clang API Documentation
00001 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements semantic analysis for Objective C declarations. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "clang/Sema/SemaInternal.h" 00015 #include "clang/AST/ASTConsumer.h" 00016 #include "clang/AST/ASTContext.h" 00017 #include "clang/AST/ASTMutationListener.h" 00018 #include "clang/AST/DataRecursiveASTVisitor.h" 00019 #include "clang/AST/DeclObjC.h" 00020 #include "clang/AST/Expr.h" 00021 #include "clang/AST/ExprObjC.h" 00022 #include "clang/Basic/SourceManager.h" 00023 #include "clang/Sema/DeclSpec.h" 00024 #include "clang/Sema/ExternalSemaSource.h" 00025 #include "clang/Sema/Lookup.h" 00026 #include "clang/Sema/Scope.h" 00027 #include "clang/Sema/ScopeInfo.h" 00028 #include "llvm/ADT/DenseSet.h" 00029 00030 using namespace clang; 00031 00032 /// Check whether the given method, which must be in the 'init' 00033 /// family, is a valid member of that family. 00034 /// 00035 /// \param receiverTypeIfCall - if null, check this as if declaring it; 00036 /// if non-null, check this as if making a call to it with the given 00037 /// receiver type 00038 /// 00039 /// \return true to indicate that there was an error and appropriate 00040 /// actions were taken 00041 bool Sema::checkInitMethod(ObjCMethodDecl *method, 00042 QualType receiverTypeIfCall) { 00043 if (method->isInvalidDecl()) return true; 00044 00045 // This castAs is safe: methods that don't return an object 00046 // pointer won't be inferred as inits and will reject an explicit 00047 // objc_method_family(init). 00048 00049 // We ignore protocols here. Should we? What about Class? 00050 00051 const ObjCObjectType *result = 00052 method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType(); 00053 00054 if (result->isObjCId()) { 00055 return false; 00056 } else if (result->isObjCClass()) { 00057 // fall through: always an error 00058 } else { 00059 ObjCInterfaceDecl *resultClass = result->getInterface(); 00060 assert(resultClass && "unexpected object type!"); 00061 00062 // It's okay for the result type to still be a forward declaration 00063 // if we're checking an interface declaration. 00064 if (!resultClass->hasDefinition()) { 00065 if (receiverTypeIfCall.isNull() && 00066 !isa<ObjCImplementationDecl>(method->getDeclContext())) 00067 return false; 00068 00069 // Otherwise, we try to compare class types. 00070 } else { 00071 // If this method was declared in a protocol, we can't check 00072 // anything unless we have a receiver type that's an interface. 00073 const ObjCInterfaceDecl *receiverClass = nullptr; 00074 if (isa<ObjCProtocolDecl>(method->getDeclContext())) { 00075 if (receiverTypeIfCall.isNull()) 00076 return false; 00077 00078 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>() 00079 ->getInterfaceDecl(); 00080 00081 // This can be null for calls to e.g. id<Foo>. 00082 if (!receiverClass) return false; 00083 } else { 00084 receiverClass = method->getClassInterface(); 00085 assert(receiverClass && "method not associated with a class!"); 00086 } 00087 00088 // If either class is a subclass of the other, it's fine. 00089 if (receiverClass->isSuperClassOf(resultClass) || 00090 resultClass->isSuperClassOf(receiverClass)) 00091 return false; 00092 } 00093 } 00094 00095 SourceLocation loc = method->getLocation(); 00096 00097 // If we're in a system header, and this is not a call, just make 00098 // the method unusable. 00099 if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) { 00100 method->addAttr(UnavailableAttr::CreateImplicit(Context, 00101 "init method returns a type unrelated to its receiver type", 00102 loc)); 00103 return true; 00104 } 00105 00106 // Otherwise, it's an error. 00107 Diag(loc, diag::err_arc_init_method_unrelated_result_type); 00108 method->setInvalidDecl(); 00109 return true; 00110 } 00111 00112 void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod, 00113 const ObjCMethodDecl *Overridden) { 00114 if (Overridden->hasRelatedResultType() && 00115 !NewMethod->hasRelatedResultType()) { 00116 // This can only happen when the method follows a naming convention that 00117 // implies a related result type, and the original (overridden) method has 00118 // a suitable return type, but the new (overriding) method does not have 00119 // a suitable return type. 00120 QualType ResultType = NewMethod->getReturnType(); 00121 SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange(); 00122 00123 // Figure out which class this method is part of, if any. 00124 ObjCInterfaceDecl *CurrentClass 00125 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext()); 00126 if (!CurrentClass) { 00127 DeclContext *DC = NewMethod->getDeclContext(); 00128 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC)) 00129 CurrentClass = Cat->getClassInterface(); 00130 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC)) 00131 CurrentClass = Impl->getClassInterface(); 00132 else if (ObjCCategoryImplDecl *CatImpl 00133 = dyn_cast<ObjCCategoryImplDecl>(DC)) 00134 CurrentClass = CatImpl->getClassInterface(); 00135 } 00136 00137 if (CurrentClass) { 00138 Diag(NewMethod->getLocation(), 00139 diag::warn_related_result_type_compatibility_class) 00140 << Context.getObjCInterfaceType(CurrentClass) 00141 << ResultType 00142 << ResultTypeRange; 00143 } else { 00144 Diag(NewMethod->getLocation(), 00145 diag::warn_related_result_type_compatibility_protocol) 00146 << ResultType 00147 << ResultTypeRange; 00148 } 00149 00150 if (ObjCMethodFamily Family = Overridden->getMethodFamily()) 00151 Diag(Overridden->getLocation(), 00152 diag::note_related_result_type_family) 00153 << /*overridden method*/ 0 00154 << Family; 00155 else 00156 Diag(Overridden->getLocation(), 00157 diag::note_related_result_type_overridden); 00158 } 00159 if (getLangOpts().ObjCAutoRefCount) { 00160 if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() != 00161 Overridden->hasAttr<NSReturnsRetainedAttr>())) { 00162 Diag(NewMethod->getLocation(), 00163 diag::err_nsreturns_retained_attribute_mismatch) << 1; 00164 Diag(Overridden->getLocation(), diag::note_previous_decl) 00165 << "method"; 00166 } 00167 if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() != 00168 Overridden->hasAttr<NSReturnsNotRetainedAttr>())) { 00169 Diag(NewMethod->getLocation(), 00170 diag::err_nsreturns_retained_attribute_mismatch) << 0; 00171 Diag(Overridden->getLocation(), diag::note_previous_decl) 00172 << "method"; 00173 } 00174 ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(), 00175 oe = Overridden->param_end(); 00176 for (ObjCMethodDecl::param_iterator 00177 ni = NewMethod->param_begin(), ne = NewMethod->param_end(); 00178 ni != ne && oi != oe; ++ni, ++oi) { 00179 const ParmVarDecl *oldDecl = (*oi); 00180 ParmVarDecl *newDecl = (*ni); 00181 if (newDecl->hasAttr<NSConsumedAttr>() != 00182 oldDecl->hasAttr<NSConsumedAttr>()) { 00183 Diag(newDecl->getLocation(), 00184 diag::err_nsconsumed_attribute_mismatch); 00185 Diag(oldDecl->getLocation(), diag::note_previous_decl) 00186 << "parameter"; 00187 } 00188 } 00189 } 00190 } 00191 00192 /// \brief Check a method declaration for compatibility with the Objective-C 00193 /// ARC conventions. 00194 bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) { 00195 ObjCMethodFamily family = method->getMethodFamily(); 00196 switch (family) { 00197 case OMF_None: 00198 case OMF_finalize: 00199 case OMF_retain: 00200 case OMF_release: 00201 case OMF_autorelease: 00202 case OMF_retainCount: 00203 case OMF_self: 00204 case OMF_initialize: 00205 case OMF_performSelector: 00206 return false; 00207 00208 case OMF_dealloc: 00209 if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) { 00210 SourceRange ResultTypeRange = method->getReturnTypeSourceRange(); 00211 if (ResultTypeRange.isInvalid()) 00212 Diag(method->getLocation(), diag::error_dealloc_bad_result_type) 00213 << method->getReturnType() 00214 << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)"); 00215 else 00216 Diag(method->getLocation(), diag::error_dealloc_bad_result_type) 00217 << method->getReturnType() 00218 << FixItHint::CreateReplacement(ResultTypeRange, "void"); 00219 return true; 00220 } 00221 return false; 00222 00223 case OMF_init: 00224 // If the method doesn't obey the init rules, don't bother annotating it. 00225 if (checkInitMethod(method, QualType())) 00226 return true; 00227 00228 method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context)); 00229 00230 // Don't add a second copy of this attribute, but otherwise don't 00231 // let it be suppressed. 00232 if (method->hasAttr<NSReturnsRetainedAttr>()) 00233 return false; 00234 break; 00235 00236 case OMF_alloc: 00237 case OMF_copy: 00238 case OMF_mutableCopy: 00239 case OMF_new: 00240 if (method->hasAttr<NSReturnsRetainedAttr>() || 00241 method->hasAttr<NSReturnsNotRetainedAttr>() || 00242 method->hasAttr<NSReturnsAutoreleasedAttr>()) 00243 return false; 00244 break; 00245 } 00246 00247 method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context)); 00248 return false; 00249 } 00250 00251 static void DiagnoseObjCImplementedDeprecations(Sema &S, 00252 NamedDecl *ND, 00253 SourceLocation ImplLoc, 00254 int select) { 00255 if (ND && ND->isDeprecated()) { 00256 S.Diag(ImplLoc, diag::warn_deprecated_def) << select; 00257 if (select == 0) 00258 S.Diag(ND->getLocation(), diag::note_method_declared_at) 00259 << ND->getDeclName(); 00260 else 00261 S.Diag(ND->getLocation(), diag::note_previous_decl) << "class"; 00262 } 00263 } 00264 00265 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global 00266 /// pool. 00267 void Sema::AddAnyMethodToGlobalPool(Decl *D) { 00268 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D); 00269 00270 // If we don't have a valid method decl, simply return. 