()) 01578 return val; 01579 01580 // Lazy bindings are usually handled through getExistingLazyBinding(). 01581 // We should unify these two code paths at some point. 01582 if (val.getAs<nonloc::LazyCompoundVal>()) 01583 return val; 01584 01585 llvm_unreachable("Unknown default value"); 01586 } 01587 01588 return None; 01589 } 01590 01591 SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion, 01592 RegionBindingsRef LazyBinding) { 01593 SVal Result; 01594 if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion)) 01595 Result = getBindingForElement(LazyBinding, ER); 01596 else 01597 Result = getBindingForField(LazyBinding, 01598 cast<FieldRegion>(LazyBindingRegion)); 01599 01600 // FIXME: This is a hack to deal with RegionStore's inability to distinguish a 01601 // default value for /part/ of an aggregate from a default value for the 01602 // /entire/ aggregate. The most common case of this is when struct Outer 01603 // has as its first member a struct Inner, which is copied in from a stack 01604 // variable. In this case, even if the Outer's default value is symbolic, 0, 01605 // or unknown, it gets overridden by the Inner's default value of undefined. 01606 // 01607 // This is a general problem -- if the Inner is zero-initialized, the Outer 01608 // will now look zero-initialized. The proper way to solve this is with a 01609 // new version of RegionStore that tracks the extent of a binding as well 01610 // as the offset. 01611 // 01612 // This hack only takes care of the undefined case because that can very 01613 // quickly result in a warning. 01614 if (Result.isUndef()) 01615 Result = UnknownVal(); 01616 01617 return Result; 01618 } 01619 01620 SVal 01621 RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B, 01622 const TypedValueRegion *R, 01623 QualType Ty) { 01624 01625 // At this point we have already checked in either getBindingForElement or 01626 // getBindingForField if 'R' has a direct binding. 01627 01628 // Lazy binding? 01629 Store lazyBindingStore = nullptr; 01630 const SubRegion *lazyBindingRegion = nullptr; 01631 std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R); 01632 if (lazyBindingRegion) 01633 return getLazyBinding(lazyBindingRegion, 01634 getRegionBindings(lazyBindingStore)); 01635 01636 // Record whether or not we see a symbolic index. That can completely 01637 // be out of scope of our lookup. 01638 bool hasSymbolicIndex = false; 01639 01640 // FIXME: This is a hack to deal with RegionStore's inability to distinguish a 01641 // default value for /part/ of an aggregate from a default value for the 01642 // /entire/ aggregate. The most common case of this is when struct Outer 01643 // has as its first member a struct Inner, which is copied in from a stack 01644 // variable. In this case, even if the Outer's default value is symbolic, 0, 01645 // or unknown, it gets overridden by the Inner's default value of undefined. 01646 // 01647 // This is a general problem -- if the Inner is zero-initialized, the Outer 01648 // will now look zero-initialized. The proper way to solve this is with a 01649 // new version of RegionStore that tracks the extent of a binding as well 01650 // as the offset. 01651 // 01652 // This hack only takes care of the undefined case because that can very 01653 // quickly result in a warning. 01654 bool hasPartialLazyBinding = false; 01655 01656 const SubRegion *SR = dyn_cast<SubRegion>(R); 01657 while (SR) { 01658 const MemRegion *Base = SR->getSuperRegion(); 01659 if (Optional<SVal> D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) { 01660 if (D->getAs<nonloc::LazyCompoundVal>()) { 01661 hasPartialLazyBinding = true; 01662 break; 01663 } 01664 01665 return *D; 01666 } 01667 01668 if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) { 01669 NonLoc index = ER->getIndex(); 01670 if (!index.isConstant()) 01671 hasSymbolicIndex = true; 01672 } 01673 01674 // If our super region is a field or element itself, walk up the region 01675 // hierarchy to see if there is a default value installed in an ancestor. 