00271 if (!MDecl) 00272 return; 00273 if (MDecl->isInstanceMethod()) 00274 AddInstanceMethodToGlobalPool(MDecl, true); 00275 else 00276 AddFactoryMethodToGlobalPool(MDecl, true); 00277 } 00278 00279 /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer 00280 /// has explicit ownership attribute; false otherwise. 00281 static bool 00282 HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) { 00283 QualType T = Param->getType(); 00284 00285 if (const PointerType *PT = T->getAs<PointerType>()) { 00286 T = PT->getPointeeType(); 00287 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) { 00288 T = RT->getPointeeType(); 00289 } else { 00290 return true; 00291 } 00292 00293 // If we have a lifetime qualifier, but it's local, we must have 00294 // inferred it. So, it is implicit. 00295 return !T.getLocalQualifiers().hasObjCLifetime(); 00296 } 00297 00298 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible 00299 /// and user declared, in the method definition's AST. 00300 void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) { 00301 assert((getCurMethodDecl() == nullptr) && "Methodparsing confused"); 00302 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D); 00303 00304 // If we don't have a valid method decl, simply return. 00305 if (!MDecl) 00306 return; 00307 00308 // Allow all of Sema to see that we are entering a method definition. 00309 PushDeclContext(FnBodyScope, MDecl); 00310 PushFunctionScope(); 00311 00312 // Create Decl objects for each parameter, entrring them in the scope for 00313 // binding to their use. 00314 00315 // Insert the invisible arguments, self and _cmd! 00316 MDecl->createImplicitParams(Context, MDecl->getClassInterface()); 00317 00318 PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope); 00319 PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope); 00320 00321 // The ObjC parser requires parameter names so there's no need to check. 00322 CheckParmsForFunctionDef(MDecl->param_begin(), MDecl->param_end(), 00323 /*CheckParameterNames=*/false); 00324 00325 // Introduce all of the other parameters into this scope. 00326 for (auto *Param : MDecl->params()) { 00327 if (!Param->isInvalidDecl() && 00328 getLangOpts().ObjCAutoRefCount && 00329 !HasExplicitOwnershipAttr(*this, Param)) 00330 Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) << 00331 Param->getType(); 00332 00333 if (Param->getIdentifier()) 00334 PushOnScopeChains(Param, FnBodyScope); 00335 } 00336 00337 // In ARC, disallow definition of retain/release/autorelease/retainCount 00338 if (getLangOpts().ObjCAutoRefCount) { 00339 switch (MDecl->getMethodFamily()) { 00340 case OMF_retain: 00341 case OMF_retainCount: 00342 case OMF_release: 00343 case OMF_autorelease: 00344 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def) 00345 << 0 << MDecl->getSelector(); 00346 break; 00347 00348 case OMF_None: 00349 case OMF_dealloc: 00350 case OMF_finalize: 00351 case OMF_alloc: 00352 case OMF_init: 00353 case OMF_mutableCopy: 00354 case OMF_copy: 00355 case OMF_new: 00356 case OMF_self: 00357 case OMF_initialize: 00358 case OMF_performSelector: 00359 break; 00360 } 00361 } 00362 00363 // Warn on deprecated methods under -Wdeprecated-implementations, 00364 // and prepare for warning on missing super calls. 00365 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) { 00366 ObjCMethodDecl *IMD = 00367 IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod()); 00368 00369 if (IMD) { 00370 ObjCImplDecl *ImplDeclOfMethodDef = 00371 dyn_cast<ObjCImplDecl>(MDecl->getDeclContext()); 00372 ObjCContainerDecl *ContDeclOfMethodDecl = 00373 dyn_cast<ObjCContainerDecl>(IMD->getDeclContext()); 00374 ObjCImplDecl *ImplDeclOfMethodDecl = nullptr; 00375 if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl)) 00376 ImplDeclOfMethodDecl = OID->getImplementation(); 00377 else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) { 00378 if (CD->IsClassExtension()) { 00379 if (ObjCInterfaceDecl *OID = CD->getClassInterface()) 00380 ImplDeclOfMethodDecl = OID->getImplementation(); 00381 } else 00382 ImplDeclOfMethodDecl = CD->getImplementation(); 00383 } 00384 // No need to issue deprecated warning if deprecated mehod in class/category 00385 // is being implemented in its own implementation (no overriding is involved). 00386 if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef) 00387 DiagnoseObjCImplementedDeprecations(*this, 00388 dyn_cast<NamedDecl>(IMD), 00389 MDecl->getLocation(), 0); 00390 } 00391 00392 if (MDecl->getMethodFamily() == OMF_init) { 00393 if (MDecl->isDesignatedInitializerForTheInterface()) { 00394 getCurFunction()->ObjCIsDesignatedInit = true; 00395 getCurFunction()->ObjCWarnForNoDesignatedInitChain = 00396 IC->getSuperClass() != nullptr; 00397 } else if (IC->hasDesignatedInitializers()) { 00398 getCurFunction()->ObjCIsSecondaryInit = true; 00399 getCurFunction()->ObjCWarnForNoInitDelegation = true; 00400 } 00401 } 00402 00403 // If this is "dealloc" or "finalize", set some bit here. 00404 // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false. 00405 // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set. 00406 // Only do this if the current class actually has a superclass. 00407 if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) { 00408 ObjCMethodFamily Family = MDecl->getMethodFamily(); 00409 if (Family == OMF_dealloc) { 00410 if (!(getLangOpts().ObjCAutoRefCount || 00411 getLangOpts().getGC() == LangOptions::GCOnly)) 00412 getCurFunction()->ObjCShouldCallSuper = true; 00413 00414 } else if (Family == OMF_finalize) { 00415 if (Context.getLangOpts().getGC() != LangOptions::NonGC) 00416 getCurFunction()->ObjCShouldCallSuper = true; 00417 00418 } else { 00419 const ObjCMethodDecl *SuperMethod = 00420 SuperClass->lookupMethod(MDecl->getSelector(), 00421 MDecl->isInstanceMethod()); 00422 getCurFunction()->ObjCShouldCallSuper = 00423 (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>()); 00424 } 00425 } 00426 } 00427 } 00428 00429 namespace { 00430 00431 // Callback to only accept typo corrections that are Objective-C classes. 00432 // If an ObjCInterfaceDecl* is given to the constructor, then the validation 00433 // function will reject corrections to that class. 00434 class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback { 00435 public: 00436 ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {} 00437 explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl) 00438 : CurrentIDecl(IDecl) {} 00439 00440 bool ValidateCandidate(const TypoCorrection &candidate) override { 00441 ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>(); 00442 return ID && !declaresSameEntity(ID, CurrentIDecl); 00443 } 00444 00445 private: 00446 ObjCInterfaceDecl *CurrentIDecl; 00447 }; 00448 00449 } 00450 00451 Decl *Sema:: 00452 ActOnStartClassInterface(SourceLocation AtInterfaceLoc, 00453 IdentifierInfo *ClassName, SourceLocation ClassLoc, 00454 IdentifierInfo *SuperName, SourceLocation SuperLoc, 00455 Decl * const *ProtoRefs, unsigned NumProtoRefs, 00456 const SourceLocation *ProtoLocs, 00457 SourceLocation EndProtoLoc, AttributeList *AttrList) { 00458 assert(ClassName && "Missing class identifier"); 00459 00460 // Check for another declaration kind with the same name. 00461 NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc, 00462 LookupOrdinaryName, ForRedeclaration); 00463 00464 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 00465 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; 00466 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 00467 } 00468 00469 // Create a declaration to describe this @interface. 00470 ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 00471 00472 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) { 00473 // A previous decl with a different name is because of 00474 // @compatibility_alias, for example: 00475 // \code 00476 // @class NewImage; 00477 // @compatibility_alias OldImage NewImage; 00478 // \endcode 00479 // A lookup for 'OldImage' will return the 'NewImage' decl. 00480 // 00481 // In such a case use the real declaration name, instead of the alias one, 00482 // otherwise we will break IdentifierResolver and redecls-chain invariants. 00483 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl 00484 // has been aliased. 00485 ClassName = PrevIDecl->getIdentifier(); 00486 } 00487 00488 ObjCInterfaceDecl *IDecl 00489 = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName, 00490 PrevIDecl, ClassLoc); 00491 00492 if (PrevIDecl) { 00493 // Class already seen. Was it a definition? 00494 if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) { 00495 Diag(AtInterfaceLoc, diag::err_duplicate_class_def) 00496 << PrevIDecl->getDeclName(); 00497 Diag(Def->getLocation(), diag::note_previous_definition); 00498 IDecl->setInvalidDecl(); 00499 } 00500 } 00501 00502 if (AttrList) 00503 ProcessDeclAttributeList(TUScope, IDecl, AttrList); 00504 PushOnScopeChains(IDecl, TUScope); 00505 00506 // Start the definition of this class. If we're in a redefinition case, there 00507 // may already be a definition, so we'll end up adding to it. 00508 if (!IDecl->hasDefinition()) 00509 IDecl->startDefinition(); 00510 00511 if (SuperName) { 00512 // Check if a different kind of symbol declared in this scope. 00513 PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc, 00514 LookupOrdinaryName); 00515 00516 if (!PrevDecl) { 00517 // Try to correct for a typo in the superclass name without correcting 00518 // to the class we're defining. 00519 if (TypoCorrection Corrected = 00520 CorrectTypo(DeclarationNameInfo(SuperName, SuperLoc), 00521 LookupOrdinaryName, TUScope, nullptr, 00522 llvm::make_unique<ObjCInterfaceValidatorCCC>(IDecl), 00523 CTK_ErrorRecovery)) { 00524 diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest) 00525 << SuperName << ClassName); 00526 PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>(); 00527 } 00528 } 00529 00530 if (declaresSameEntity(PrevDecl, IDecl)) { 00531 Diag(SuperLoc, diag::err_recursive_superclass) 00532 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); 00533 IDecl->setEndOfDefinitionLoc(ClassLoc); 00534 } else { 00535 ObjCInterfaceDecl *SuperClassDecl = 00536 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 00537 00538 // Diagnose classes that inherit from deprecated classes. 00539 if (SuperClassDecl) 00540 (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc); 00541 00542 if (PrevDecl && !SuperClassDecl) { 00543 // The previous declaration was not a class decl. Check if we have a 00544 // typedef. If we do, get the underlying class type. 00545 if (const TypedefNameDecl *TDecl = 00546 dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { 00547 QualType T = TDecl->getUnderlyingType(); 00548 if (T->isObjCObjectType()) { 00549 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) { 00550 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl); 00551 // This handles the following case: 00552 // @interface NewI @end 00553 // typedef NewI DeprI __attribute__((deprecated("blah"))) 00554 // @interface SI : DeprI /* warn here */ @end 00555 (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc); 00556 } 00557 } 00558 } 00559 00560 // This handles the following case: 00561 // 00562 // typedef int SuperClass; 00563 // @interface MyClass : SuperClass {} @end 00564 // 00565 if (!SuperClassDecl) { 00566 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName; 00567 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 00568 } 00569 } 00570 00571 if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { 00572 if (!SuperClassDecl) 00573 Diag(SuperLoc, diag::err_undef_superclass) 00574 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); 00575 else if (RequireCompleteType(SuperLoc, 00576 Context.getObjCInterfaceType(SuperClassDecl), 00577 diag::err_forward_superclass, 00578 SuperClassDecl->getDeclName(), 00579 ClassName, 00580 SourceRange(AtInterfaceLoc, ClassLoc))) { 00581 SuperClassDecl = nullptr; 00582 } 00583 } 00584 IDecl->setSuperClass(SuperClassDecl); 00585 IDecl->setSuperClassLoc(SuperLoc); 00586 IDecl->setEndOfDefinitionLoc(SuperLoc); 00587 } 00588 } else { // we have a root class. 00589 IDecl->setEndOfDefinitionLoc(ClassLoc); 00590 } 00591 00592 // Check then save referenced protocols. 00593 if (NumProtoRefs) { 00594 IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs, 00595 ProtoLocs, Context); 00596 IDecl->setEndOfDefinitionLoc(EndProtoLoc); 00597 } 00598 00599 CheckObjCDeclScope(IDecl); 00600 return ActOnObjCContainerStartDefinition(IDecl); 00601 } 00602 00603 /// ActOnTypedefedProtocols - this action finds protocol list as part of the 00604 /// typedef'ed use for a qualified super class and adds them to the list 00605 /// of the protocols. 00606 void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs, 00607 IdentifierInfo *SuperName, 00608 SourceLocation SuperLoc) { 00609 if (!SuperName) 00610 return; 00611 NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc, 00612 LookupOrdinaryName); 00613 if (!IDecl) 00614 return; 00615 00616 if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) { 00617 QualType T = TDecl->getUnderlyingType(); 00618 if (T->isObjCObjectType()) 00619 if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) 00620 for (auto *I : OPT->quals()) 00621 ProtocolRefs.push_back(I); 00622 } 00623 } 00624 00625 /// ActOnCompatibilityAlias - this action is called after complete parsing of 00626 /// a \@compatibility_alias declaration. It sets up the alias relationships. 00627 Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc, 00628 IdentifierInfo *AliasName, 00629 SourceLocation AliasLocation, 00630 IdentifierInfo *ClassName, 00631 SourceLocation ClassLocation) { 00632 // Look for previous declaration of alias name 00633 NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation, 00634 LookupOrdinaryName, ForRedeclaration); 00635 if (ADecl) { 00636 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName; 00637 Diag(ADecl->getLocation(), diag::note_previous_declaration); 00638 return nullptr; 00639 } 00640 // Check for class declaration 00641 NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, 00642 LookupOrdinaryName, ForRedeclaration); 00643 if (const TypedefNameDecl *TDecl = 00644 dyn_cast_or_null<TypedefNameDecl>(CDeclU)) { 00645 QualType T = TDecl->getUnderlyingType(); 00646 if (T->isObjCObjectType()) { 00647 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) { 00648 ClassName = IDecl->getIdentifier(); 00649 CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, 00650 LookupOrdinaryName, ForRedeclaration); 00651 } 00652 } 00653 } 00654 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU); 00655 if (!CDecl) { 00656 Diag(ClassLocation, diag::warn_undef_interface) << ClassName; 00657 if (CDeclU) 00658 Diag(CDeclU->getLocation(), diag::note_previous_declaration); 00659 return nullptr; 00660 } 00661 00662 // Everything checked out, instantiate a new alias declaration AST. 00663 ObjCCompatibleAliasDecl *AliasDecl = 00664 ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl); 00665 00666 if (!CheckObjCDeclScope(AliasDecl)) 00667 PushOnScopeChains(AliasDecl, TUScope); 00668 00669 return AliasDecl; 00670 } 00671 00672 bool Sema::CheckForwardProtocolDeclarationForCircularDependency( 00673 IdentifierInfo *PName, 00674 SourceLocation &Ploc, SourceLocation PrevLoc, 00675 const ObjCList<ObjCProtocolDecl> &PList) { 00676 00677 bool res = false; 00678 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(), 00679 E = PList.end(); I != E; ++I) { 00680 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(), 00681 Ploc)) { 00682 if (PDecl->getIdentifier() == PName) { 00683 Diag(Ploc, diag::err_protocol_has_circular_dependency); 00684 Diag(PrevLoc, diag::note_previous_definition); 00685 res = true; 00686 } 00687 00688 if (!PDecl->hasDefinition()) 00689 continue; 00690 00691 if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc, 00692 PDecl->getLocation(), PDecl->getReferencedProtocols())) 00693 res = true; 00694 } 00695 } 00696 return res; 00697 } 00698 00699 Decl * 00700 Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc, 00701 IdentifierInfo *ProtocolName, 00702 SourceLocation ProtocolLoc, 00703 Decl * const *ProtoRefs, 00704 unsigned NumProtoRefs, 00705 const SourceLocation *ProtoLocs, 00706 SourceLocation EndProtoLoc, 00707 AttributeList *AttrList) { 00708 bool err = false; 00709 // FIXME: Deal with AttrList. 00710 assert(ProtocolName && "Missing protocol identifier"); 00711 ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc, 00712 ForRedeclaration); 00713 ObjCProtocolDecl *PDecl = nullptr; 00714 if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) { 00715 // If we already have a definition, complain. 00716 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName; 00717 Diag(Def->getLocation(), diag::note_previous_definition); 00718 00719 // Create a new protocol that is completely distinct from previous 00720 // declarations, and do not make this protocol available for name lookup. 00721 // That way, we'll end up completely ignoring the duplicate. 00722 // FIXME: Can we turn this into an error? 00723 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName, 00724 ProtocolLoc, AtProtoInterfaceLoc, 00725 /*PrevDecl=*/nullptr); 00726 PDecl->startDefinition(); 00727 } else { 00728 if (PrevDecl) { 00729 // Check for circular dependencies among protocol declarations. This can 00730 // only happen if this protocol was forward-declared. 00731 ObjCList<ObjCProtocolDecl> PList; 00732 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context); 00733 err = CheckForwardProtocolDeclarationForCircularDependency( 00734 ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList); 00735 } 00736 00737 // Create the new declaration. 00738 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName, 00739 ProtocolLoc, AtProtoInterfaceLoc, 00740 /*PrevDecl=*/PrevDecl); 00741 00742 PushOnScopeChains(PDecl, TUScope); 00743 PDecl->startDefinition(); 00744 } 00745 00746 if (AttrList) 00747 ProcessDeclAttributeList(TUScope, PDecl, AttrList); 00748 00749 // Merge attributes from previous declarations. 00750 if (PrevDecl) 00751 mergeDeclAttributes(PDecl, PrevDecl); 00752 00753 if (!err && NumProtoRefs ) { 00754 /// Check then save referenced protocols. 