01676 SR = dyn_cast<SubRegion>(Base); 01677 } 01678 01679 if (R->hasStackNonParametersStorage()) { 01680 if (isa<ElementRegion>(R)) { 01681 // Currently we don't reason specially about Clang-style vectors. Check 01682 // if superR is a vector and if so return Unknown. 01683 if (const TypedValueRegion *typedSuperR = 01684 dyn_cast<TypedValueRegion>(R->getSuperRegion())) { 01685 if (typedSuperR->getValueType()->isVectorType()) 01686 return UnknownVal(); 01687 } 01688 } 01689 01690 // FIXME: We also need to take ElementRegions with symbolic indexes into 01691 // account. This case handles both directly accessing an ElementRegion 01692 // with a symbolic offset, but also fields within an element with 01693 // a symbolic offset. 01694 if (hasSymbolicIndex) 01695 return UnknownVal(); 01696 01697 if (!hasPartialLazyBinding) 01698 return UndefinedVal(); 01699 } 01700 01701 // All other values are symbolic. 01702 return svalBuilder.getRegionValueSymbolVal(R); 01703 } 01704 01705 SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B, 01706 const ObjCIvarRegion* R) { 01707 // Check if the region has a binding. 01708 if (const Optional<SVal> &V = B.getDirectBinding(R)) 01709 return *V; 01710 01711 const MemRegion *superR = R->getSuperRegion(); 01712 01713 // Check if the super region has a default binding. 01714 if (const Optional<SVal> &V = B.getDefaultBinding(superR)) { 01715 if (SymbolRef parentSym = V->getAsSymbol()) 01716 return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R); 01717 01718 // Other cases: give up. 01719 return UnknownVal(); 01720 } 01721 01722 return getBindingForLazySymbol(R); 01723 } 01724 01725 SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B, 01726 const VarRegion *R) { 01727 01728 // Check if the region has a binding. 01729 if (const Optional<SVal> &V = B.getDirectBinding(R)) 01730 return *V; 01731 01732 // Lazily derive a value for the VarRegion. 01733 const VarDecl *VD = R->getDecl(); 01734 const MemSpaceRegion *MS = R->getMemorySpace(); 01735 01736 // Arguments are always symbolic. 01737 if (isa<StackArgumentsSpaceRegion>(MS)) 01738 return svalBuilder.getRegionValueSymbolVal(R); 01739 01740 // Is 'VD' declared constant? If so, retrieve the constant value. 01741 if (VD->getType().isConstQualified()) 01742 if (const Expr *Init = VD->getInit()) 01743 if (Optional<SVal> V = svalBuilder.getConstantVal(Init)) 01744 return *V; 01745 01746 // This must come after the check for constants because closure-captured 01747 // constant variables may appear in UnknownSpaceRegion. 01748 if (isa<UnknownSpaceRegion>(MS)) 01749 return svalBuilder.getRegionValueSymbolVal(R); 01750 01751 if (isa<GlobalsSpaceRegion>(MS)) { 01752 QualType T = VD->getType(); 01753 01754 // Function-scoped static variables are default-initialized to 0; if they 01755 // have an initializer, it would have been processed by now. 01756 if (isa<StaticGlobalSpaceRegion>(MS)) 01757 return svalBuilder.makeZeroVal(T); 01758 01759 if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) { 01760 assert(!V->getAs<nonloc::LazyCompoundVal>()); 01761 return V.getValue(); 01762 } 01763 01764 return svalBuilder.getRegionValueSymbolVal(R); 01765 } 01766 01767 return UndefinedVal(); 01768 } 01769 01770 SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) { 01771 // All other values are symbolic. 01772 return svalBuilder.getRegionValueSymbolVal(R); 01773 } 01774 01775 const RegionStoreManager::SValListTy & 01776 RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) { 01777 // First, check the cache. 01778 LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData()); 01779 if (I != LazyBindingsMap.end()) 01780 return I->second; 01781 01782 // If we don't have a list of values cached, start constructing it. 01783 SValListTy List; 01784 01785 const SubRegion *LazyR = LCV.getRegion(); 01786 RegionBindingsRef B = getRegionBindings(LCV.getStore()); 01787 01788 // If this region had /no/ bindings at the time, there are no interesting 01789 // values to return. 