00755 PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs, 00756 ProtoLocs, Context); 00757 } 00758 00759 CheckObjCDeclScope(PDecl); 00760 return ActOnObjCContainerStartDefinition(PDecl); 00761 } 00762 00763 static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl, 00764 ObjCProtocolDecl *&UndefinedProtocol) { 00765 if (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()) { 00766 UndefinedProtocol = PDecl; 00767 return true; 00768 } 00769 00770 for (auto *PI : PDecl->protocols()) 00771 if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) { 00772 UndefinedProtocol = PI; 00773 return true; 00774 } 00775 return false; 00776 } 00777 00778 /// FindProtocolDeclaration - This routine looks up protocols and 00779 /// issues an error if they are not declared. It returns list of 00780 /// protocol declarations in its 'Protocols' argument. 00781 void 00782 Sema::FindProtocolDeclaration(bool WarnOnDeclarations, 00783 const IdentifierLocPair *ProtocolId, 00784 unsigned NumProtocols, 00785 SmallVectorImpl<Decl *> &Protocols) { 00786 for (unsigned i = 0; i != NumProtocols; ++i) { 00787 ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first, 00788 ProtocolId[i].second); 00789 if (!PDecl) { 00790 TypoCorrection Corrected = CorrectTypo( 00791 DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second), 00792 LookupObjCProtocolName, TUScope, nullptr, 00793 llvm::make_unique<DeclFilterCCC<ObjCProtocolDecl>>(), 00794 CTK_ErrorRecovery); 00795 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) 00796 diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest) 00797 << ProtocolId[i].first); 00798 } 00799 00800 if (!PDecl) { 00801 Diag(ProtocolId[i].second, diag::err_undeclared_protocol) 00802 << ProtocolId[i].first; 00803 continue; 00804 } 00805 // If this is a forward protocol declaration, get its definition. 00806 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition()) 00807 PDecl = PDecl->getDefinition(); 00808 00809 (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second); 00810 00811 // If this is a forward declaration and we are supposed to warn in this 00812 // case, do it. 00813 // FIXME: Recover nicely in the hidden case. 00814 ObjCProtocolDecl *UndefinedProtocol; 00815 00816 if (WarnOnDeclarations && 00817 NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) { 00818 Diag(ProtocolId[i].second, diag::warn_undef_protocolref) 00819 << ProtocolId[i].first; 00820 Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined) 00821 << UndefinedProtocol; 00822 } 00823 Protocols.push_back(PDecl); 00824 } 00825 } 00826 00827 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of 00828 /// a class method in its extension. 00829 /// 00830 void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, 00831 ObjCInterfaceDecl *ID) { 00832 if (!ID) 00833 return; // Possibly due to previous error 00834 00835 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap; 00836 for (auto *MD : ID->methods()) 00837 MethodMap[MD->getSelector()] = MD; 00838 00839 if (MethodMap.empty()) 00840 return; 00841 for (const auto *Method : CAT->methods()) { 00842 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()]; 00843 if (PrevMethod && 00844 (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) && 00845 !MatchTwoMethodDeclarations(Method, PrevMethod)) { 00846 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 00847 << Method->getDeclName(); 00848 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 00849 } 00850 } 00851 } 00852 00853 /// ActOnForwardProtocolDeclaration - Handle \@protocol foo; 00854 Sema::DeclGroupPtrTy 00855 Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc, 00856 const IdentifierLocPair *IdentList, 00857 unsigned NumElts, 00858 AttributeList *attrList) { 00859 SmallVector<Decl *, 8> DeclsInGroup; 00860 for (unsigned i = 0; i != NumElts; ++i) { 00861 IdentifierInfo *Ident = IdentList[i].first; 00862 ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentList[i].second, 00863 ForRedeclaration); 00864 ObjCProtocolDecl *PDecl 00865 = ObjCProtocolDecl::Create(Context, CurContext, Ident, 00866 IdentList[i].second, AtProtocolLoc, 00867 PrevDecl); 00868 00869 PushOnScopeChains(PDecl, TUScope); 00870 CheckObjCDeclScope(PDecl); 00871 00872 if (attrList) 00873 ProcessDeclAttributeList(TUScope, PDecl, attrList); 00874 00875 if (PrevDecl) 00876 mergeDeclAttributes(PDecl, PrevDecl); 00877 00878 DeclsInGroup.push_back(PDecl); 00879 } 00880 00881 return BuildDeclaratorGroup(DeclsInGroup, false); 00882 } 00883 00884 Decl *Sema:: 00885 ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc, 00886 IdentifierInfo *ClassName, SourceLocation ClassLoc, 00887 IdentifierInfo *CategoryName, 00888 SourceLocation CategoryLoc, 00889 Decl * const *ProtoRefs, 00890 unsigned NumProtoRefs, 00891 const SourceLocation *ProtoLocs, 00892 SourceLocation EndProtoLoc) { 00893 ObjCCategoryDecl *CDecl; 00894 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); 00895 00896 /// Check that class of this category is already completely declared. 00897 00898 if (!IDecl 00899 || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), 00900 diag::err_category_forward_interface, 00901 CategoryName == nullptr)) { 00902 // Create an invalid ObjCCategoryDecl to serve as context for 00903 // the enclosing method declarations. We mark the decl invalid 00904 // to make it clear that this isn't a valid AST. 00905 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, 00906 ClassLoc, CategoryLoc, CategoryName,IDecl); 00907 CDecl->setInvalidDecl(); 00908 CurContext->addDecl(CDecl); 00909 00910 if (!IDecl) 00911 Diag(ClassLoc, diag::err_undef_interface) << ClassName; 00912 return ActOnObjCContainerStartDefinition(CDecl); 00913 } 00914 00915 if (!CategoryName && IDecl->getImplementation()) { 00916 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName; 00917 Diag(IDecl->getImplementation()->getLocation(), 00918 diag::note_implementation_declared); 00919 } 00920 00921 if (CategoryName) { 00922 /// Check for duplicate interface declaration for this category 00923 if (ObjCCategoryDecl *Previous 00924 = IDecl->FindCategoryDeclaration(CategoryName)) { 00925 // Class extensions can be declared multiple times, categories cannot. 00926 Diag(CategoryLoc, diag::warn_dup_category_def) 00927 << ClassName << CategoryName; 00928 Diag(Previous->getLocation(), diag::note_previous_definition); 00929 } 00930 } 00931 00932 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, 00933 ClassLoc, CategoryLoc, CategoryName, IDecl); 00934 // FIXME: PushOnScopeChains? 00935 CurContext->addDecl(CDecl); 00936 00937 if (NumProtoRefs) { 00938 CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs, 00939 ProtoLocs, Context); 00940 // Protocols in the class extension belong to the class. 00941 if (CDecl->IsClassExtension()) 00942 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs, 00943 NumProtoRefs, Context); 00944 } 00945 00946 CheckObjCDeclScope(CDecl); 00947 return ActOnObjCContainerStartDefinition(CDecl); 00948 } 00949 00950 /// ActOnStartCategoryImplementation - Perform semantic checks on the 00951 /// category implementation declaration and build an ObjCCategoryImplDecl 00952 /// object. 00953 Decl *Sema::ActOnStartCategoryImplementation( 00954 SourceLocation AtCatImplLoc, 00955 IdentifierInfo *ClassName, SourceLocation ClassLoc, 00956 IdentifierInfo *CatName, SourceLocation CatLoc) { 00957 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); 00958 ObjCCategoryDecl *CatIDecl = nullptr; 00959 if (IDecl && IDecl->hasDefinition()) { 00960 CatIDecl = IDecl->FindCategoryDeclaration(CatName); 00961 if (!CatIDecl) { 00962 // Category @implementation with no corresponding @interface. 00963 // Create and install one. 00964 CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc, 00965 ClassLoc, CatLoc, 00966 CatName, IDecl); 00967 CatIDecl->setImplicit(); 00968 } 00969 } 00970 00971 ObjCCategoryImplDecl *CDecl = 00972 ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl, 00973 ClassLoc, AtCatImplLoc, CatLoc); 00974 /// Check that class of this category is already completely declared. 00975 if (!IDecl) { 00976 Diag(ClassLoc, diag::err_undef_interface) << ClassName; 00977 CDecl->setInvalidDecl(); 00978 } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), 00979 diag::err_undef_interface)) { 00980 CDecl->setInvalidDecl(); 00981 } 00982 00983 // FIXME: PushOnScopeChains? 00984 CurContext->addDecl(CDecl); 00985 00986 // If the interface is deprecated/unavailable, warn/error about it. 00987 if (IDecl) 00988 DiagnoseUseOfDecl(IDecl, ClassLoc); 00989 00990 /// Check that CatName, category name, is not used in another implementation. 00991 if (CatIDecl) { 00992 if (CatIDecl->getImplementation()) { 00993 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName 00994 << CatName; 00995 Diag(CatIDecl->getImplementation()->getLocation(), 00996 diag::note_previous_definition); 00997 CDecl->setInvalidDecl(); 00998 } else { 00999 CatIDecl->setImplementation(CDecl); 01000 // Warn on implementating category of deprecated class under 01001 // -Wdeprecated-implementations flag. 01002 DiagnoseObjCImplementedDeprecations(*this, 01003 dyn_cast<NamedDecl>(IDecl), 01004 CDecl->getLocation(), 2); 01005 } 01006 } 01007 01008 CheckObjCDeclScope(CDecl); 01009 return ActOnObjCContainerStartDefinition(CDecl); 01010 } 01011 01012 Decl *Sema::ActOnStartClassImplementation( 01013 SourceLocation AtClassImplLoc, 01014 IdentifierInfo *ClassName, SourceLocation ClassLoc, 01015 IdentifierInfo *SuperClassname, 01016 SourceLocation SuperClassLoc) { 01017 ObjCInterfaceDecl *IDecl = nullptr; 01018 // Check for another declaration kind with the same name. 01019 NamedDecl *PrevDecl 01020 = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName, 01021 ForRedeclaration); 01022 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 01023 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; 01024 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 01025 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) { 01026 RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), 01027 diag::warn_undef_interface); 01028 } else { 01029 // We did not find anything with the name ClassName; try to correct for 01030 // typos in the class name. 01031 TypoCorrection Corrected = CorrectTypo( 01032 DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope, 01033 nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(), CTK_NonError); 01034 if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) { 01035 // Suggest the (potentially) correct interface name. Don't provide a 01036 // code-modification hint or use the typo name for recovery, because 01037 // this is just a warning. The program may actually be correct. 01038 diagnoseTypo(Corrected, 01039 PDiag(diag::warn_undef_interface_suggest) << ClassName, 01040 /*ErrorRecovery*/false); 01041 } else { 01042 Diag(ClassLoc, diag::warn_undef_interface) << ClassName; 01043 } 01044 } 01045 01046 // Check that super class name is valid class name 01047 ObjCInterfaceDecl *SDecl = nullptr; 01048 if (SuperClassname) { 01049 // Check if a different kind of symbol declared in this scope. 01050 PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc, 01051 LookupOrdinaryName); 01052 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 01053 Diag(SuperClassLoc, diag::err_redefinition_different_kind) 01054 << SuperClassname; 01055 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 01056 } else { 01057 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 01058 if (SDecl && !SDecl->hasDefinition()) 01059 SDecl = nullptr; 01060 if (!SDecl) 01061 Diag(SuperClassLoc, diag::err_undef_superclass) 01062 << SuperClassname << ClassName; 01063 else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) { 01064 // This implementation and its interface do not have the same 01065 // super class. 01066 Diag(SuperClassLoc, diag::err_conflicting_super_class) 01067 << SDecl->getDeclName(); 01068 Diag(SDecl->getLocation(), diag::note_previous_definition); 01069 } 01070 } 01071 } 01072 01073 if (!IDecl) { 01074 // Legacy case of @implementation with no corresponding @interface. 01075 // Build, chain & install the interface decl into the identifier. 01076 01077 // FIXME: Do we support attributes on the @implementation? If so we should 01078 // copy them over. 01079 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc, 01080 ClassName, /*PrevDecl=*/nullptr, ClassLoc, 01081 true); 01082 IDecl->startDefinition(); 01083 if (SDecl) { 01084 IDecl->setSuperClass(SDecl); 01085 IDecl->setSuperClassLoc(SuperClassLoc); 01086 IDecl->setEndOfDefinitionLoc(SuperClassLoc); 01087 } else { 01088 IDecl->setEndOfDefinitionLoc(ClassLoc); 01089 } 01090 01091 PushOnScopeChains(IDecl, TUScope); 01092 } else { 01093 // Mark the interface as being completed, even if it was just as 01094 // @class ....; 01095 // declaration; the user cannot reopen it. 01096 if (!IDecl->hasDefinition()) 01097 IDecl->startDefinition(); 01098 } 01099 01100 ObjCImplementationDecl* IMPDecl = 01101 ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl, 01102 ClassLoc, AtClassImplLoc, SuperClassLoc); 01103 01104 if (CheckObjCDeclScope(IMPDecl)) 01105 return ActOnObjCContainerStartDefinition(IMPDecl); 01106 01107 // Check that there is no duplicate implementation of this class. 01108 if (IDecl->getImplementation()) { 01109 // FIXME: Don't leak everything! 01110 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName; 01111 Diag(IDecl->getImplementation()->getLocation(), 01112 diag::note_previous_definition); 01113 IMPDecl->setInvalidDecl(); 01114 } else { // add it to the list. 01115 IDecl->setImplementation(IMPDecl); 01116 PushOnScopeChains(IMPDecl, TUScope); 01117 // Warn on implementating deprecated class under 01118 // -Wdeprecated-implementations flag. 01119 DiagnoseObjCImplementedDeprecations(*this, 01120 dyn_cast<NamedDecl>(IDecl), 01121 IMPDecl->getLocation(), 1); 01122 } 01123 return ActOnObjCContainerStartDefinition(IMPDecl); 01124 } 01125 01126 Sema::DeclGroupPtrTy 01127 Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) { 01128 SmallVector<Decl *, 64> DeclsInGroup; 01129 DeclsInGroup.reserve(Decls.size() + 1); 01130 01131 for (unsigned i = 0, e = Decls.size(); i != e; ++i) { 01132 Decl *Dcl = Decls[i]; 01133 if (!Dcl) 01134 continue; 01135 if (Dcl->getDeclContext()->isFileContext()) 01136 Dcl->setTopLevelDeclInObjCContainer(); 01137 DeclsInGroup.push_back(Dcl); 01138 } 01139 01140 DeclsInGroup.push_back(ObjCImpDecl); 01141 01142 return BuildDeclaratorGroup(DeclsInGroup, false); 01143 } 01144 01145 void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl, 01146 ObjCIvarDecl **ivars, unsigned numIvars, 01147 SourceLocation RBrace) { 01148 assert(ImpDecl && "missing implementation decl"); 01149 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface(); 01150 if (!IDecl) 01151 return; 01152 /// Check case of non-existing \@interface decl. 01153 /// (legacy objective-c \@implementation decl without an \@interface decl). 01154 /// Add implementations's ivar to the synthesize class's ivar list. 01155 if (IDecl->isImplicitInterfaceDecl()) { 01156 IDecl->setEndOfDefinitionLoc(RBrace); 01157 // Add ivar's to class's DeclContext. 01158 for (unsigned i = 0, e = numIvars; i != e; ++i) { 01159 ivars[i]->setLexicalDeclContext(ImpDecl); 01160 IDecl->makeDeclVisibleInContext(ivars[i]); 01161 ImpDecl->addDecl(ivars[i]); 01162 } 01163 01164 return; 01165 } 01166 // If implementation has empty ivar list, just return. 01167 if (numIvars == 0) 01168 return; 01169 01170 assert(ivars && "missing @implementation ivars"); 01171 if (LangOpts.ObjCRuntime.isNonFragile()) { 01172 if (ImpDecl->getSuperClass()) 01173 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use); 01174 for (unsigned i = 0; i < numIvars; i++) { 01175 ObjCIvarDecl* ImplIvar = ivars[i]; 01176 if (const ObjCIvarDecl *ClsIvar = 01177 IDecl->getIvarDecl(ImplIvar->getIdentifier())) { 01178 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); 01179 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 01180 continue; 01181 } 01182 // Check class extensions (unnamed categories) for duplicate ivars. 01183 for (const auto *CDecl : IDecl->visible_extensions()) { 01184 if (const ObjCIvarDecl *ClsExtIvar = 01185 CDecl->getIvarDecl(ImplIvar->getIdentifier())) { 01186 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); 01187 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition); 01188 continue; 01189 } 01190 } 01191 // Instance ivar to Implementation's DeclContext. 01192 ImplIvar->setLexicalDeclContext(ImpDecl); 01193 IDecl->makeDeclVisibleInContext(ImplIvar); 01194 ImpDecl->addDecl(ImplIvar); 01195 } 01196 return; 01197 } 01198 // Check interface's Ivar list against those in the implementation. 01199 // names and types must match. 01200 // 01201 unsigned j = 0; 01202 ObjCInterfaceDecl::ivar_iterator 01203 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end(); 01204 for (; numIvars > 0 && IVI != IVE; ++IVI) { 01205 ObjCIvarDecl* ImplIvar = ivars[j++]; 01206 ObjCIvarDecl* ClsIvar = *IVI; 01207 assert (ImplIvar && "missing implementation ivar"); 01208 assert (ClsIvar && "missing class ivar"); 01209 01210 // First, make sure the types match. 01211 if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) { 01212 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type) 01213 << ImplIvar->getIdentifier() 01214 << ImplIvar->getType() << ClsIvar->getType(); 01215 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 01216 } else if (ImplIvar->isBitField() && ClsIvar->isBitField() && 01217 ImplIvar->getBitWidthValue(Context) != 01218 ClsIvar->getBitWidthValue(Context)) { 01219 Diag(ImplIvar->getBitWidth()->getLocStart(), 01220 diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier(); 01221 Diag(ClsIvar->getBitWidth()->getLocStart(), 01222 diag::note_previous_definition); 01223 } 01224 // Make sure the names are identical. 01225 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) { 01226 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name) 01227 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier(); 01228 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 01229 } 01230 --numIvars; 01231 } 01232 01233 if (numIvars > 0) 01234 Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count); 01235 else if (IVI != IVE) 01236 Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count); 01237 } 01238 01239 static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc, 01240 ObjCMethodDecl *method, 01241 bool &IncompleteImpl, 01242 unsigned DiagID, 01243 NamedDecl *NeededFor = nullptr) { 01244 // No point warning no definition of method which is 'unavailable'. 01245 switch (method->getAvailability()) { 01246 case AR_Available: 01247 case AR_Deprecated: 01248 break; 01249 01250 // Don't warn about unavailable or not-yet-introduced methods. 