01790 const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion()); 01791 if (!Cluster) 01792 return (LazyBindingsMap[LCV.getCVData()] = std::move(List)); 01793 01794 SmallVector<BindingPair, 32> Bindings; 01795 collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR, 01796 /*IncludeAllDefaultBindings=*/true); 01797 for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(), 01798 E = Bindings.end(); 01799 I != E; ++I) { 01800 SVal V = I->second; 01801 if (V.isUnknownOrUndef() || V.isConstant()) 01802 continue; 01803 01804 if (Optional<nonloc::LazyCompoundVal> InnerLCV = 01805 V.getAs<nonloc::LazyCompoundVal>()) { 01806 const SValListTy &InnerList = getInterestingValues(*InnerLCV); 01807 List.insert(List.end(), InnerList.begin(), InnerList.end()); 01808 continue; 01809 } 01810 01811 List.push_back(V); 01812 } 01813 01814 return (LazyBindingsMap[LCV.getCVData()] = std::move(List)); 01815 } 01816 01817 NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B, 01818 const TypedValueRegion *R) { 01819 if (Optional<nonloc::LazyCompoundVal> V = 01820 getExistingLazyBinding(svalBuilder, B, R, false)) 01821 return *V; 01822 01823 return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R); 01824 } 01825 01826 static bool isRecordEmpty(const RecordDecl *RD) { 01827 if (!RD->field_empty()) 01828 return false; 01829 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) 01830 return CRD->getNumBases() == 0; 01831 return true; 01832 } 01833 01834 SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B, 01835 const TypedValueRegion *R) { 01836 const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl(); 01837 if (!RD->getDefinition() || isRecordEmpty(RD)) 01838 return UnknownVal(); 01839 01840 return createLazyBinding(B, R); 01841 } 01842 01843 SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B, 01844 const TypedValueRegion *R) { 01845 assert(Ctx.getAsConstantArrayType(R->getValueType()) && 01846 "Only constant array types can have compound bindings."); 01847 01848 return createLazyBinding(B, R); 01849 } 01850 01851 bool RegionStoreManager::includedInBindings(Store store, 01852 const MemRegion *region) const { 01853 RegionBindingsRef B = getRegionBindings(store); 01854 region = region->getBaseRegion(); 01855 01856 // Quick path: if the base is the head of a cluster, the region is live. 01857 if (B.lookup(region)) 01858 return true; 01859 01860 // Slow path: if the region is the VALUE of any binding, it is live. 01861 for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) { 01862 const ClusterBindings &Cluster = RI.getData(); 01863 for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end(); 01864 CI != CE; ++CI) { 01865 const SVal &D = CI.getData(); 01866 if (const MemRegion *R = D.getAsRegion()) 01867 if (R->getBaseRegion() == region) 01868 return true; 01869 } 01870 } 01871 01872 return false; 01873 } 01874 01875 //===----------------------------------------------------------------------===// 01876 // Binding values to regions. 01877 //===----------------------------------------------------------------------===// 01878 01879 StoreRef RegionStoreManager::killBinding(Store ST, Loc L) { 01880 if (Optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>()) 01881 if (const MemRegion* R = LV->getRegion()) 01882 return StoreRef(getRegionBindings(ST).removeBinding(R) 01883 .asImmutableMap() 01884 .getRootWithoutRetain(), 01885 *this); 01886 01887 return StoreRef(ST, *this); 01888 } 01889 01890 RegionBindingsRef 01891 RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) { 01892 if (L.getAs<loc::ConcreteInt>()) 01893 return B; 01894 01895 // If we get here, the location should be a region. 01896 const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion(); 01897 01898 // Check if the region is a struct region. 