01251 case AR_NotYetIntroduced: 01252 case AR_Unavailable: 01253 return; 01254 } 01255 01256 // FIXME: For now ignore 'IncompleteImpl'. 01257 // Previously we grouped all unimplemented methods under a single 01258 // warning, but some users strongly voiced that they would prefer 01259 // separate warnings. We will give that approach a try, as that 01260 // matches what we do with protocols. 01261 { 01262 const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID); 01263 B << method; 01264 if (NeededFor) 01265 B << NeededFor; 01266 } 01267 01268 // Issue a note to the original declaration. 01269 SourceLocation MethodLoc = method->getLocStart(); 01270 if (MethodLoc.isValid()) 01271 S.Diag(MethodLoc, diag::note_method_declared_at) << method; 01272 } 01273 01274 /// Determines if type B can be substituted for type A. Returns true if we can 01275 /// guarantee that anything that the user will do to an object of type A can 01276 /// also be done to an object of type B. This is trivially true if the two 01277 /// types are the same, or if B is a subclass of A. It becomes more complex 01278 /// in cases where protocols are involved. 01279 /// 01280 /// Object types in Objective-C describe the minimum requirements for an 01281 /// object, rather than providing a complete description of a type. For 01282 /// example, if A is a subclass of B, then B* may refer to an instance of A. 01283 /// The principle of substitutability means that we may use an instance of A 01284 /// anywhere that we may use an instance of B - it will implement all of the 01285 /// ivars of B and all of the methods of B. 01286 /// 01287 /// This substitutability is important when type checking methods, because 01288 /// the implementation may have stricter type definitions than the interface. 01289 /// The interface specifies minimum requirements, but the implementation may 01290 /// have more accurate ones. For example, a method may privately accept 01291 /// instances of B, but only publish that it accepts instances of A. Any 01292 /// object passed to it will be type checked against B, and so will implicitly 01293 /// by a valid A*. Similarly, a method may return a subclass of the class that 01294 /// it is declared as returning. 01295 /// 01296 /// This is most important when considering subclassing. A method in a 01297 /// subclass must accept any object as an argument that its superclass's 01298 /// implementation accepts. It may, however, accept a more general type 01299 /// without breaking substitutability (i.e. you can still use the subclass 01300 /// anywhere that you can use the superclass, but not vice versa). The 01301 /// converse requirement applies to return types: the return type for a 01302 /// subclass method must be a valid object of the kind that the superclass 01303 /// advertises, but it may be specified more accurately. This avoids the need 01304 /// for explicit down-casting by callers. 01305 /// 01306 /// Note: This is a stricter requirement than for assignment. 01307 static bool isObjCTypeSubstitutable(ASTContext &Context, 01308 const ObjCObjectPointerType *A, 01309 const ObjCObjectPointerType *B, 01310 bool rejectId) { 01311 // Reject a protocol-unqualified id. 01312 if (rejectId && B->isObjCIdType()) return false; 01313 01314 // If B is a qualified id, then A must also be a qualified id and it must 01315 // implement all of the protocols in B. It may not be a qualified class. 01316 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a 01317 // stricter definition so it is not substitutable for id<A>. 01318 if (B->isObjCQualifiedIdType()) { 01319 return A->isObjCQualifiedIdType() && 01320 Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0), 01321 QualType(B,0), 01322 false); 01323 } 01324 01325 /* 01326 // id is a special type that bypasses type checking completely. We want a 01327 // warning when it is used in one place but not another. 01328 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false; 01329 01330 01331 // If B is a qualified id, then A must also be a qualified id (which it isn't 01332 // if we've got this far) 01333 if (B->isObjCQualifiedIdType()) return false; 01334 */ 01335 01336 // Now we know that A and B are (potentially-qualified) class types. The 01337 // normal rules for assignment apply. 01338 return Context.canAssignObjCInterfaces(A, B); 01339 } 01340 01341 static SourceRange getTypeRange(TypeSourceInfo *TSI) { 01342 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange()); 01343 } 01344 01345 static bool CheckMethodOverrideReturn(Sema &S, 01346 ObjCMethodDecl *MethodImpl, 01347 ObjCMethodDecl *MethodDecl, 01348 bool IsProtocolMethodDecl, 01349 bool IsOverridingMode, 01350 bool Warn) { 01351 if (IsProtocolMethodDecl && 01352 (MethodDecl->getObjCDeclQualifier() != 01353 MethodImpl->getObjCDeclQualifier())) { 01354 if (Warn) { 01355 S.Diag(MethodImpl->getLocation(), 01356 (IsOverridingMode 01357 ? diag::warn_conflicting_overriding_ret_type_modifiers 01358 : diag::warn_conflicting_ret_type_modifiers)) 01359 << MethodImpl->getDeclName() 01360 << MethodImpl->getReturnTypeSourceRange(); 01361 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration) 01362 << MethodDecl->getReturnTypeSourceRange(); 01363 } 01364 else 01365 return false; 01366 } 01367 01368 if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(), 01369 MethodDecl->getReturnType())) 01370 return true; 01371 if (!Warn) 01372 return false; 01373 01374 unsigned DiagID = 01375 IsOverridingMode ? diag::warn_conflicting_overriding_ret_types 01376 : diag::warn_conflicting_ret_types; 01377 01378 // Mismatches between ObjC pointers go into a different warning 01379 // category, and sometimes they're even completely whitelisted. 01380 if (const ObjCObjectPointerType *ImplPtrTy = 01381 MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) { 01382 if (const ObjCObjectPointerType *IfacePtrTy = 01383 MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) { 01384 // Allow non-matching return types as long as they don't violate 01385 // the principle of substitutability. Specifically, we permit 01386 // return types that are subclasses of the declared return type, 01387 // or that are more-qualified versions of the declared type. 01388 if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false)) 01389 return false; 01390 01391 DiagID = 01392 IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types 01393 : diag::warn_non_covariant_ret_types; 01394 } 01395 } 01396 01397 S.Diag(MethodImpl->getLocation(), DiagID) 01398 << MethodImpl->getDeclName() << MethodDecl->getReturnType() 01399 << MethodImpl->getReturnType() 01400 << MethodImpl->getReturnTypeSourceRange(); 01401 S.Diag(MethodDecl->getLocation(), IsOverridingMode 01402 ? diag::note_previous_declaration 01403 : diag::note_previous_definition) 01404 << MethodDecl->getReturnTypeSourceRange(); 01405 return false; 01406 } 01407 01408 static bool CheckMethodOverrideParam(Sema &S, 01409 ObjCMethodDecl *MethodImpl, 01410 ObjCMethodDecl *MethodDecl, 01411 ParmVarDecl *ImplVar, 01412 ParmVarDecl *IfaceVar, 01413 bool IsProtocolMethodDecl, 01414 bool IsOverridingMode, 01415 bool Warn) { 01416 if (IsProtocolMethodDecl && 01417 (ImplVar->getObjCDeclQualifier() != 01418 IfaceVar->getObjCDeclQualifier())) { 01419 if (Warn) { 01420 if (IsOverridingMode) 01421 S.Diag(ImplVar->getLocation(), 01422 diag::warn_conflicting_overriding_param_modifiers) 01423 << getTypeRange(ImplVar->getTypeSourceInfo()) 01424 << MethodImpl->getDeclName(); 01425 else S.Diag(ImplVar->getLocation(), 01426 diag::warn_conflicting_param_modifiers) 01427 << getTypeRange(ImplVar->getTypeSourceInfo()) 01428 << MethodImpl->getDeclName(); 01429 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration) 01430 << getTypeRange(IfaceVar->getTypeSourceInfo()); 01431 } 01432 else 01433 return false; 01434 } 01435 01436 QualType ImplTy = ImplVar->getType(); 01437 QualType IfaceTy = IfaceVar->getType(); 01438 01439 if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy)) 01440 return true; 01441 01442 if (!Warn) 01443 return false; 01444 unsigned DiagID = 01445 IsOverridingMode ? diag::warn_conflicting_overriding_param_types 01446 : diag::warn_conflicting_param_types; 01447 01448 // Mismatches between ObjC pointers go into a different warning 01449 // category, and sometimes they're even completely whitelisted. 01450 if (const ObjCObjectPointerType *ImplPtrTy = 01451 ImplTy->getAs<ObjCObjectPointerType>()) { 01452 if (const ObjCObjectPointerType *IfacePtrTy = 01453 IfaceTy->getAs<ObjCObjectPointerType>()) { 01454 // Allow non-matching argument types as long as they don't 01455 // violate the principle of substitutability. Specifically, the 01456 // implementation must accept any objects that the superclass 01457 // accepts, however it may also accept others. 01458 if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true)) 01459 return false; 01460 01461 DiagID = 01462 IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types 01463 : diag::warn_non_contravariant_param_types; 01464 } 01465 } 01466 01467 S.Diag(ImplVar->getLocation(), DiagID) 01468 << getTypeRange(ImplVar->getTypeSourceInfo()) 01469 << MethodImpl->getDeclName() << IfaceTy << ImplTy; 01470 S.Diag(IfaceVar->getLocation(), 01471 (IsOverridingMode ? diag::note_previous_declaration 01472 : diag::note_previous_definition)) 01473 << getTypeRange(IfaceVar->getTypeSourceInfo()); 01474 return false; 01475 } 01476 01477 /// In ARC, check whether the conventional meanings of the two methods 01478 /// match. If they don't, it's a hard error. 