01899 if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) { 01900 QualType Ty = TR->getValueType(); 01901 if (Ty->isArrayType()) 01902 return bindArray(B, TR, V); 01903 if (Ty->isStructureOrClassType()) 01904 return bindStruct(B, TR, V); 01905 if (Ty->isVectorType()) 01906 return bindVector(B, TR, V); 01907 if (Ty->isUnionType()) 01908 return bindAggregate(B, TR, V); 01909 } 01910 01911 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) { 01912 // Binding directly to a symbolic region should be treated as binding 01913 // to element 0. 01914 QualType T = SR->getSymbol()->getType(); 01915 if (T->isAnyPointerType() || T->isReferenceType()) 01916 T = T->getPointeeType(); 01917 01918 R = GetElementZeroRegion(SR, T); 01919 } 01920 01921 // Clear out bindings that may overlap with this binding. 01922 RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R)); 01923 return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V); 01924 } 01925 01926 RegionBindingsRef 01927 RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B, 01928 const MemRegion *R, 01929 QualType T) { 01930 SVal V; 01931 01932 if (Loc::isLocType(T)) 01933 V = svalBuilder.makeNull(); 01934 else if (T->isIntegralOrEnumerationType()) 01935 V = svalBuilder.makeZeroVal(T); 01936 else if (T->isStructureOrClassType() || T->isArrayType()) { 01937 // Set the default value to a zero constant when it is a structure 01938 // or array. The type doesn't really matter. 01939 V = svalBuilder.makeZeroVal(Ctx.IntTy); 01940 } 01941 else { 01942 // We can't represent values of this type, but we still need to set a value 01943 // to record that the region has been initialized. 01944 // If this assertion ever fires, a new case should be added above -- we 01945 // should know how to default-initialize any value we can symbolicate. 01946 assert(!SymbolManager::canSymbolicate(T) && "This type is representable"); 01947 V = UnknownVal(); 01948 } 01949 01950 return B.addBinding(R, BindingKey::Default, V); 01951 } 01952 01953 RegionBindingsRef 01954 RegionStoreManager::bindArray(RegionBindingsConstRef B, 01955 const TypedValueRegion* R, 01956 SVal Init) { 01957 01958 const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType())); 01959 QualType ElementTy = AT->getElementType(); 01960 Optional<uint64_t> Size; 01961 01962 if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT)) 01963 Size = CAT->getSize().getZExtValue(); 01964 01965 // Check if the init expr is a string literal. 01966 if (Optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) { 01967 const StringRegion *S = cast<StringRegion>(MRV->getRegion()); 01968 01969 // Treat the string as a lazy compound value. 01970 StoreRef store(B.asStore(), *this); 01971 nonloc::LazyCompoundVal LCV = svalBuilder.makeLazyCompoundVal(store, S) 01972 .castAs<nonloc::LazyCompoundVal>(); 01973 return bindAggregate(B, R, LCV); 01974 } 01975 01976 // Handle lazy compound values. 01977 if (Init.getAs<nonloc::LazyCompoundVal>()) 01978 return bindAggregate(B, R, Init); 01979 01980 // Remaining case: explicit compound values. 01981 01982 if (Init.isUnknown()) 01983 return setImplicitDefaultValue(B, R, ElementTy); 01984 01985 const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>(); 01986 nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); 01987 uint64_t i = 0; 01988 01989 RegionBindingsRef NewB(B); 01990 01991 for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) { 01992 // The init list might be shorter than the array length. 01993 if (VI == VE) 01994 break; 01995 01996 const NonLoc &Idx = svalBuilder.makeArrayIndex(i); 01997 const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx); 01998 01999 if (ElementTy->isStructureOrClassType()) 02000 NewB = bindStruct(NewB, ER, *VI); 02001 else if (ElementTy->isArrayType()) 02002 NewB = bindArray(NewB, ER, *VI); 02003 else 02004 NewB = bind(NewB, loc::MemRegionVal(ER), *VI); 02005 } 02006 02007 // If the init list is shorter than the array length, set the 02008 // array default value. 