01479 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl, 01480 ObjCMethodDecl *decl) { 01481 ObjCMethodFamily implFamily = impl->getMethodFamily(); 01482 ObjCMethodFamily declFamily = decl->getMethodFamily(); 01483 if (implFamily == declFamily) return false; 01484 01485 // Since conventions are sorted by selector, the only possibility is 01486 // that the types differ enough to cause one selector or the other 01487 // to fall out of the family. 01488 assert(implFamily == OMF_None || declFamily == OMF_None); 01489 01490 // No further diagnostics required on invalid declarations. 01491 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true; 01492 01493 const ObjCMethodDecl *unmatched = impl; 01494 ObjCMethodFamily family = declFamily; 01495 unsigned errorID = diag::err_arc_lost_method_convention; 01496 unsigned noteID = diag::note_arc_lost_method_convention; 01497 if (declFamily == OMF_None) { 01498 unmatched = decl; 01499 family = implFamily; 01500 errorID = diag::err_arc_gained_method_convention; 01501 noteID = diag::note_arc_gained_method_convention; 01502 } 01503 01504 // Indexes into a %select clause in the diagnostic. 01505 enum FamilySelector { 01506 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new 01507 }; 01508 FamilySelector familySelector = FamilySelector(); 01509 01510 switch (family) { 01511 case OMF_None: llvm_unreachable("logic error, no method convention"); 01512 case OMF_retain: 01513 case OMF_release: 01514 case OMF_autorelease: 01515 case OMF_dealloc: 01516 case OMF_finalize: 01517 case OMF_retainCount: 01518 case OMF_self: 01519 case OMF_initialize: 01520 case OMF_performSelector: 01521 // Mismatches for these methods don't change ownership 01522 // conventions, so we don't care. 01523 return false; 01524 01525 case OMF_init: familySelector = F_init; break; 01526 case OMF_alloc: familySelector = F_alloc; break; 01527 case OMF_copy: familySelector = F_copy; break; 01528 case OMF_mutableCopy: familySelector = F_mutableCopy; break; 01529 case OMF_new: familySelector = F_new; break; 01530 } 01531 01532 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn }; 01533 ReasonSelector reasonSelector; 01534 01535 // The only reason these methods don't fall within their families is 01536 // due to unusual result types. 01537 if (unmatched->getReturnType()->isObjCObjectPointerType()) { 01538 reasonSelector = R_UnrelatedReturn; 01539 } else { 01540 reasonSelector = R_NonObjectReturn; 01541 } 01542 01543 S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector); 01544 S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector); 01545 01546 return true; 01547 } 01548 01549 void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl, 01550 ObjCMethodDecl *MethodDecl, 01551 bool IsProtocolMethodDecl) { 01552 if (getLangOpts().ObjCAutoRefCount && 01553 checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl)) 01554 return; 01555 01556 CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 01557 IsProtocolMethodDecl, false, 01558 true); 01559 01560 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), 01561 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(), 01562 EF = MethodDecl->param_end(); 01563 IM != EM && IF != EF; ++IM, ++IF) { 01564 CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF, 01565 IsProtocolMethodDecl, false, true); 01566 } 01567 01568 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) { 01569 Diag(ImpMethodDecl->getLocation(), 01570 diag::warn_conflicting_variadic); 01571 Diag(MethodDecl->getLocation(), diag::note_previous_declaration); 01572 } 01573 } 01574 01575 void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method, 01576 ObjCMethodDecl *Overridden, 01577 bool IsProtocolMethodDecl) { 01578 01579 CheckMethodOverrideReturn(*this, Method, Overridden, 01580 IsProtocolMethodDecl, true, 01581 true); 01582 01583 for (ObjCMethodDecl::param_iterator IM = Method->param_begin(), 01584 IF = Overridden->param_begin(), EM = Method->param_end(), 01585 EF = Overridden->param_end(); 01586 IM != EM && IF != EF; ++IM, ++IF) { 01587 CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF, 01588 IsProtocolMethodDecl, true, true); 01589 } 01590 01591 if (Method->isVariadic() != Overridden->isVariadic()) { 01592 Diag(Method->getLocation(), 01593 diag::warn_conflicting_overriding_variadic); 01594 Diag(Overridden->getLocation(), diag::note_previous_declaration); 01595 } 01596 } 01597 01598 /// WarnExactTypedMethods - This routine issues a warning if method 01599 /// implementation declaration matches exactly that of its declaration. 01600 void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl, 01601 ObjCMethodDecl *MethodDecl, 01602 bool IsProtocolMethodDecl) { 01603 // don't issue warning when protocol method is optional because primary 01604 // class is not required to implement it and it is safe for protocol 01605 // to implement it. 01606 if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional) 01607 return; 01608 // don't issue warning when primary class's method is 01609 // depecated/unavailable. 01610 if (MethodDecl->hasAttr<UnavailableAttr>() || 01611 MethodDecl->hasAttr<DeprecatedAttr>()) 01612 return; 01613 01614 bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 01615 IsProtocolMethodDecl, false, false); 01616 if (match) 01617 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), 01618 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(), 01619 EF = MethodDecl->param_end(); 01620 IM != EM && IF != EF; ++IM, ++IF) { 01621 match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, 01622 *IM, *IF, 01623 IsProtocolMethodDecl, false, false); 01624 if (!match) 01625 break; 01626 } 01627 if (match) 01628 match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic()); 01629 if (match) 01630 match = !(MethodDecl->isClassMethod() && 01631 MethodDecl->getSelector() == GetNullarySelector("load", Context)); 01632 01633 if (match) { 01634 Diag(ImpMethodDecl->getLocation(), 01635 diag::warn_category_method_impl_match); 01636 Diag(MethodDecl->getLocation(), diag::note_method_declared_at) 01637 << MethodDecl->getDeclName(); 01638 } 01639 } 01640 01641 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely 01642 /// improve the efficiency of selector lookups and type checking by associating 01643 /// with each protocol / interface / category the flattened instance tables. If 01644 /// we used an immutable set to keep the table then it wouldn't add significant 01645 /// memory cost and it would be handy for lookups. 01646 01647 typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet; 01648 typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet; 01649 01650 static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl, 01651 ProtocolNameSet &PNS) { 01652 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) 01653 PNS.insert(PDecl->getIdentifier()); 01654 for (const auto *PI : PDecl->protocols()) 01655 findProtocolsWithExplicitImpls(PI, PNS); 01656 } 01657 01658 /// Recursively populates a set with all conformed protocols in a class 01659 /// hierarchy that have the 'objc_protocol_requires_explicit_implementation' 01660 /// attribute. 01661 static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super, 01662 ProtocolNameSet &PNS) { 01663 if (!Super) 01664 return; 01665 01666 for (const auto *I : Super->all_referenced_protocols()) 01667 findProtocolsWithExplicitImpls(I, PNS); 01668 01669 findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS); 01670 } 01671 01672 /// CheckProtocolMethodDefs - This routine checks unimplemented methods 01673 /// Declared in protocol, and those referenced by it. 01674 static void CheckProtocolMethodDefs(Sema &S, 01675 SourceLocation ImpLoc, 01676 ObjCProtocolDecl *PDecl, 01677 bool& IncompleteImpl, 01678 const Sema::SelectorSet &InsMap, 01679 const Sema::SelectorSet &ClsMap, 01680 ObjCContainerDecl *CDecl, 01681 LazyProtocolNameSet &ProtocolsExplictImpl) { 01682 ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl); 01683 ObjCInterfaceDecl *IDecl = C ? C->getClassInterface() 01684 : dyn_cast<ObjCInterfaceDecl>(CDecl); 01685 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null"); 01686 01687 ObjCInterfaceDecl *Super = IDecl->getSuperClass(); 01688 ObjCInterfaceDecl *NSIDecl = nullptr; 01689 01690 // If this protocol is marked 'objc_protocol_requires_explicit_implementation' 01691 // then we should check if any class in the super class hierarchy also 01692 // conforms to this protocol, either directly or via protocol inheritance. 01693 // If so, we can skip checking this protocol completely because we 01694 // know that a parent class already satisfies this protocol. 01695 // 01696 // Note: we could generalize this logic for all protocols, and merely 01697 // add the limit on looking at the super class chain for just 01698 // specially marked protocols. This may be a good optimization. This 01699 // change is restricted to 'objc_protocol_requires_explicit_implementation' 01700 // protocols for now for controlled evaluation. 