02009 if (Size.hasValue() && i < Size.getValue()) 02010 NewB = setImplicitDefaultValue(NewB, R, ElementTy); 02011 02012 return NewB; 02013 } 02014 02015 RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B, 02016 const TypedValueRegion* R, 02017 SVal V) { 02018 QualType T = R->getValueType(); 02019 assert(T->isVectorType()); 02020 const VectorType *VT = T->getAs<VectorType>(); // Use getAs for typedefs. 02021 02022 // Handle lazy compound values and symbolic values. 02023 if (V.getAs<nonloc::LazyCompoundVal>() || V.getAs<nonloc::SymbolVal>()) 02024 return bindAggregate(B, R, V); 02025 02026 // We may get non-CompoundVal accidentally due to imprecise cast logic or 02027 // that we are binding symbolic struct value. Kill the field values, and if 02028 // the value is symbolic go and bind it as a "default" binding. 02029 if (!V.getAs<nonloc::CompoundVal>()) { 02030 return bindAggregate(B, R, UnknownVal()); 02031 } 02032 02033 QualType ElemType = VT->getElementType(); 02034 nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>(); 02035 nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); 02036 unsigned index = 0, numElements = VT->getNumElements(); 02037 RegionBindingsRef NewB(B); 02038 02039 for ( ; index != numElements ; ++index) { 02040 if (VI == VE) 02041 break; 02042 02043 NonLoc Idx = svalBuilder.makeArrayIndex(index); 02044 const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx); 02045 02046 if (ElemType->isArrayType()) 02047 NewB = bindArray(NewB, ER, *VI); 02048 else if (ElemType->isStructureOrClassType()) 02049 NewB = bindStruct(NewB, ER, *VI); 02050 else 02051 NewB = bind(NewB, loc::MemRegionVal(ER), *VI); 02052 } 02053 return NewB; 02054 } 02055 02056 Optional<RegionBindingsRef> 02057 RegionStoreManager::tryBindSmallStruct(RegionBindingsConstRef B, 02058 const TypedValueRegion *R, 02059 const RecordDecl *RD, 02060 nonloc::LazyCompoundVal LCV) { 02061 FieldVector Fields; 02062 02063 if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD)) 02064 if (Class->getNumBases() != 0 || Class->getNumVBases() != 0) 02065 return None; 02066 02067 for (const auto *FD : RD->fields()) { 02068 if (FD->isUnnamedBitfield()) 02069 continue; 02070 02071 // If there are too many fields, or if any of the fields are aggregates, 02072 // just use the LCV as a default binding. 02073 if (Fields.size() == SmallStructLimit) 02074 return None; 02075 02076 QualType Ty = FD->getType(); 02077 if (!(Ty->isScalarType() || Ty->isReferenceType())) 02078 return None; 02079 02080 Fields.push_back(FD); 02081 } 02082 02083 RegionBindingsRef NewB = B; 02084 02085 for (FieldVector::iterator I = Fields.begin(), E = Fields.end(); I != E; ++I){ 02086 const FieldRegion *SourceFR = MRMgr.getFieldRegion(*I, LCV.getRegion()); 02087 SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR); 02088 02089 const FieldRegion *DestFR = MRMgr.getFieldRegion(*I, R); 02090 NewB = bind(NewB, loc::MemRegionVal(DestFR), V); 02091 } 02092 02093 return NewB; 02094 } 02095 02096 RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B, 02097 const TypedValueRegion* R, 02098 SVal V) { 02099 if (!Features.supportsFields()) 02100 return B; 02101 02102 QualType T = R->getValueType(); 02103 assert(T->isStructureOrClassType()); 02104 02105 const RecordType* RT = T->getAs<RecordType>(); 02106 const RecordDecl *RD = RT->getDecl(); 02107 02108 if (!RD->isCompleteDefinition()) 02109 return B; 02110 02111 // Handle lazy compound values and symbolic values. 02112 if (Optional<nonloc::LazyCompoundVal> LCV = 02113 V.getAs<nonloc::LazyCompoundVal>()) { 02114 if (Optional<RegionBindingsRef> NewB = tryBindSmallStruct(B, R, RD, *LCV)) 02115 return *NewB; 02116 return bindAggregate(B, R, V); 02117 } 02118 if (V.getAs<nonloc::SymbolVal>()) 02119 return bindAggregate(B, R, V); 02120 02121 // We may get non-CompoundVal accidentally due to imprecise cast logic or 02122 // that we are binding symbolic struct value. Kill the field values, and if 02123 // the value is symbolic go and bind it as a "default" binding. 02124 if (V.isUnknown() || !V.getAs<nonloc::CompoundVal>()) 02125 return bindAggregate(B, R, UnknownVal()); 02126 02127 const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>(); 02128 nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); 02129 02130 RecordDecl::field_iterator FI, FE; 02131 RegionBindingsRef NewB(B); 02132 02133 for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) { 02134 02135 if (VI == VE) 02136 break; 02137 02138 // Skip any unnamed bitfields to stay in sync with the initializers. 02139 if (FI->isUnnamedBitfield()) 02140 continue; 02141 02142 QualType FTy = FI->getType(); 02143 const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R); 02144 02145 if (FTy->isArrayType()) 02146 NewB = bindArray(NewB, FR, *VI); 02147 else if (FTy->isStructureOrClassType()) 02148 NewB = bindStruct(NewB, FR, *VI); 02149 else 02150 NewB = bind(NewB, loc::MemRegionVal(FR), *VI); 02151 ++VI; 02152 } 02153 02154 // There may be fewer values in the initialize list than the fields of struct. 02155 if (FI != FE) { 02156 NewB = NewB.addBinding(R, BindingKey::Default, 02157 svalBuilder.makeIntVal(0, false)); 02158 } 02159 02160 return NewB; 02161 } 02162 02163 RegionBindingsRef 02164 RegionStoreManager::bindAggregate(RegionBindingsConstRef B, 02165 const TypedRegion *R, 02166 SVal Val) { 02167 // Remove the old bindings, using 'R' as the root of all regions 02168 // we will invalidate. Then add the new binding. 02169 return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val); 02170 } 02171 02172 //===----------------------------------------------------------------------===// 02173 // State pruning. 02174 //===----------------------------------------------------------------------===// 02175 02176 namespace { 02177 class removeDeadBindingsWorker : 02178 public ClusterAnalysis<removeDeadBindingsWorker> { 02179 SmallVector<const SymbolicRegion*, 12> Postponed; 02180 SymbolReaper &SymReaper; 02181 const StackFrameContext *CurrentLCtx; 02182 02183 public: 02184 removeDeadBindingsWorker(RegionStoreManager &rm, 02185 ProgramStateManager &stateMgr, 02186 RegionBindingsRef b, SymbolReaper &symReaper, 02187 const StackFrameContext *LCtx) 02188 : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b, GFK_None), 02189 SymReaper(symReaper), CurrentLCtx(LCtx) {} 02190 02191 // Called by ClusterAnalysis. 02192 void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C); 02193 void VisitCluster(const MemRegion *baseR, const ClusterBindings *C); 02194 using ClusterAnalysis<removeDeadBindingsWorker>::VisitCluster; 02195 02196 bool UpdatePostponed(); 02197 void VisitBinding(SVal V); 02198 }; 02199 } 02200 02201 void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR, 02202 const ClusterBindings &C) { 02203 02204 if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) { 02205 if (SymReaper.isLive(VR)) 02206 AddToWorkList(baseR, &C); 02207 02208 return; 02209 } 02210 02211 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) { 02212 if (SymReaper.isLive(SR->getSymbol())) 02213 AddToWorkList(SR, &C); 02214 else 02215 Postponed.push_back(SR); 02216 02217 return; 02218 } 02219 02220 if (isa<NonStaticGlobalSpaceRegion>(baseR)) { 02221 AddToWorkList(baseR, &C); 02222 return; 02223 } 02224 02225 // CXXThisRegion in the current or parent location context is live. 02226 if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) { 02227 const StackArgumentsSpaceRegion *StackReg = 02228 cast<StackArgumentsSpaceRegion>(TR->getSuperRegion()); 02229 const StackFrameContext *RegCtx = StackReg->getStackFrame(); 02230 if (CurrentLCtx && 02231 (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx))) 02232 AddToWorkList(TR, &C); 02233 } 02234 } 02235 02236 void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR, 02237 const ClusterBindings *C) { 02238 if (!C) 02239 return; 02240 02241 // Mark the symbol for any SymbolicRegion with live bindings as live itself. 02242 // This means we should continue to track that symbol. 02243 if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR)) 02244 SymReaper.markLive(SymR->getSymbol()); 02245 02246 for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I) 02247 VisitBinding(I.getData()); 02248 } 02249 02250 void removeDeadBindingsWorker::VisitBinding(SVal V) { 02251 // Is it a LazyCompoundVal? All referenced regions are live as well. 02252 if (Optional<nonloc::LazyCompoundVal> LCS = 02253 V.getAs<nonloc::LazyCompoundVal>()) { 02254 02255 const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS); 02256 02257 for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(), 02258 E = Vals.end(); 02259 I != E; ++I) 02260 VisitBinding(*I); 02261 02262 return; 02263 } 02264 02265 // If V is a region, then add it to the worklist. 02266 if (const MemRegion *R = V.getAsRegion()) { 02267 AddToWorkList(R); 02268 02269 // All regions captured by a block are also live. 02270 if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) { 02271 BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(), 02272 E = BR->referenced_vars_end(); 02273 for ( ; I != E; ++I) 02274 AddToWorkList(I.getCapturedRegion()); 02275 } 02276 } 02277 02278 02279 // Update the set of live symbols. 02280 for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end(); 02281 SI!=SE; ++SI) 02282 SymReaper.markLive(*SI); 02283 } 02284 02285 bool removeDeadBindingsWorker::UpdatePostponed() { 02286 // See if any postponed SymbolicRegions are actually live now, after 02287 // having done a scan. 02288 bool changed = false; 02289 02290 for (SmallVectorImpl<const SymbolicRegion*>::iterator 02291 I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) { 02292 if (const SymbolicRegion *SR = *I) { 02293 if (SymReaper.isLive(SR->getSymbol())) { 02294 changed |= AddToWorkList(SR); 02295 *I = nullptr; 02296 } 02297 } 02298 } 02299 02300 return changed; 02301 } 02302 02303 StoreRef RegionStoreManager::removeDeadBindings(Store store, 02304 const StackFrameContext *LCtx, 02305 SymbolReaper& SymReaper) { 02306 RegionBindingsRef B = getRegionBindings(store); 02307 removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx); 02308 W.GenerateClusters(); 02309 02310 // Enqueue the region roots onto the worklist. 02311 for (SymbolReaper::region_iterator I = SymReaper.region_begin(), 02312 E = SymReaper.region_end(); I != E; ++I) { 02313 W.AddToWorkList(*I); 02314 } 02315 02316 do W.RunWorkList(); while (W.UpdatePostponed()); 02317 02318 // We have now scanned the store, marking reachable regions and symbols 02319 // as live. We now remove all the regions that are dead from the store 02320 // as well as update DSymbols with the set symbols that are now dead. 02321 for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) { 02322 const MemRegion *Base = I.getKey(); 02323 02324 // If the cluster has been visited, we know the region has been marked. 02325 if (W.isVisited(Base)) 02326 continue; 02327 02328 // Remove the dead entry. 02329 B = B.remove(Base); 02330 02331 if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(Base)) 02332 SymReaper.maybeDead(SymR->getSymbol()); 02333 02334 // Mark all non-live symbols that this binding references as dead. 02335 const ClusterBindings &Cluster = I.getData(); 02336 for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end(); 02337 CI != CE; ++CI) { 02338 SVal X = CI.getData(); 02339 SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end(); 02340 for (; SI != SE; ++SI) 02341 SymReaper.maybeDead(*SI); 02342 } 02343 } 02344 02345 return StoreRef(B.asStore(), *this); 02346 } 02347 02348 //===----------------------------------------------------------------------===// 02349 // Utility methods. 02350 //===----------------------------------------------------------------------===// 02351 02352 void RegionStoreManager::print(Store store, raw_ostream &OS, 02353 const char* nl, const char *sep) { 02354 RegionBindingsRef B = getRegionBindings(store); 02355 OS << "Store (direct and default bindings), " 02356 << B.asStore() 02357 << " :" << nl; 02358 B.dump(OS, nl); 02359 }