01701 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) { 01702 if (!ProtocolsExplictImpl) { 01703 ProtocolsExplictImpl.reset(new ProtocolNameSet); 01704 findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl); 01705 } 01706 if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) != 01707 ProtocolsExplictImpl->end()) 01708 return; 01709 01710 // If no super class conforms to the protocol, we should not search 01711 // for methods in the super class to implicitly satisfy the protocol. 01712 Super = nullptr; 01713 } 01714 01715 if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) { 01716 // check to see if class implements forwardInvocation method and objects 01717 // of this class are derived from 'NSProxy' so that to forward requests 01718 // from one object to another. 01719 // Under such conditions, which means that every method possible is 01720 // implemented in the class, we should not issue "Method definition not 01721 // found" warnings. 01722 // FIXME: Use a general GetUnarySelector method for this. 01723 IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation"); 01724 Selector fISelector = S.Context.Selectors.getSelector(1, &II); 01725 if (InsMap.count(fISelector)) 01726 // Is IDecl derived from 'NSProxy'? If so, no instance methods 01727 // need be implemented in the implementation. 01728 NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy")); 01729 } 01730 01731 // If this is a forward protocol declaration, get its definition. 01732 if (!PDecl->isThisDeclarationADefinition() && 01733 PDecl->getDefinition()) 01734 PDecl = PDecl->getDefinition(); 01735 01736 // If a method lookup fails locally we still need to look and see if 01737 // the method was implemented by a base class or an inherited 01738 // protocol. This lookup is slow, but occurs rarely in correct code 01739 // and otherwise would terminate in a warning. 01740 01741 // check unimplemented instance methods. 01742 if (!NSIDecl) 01743 for (auto *method : PDecl->instance_methods()) { 01744 if (method->getImplementationControl() != ObjCMethodDecl::Optional && 01745 !method->isPropertyAccessor() && 01746 !InsMap.count(method->getSelector()) && 01747 (!Super || !Super->lookupMethod(method->getSelector(), 01748 true /* instance */, 01749 false /* shallowCategory */, 01750 true /* followsSuper */, 01751 nullptr /* category */))) { 01752 // If a method is not implemented in the category implementation but 01753 // has been declared in its primary class, superclass, 01754 // or in one of their protocols, no need to issue the warning. 01755 // This is because method will be implemented in the primary class 01756 // or one of its super class implementation. 01757 01758 // Ugly, but necessary. Method declared in protcol might have 01759 // have been synthesized due to a property declared in the class which 01760 // uses the protocol. 01761 if (ObjCMethodDecl *MethodInClass = 01762 IDecl->lookupMethod(method->getSelector(), 01763 true /* instance */, 01764 true /* shallowCategoryLookup */, 01765 false /* followSuper */)) 01766 if (C || MethodInClass->isPropertyAccessor()) 01767 continue; 01768 unsigned DIAG = diag::warn_unimplemented_protocol_method; 01769 if (!S.Diags.isIgnored(DIAG, ImpLoc)) { 01770 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, 01771 PDecl); 01772 } 01773 } 01774 } 01775 // check unimplemented class methods 01776 for (auto *method : PDecl->class_methods()) { 01777 if (method->getImplementationControl() != ObjCMethodDecl::Optional && 01778 !ClsMap.count(method->getSelector()) && 01779 (!Super || !Super->lookupMethod(method->getSelector(), 01780 false /* class method */, 01781 false /* shallowCategoryLookup */, 01782 true /* followSuper */, 01783 nullptr /* category */))) { 01784 // See above comment for instance method lookups. 01785 if (C && IDecl->lookupMethod(method->getSelector(), 01786 false /* class */, 01787 true /* shallowCategoryLookup */, 01788 false /* followSuper */)) 01789 continue; 01790 01791 unsigned DIAG = diag::warn_unimplemented_protocol_method; 01792 if (!S.Diags.isIgnored(DIAG, ImpLoc)) { 01793 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl); 01794 } 01795 } 01796 } 01797 // Check on this protocols's referenced protocols, recursively. 01798 for (auto *PI : PDecl->protocols()) 01799 CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap, 01800 CDecl, ProtocolsExplictImpl); 01801 } 01802 01803 /// MatchAllMethodDeclarations - Check methods declared in interface 01804 /// or protocol against those declared in their implementations. 01805 /// 01806 void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap, 01807 const SelectorSet &ClsMap, 01808 SelectorSet &InsMapSeen, 01809 SelectorSet &ClsMapSeen, 01810 ObjCImplDecl* IMPDecl, 01811 ObjCContainerDecl* CDecl, 01812 bool &IncompleteImpl, 01813 bool ImmediateClass, 01814 bool WarnCategoryMethodImpl) { 01815 // Check and see if instance methods in class interface have been 01816 // implemented in the implementation class. If so, their types match. 01817 for (auto *I : CDecl->instance_methods()) { 01818 if (!InsMapSeen.insert(I->getSelector())) 01819 continue; 01820 if (!I->isPropertyAccessor() && 01821 !InsMap.count(I->getSelector())) { 01822 if (ImmediateClass) 01823 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl, 01824 diag::warn_undef_method_impl); 01825 continue; 01826 } else { 01827 ObjCMethodDecl *ImpMethodDecl = 01828 IMPDecl->getInstanceMethod(I->getSelector()); 01829 assert(CDecl->getInstanceMethod(I->getSelector()) && 01830 "Expected to find the method through lookup as well"); 01831 // ImpMethodDecl may be null as in a @dynamic property. 01832 if (ImpMethodDecl) { 01833 if (!WarnCategoryMethodImpl) 01834 WarnConflictingTypedMethods(ImpMethodDecl, I, 01835 isa<ObjCProtocolDecl>(CDecl)); 01836 else if (!I->isPropertyAccessor()) 01837 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl)); 01838 } 01839 } 01840 } 01841 01842 // Check and see if class methods in class interface have been 01843 // implemented in the implementation class. If so, their types match. 01844 for (auto *I : CDecl->class_methods()) { 01845 if (!ClsMapSeen.insert(I->getSelector())) 01846 continue; 01847 if (!ClsMap.count(I->getSelector())) { 01848 if (ImmediateClass) 01849 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl, 01850 diag::warn_undef_method_impl); 01851 } else { 01852 ObjCMethodDecl *ImpMethodDecl = 01853 IMPDecl->getClassMethod(I->getSelector()); 01854 assert(CDecl->getClassMethod(I->getSelector()) && 01855 "Expected to find the method through lookup as well"); 01856 if (!WarnCategoryMethodImpl) 01857 WarnConflictingTypedMethods(ImpMethodDecl, I, 01858 isa<ObjCProtocolDecl>(CDecl)); 01859 else 01860 WarnExactTypedMethods(ImpMethodDecl, I, 01861 isa<ObjCProtocolDecl>(CDecl)); 01862 } 01863 } 01864 01865 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) { 01866 // Also, check for methods declared in protocols inherited by 01867 // this protocol. 01868 for (auto *PI : PD->protocols()) 01869 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 01870 IMPDecl, PI, IncompleteImpl, false, 01871 WarnCategoryMethodImpl); 01872 } 01873 01874 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { 01875 // when checking that methods in implementation match their declaration, 01876 // i.e. when WarnCategoryMethodImpl is false, check declarations in class 01877 // extension; as well as those in categories. 01878 if (!WarnCategoryMethodImpl) { 01879 for (auto *Cat : I->visible_categories()) 01880 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 01881 IMPDecl, Cat, IncompleteImpl, false, 01882 WarnCategoryMethodImpl); 01883 } else { 01884 // Also methods in class extensions need be looked at next. 01885 for (auto *Ext : I->visible_extensions()) 01886 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 01887 IMPDecl, Ext, IncompleteImpl, false, 01888 WarnCategoryMethodImpl); 01889 } 01890 01891 // Check for any implementation of a methods declared in protocol. 01892 for (auto *PI : I->all_referenced_protocols()) 01893 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 01894 IMPDecl, PI, IncompleteImpl, false, 01895 WarnCategoryMethodImpl); 01896 01897 // FIXME. For now, we are not checking for extact match of methods 01898 // in category implementation and its primary class's super class. 01899 if (!WarnCategoryMethodImpl && I->getSuperClass()) 01900 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 01901 IMPDecl, 01902 I->getSuperClass(), IncompleteImpl, false); 01903 } 01904 } 01905 01906 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in 01907 /// category matches with those implemented in its primary class and 01908 /// warns each time an exact match is found. 01909 void Sema::CheckCategoryVsClassMethodMatches( 01910 ObjCCategoryImplDecl *CatIMPDecl) { 01911 // Get category's primary class. 01912 ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl(); 01913 if (!CatDecl) 01914 return; 01915 ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface(); 01916 if (!IDecl) 01917 return; 01918 ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass(); 01919 SelectorSet InsMap, ClsMap; 01920 01921 for (const auto *I : CatIMPDecl->instance_methods()) { 01922 Selector Sel = I->getSelector(); 01923 // When checking for methods implemented in the category, skip over 01924 // those declared in category class's super class. This is because 01925 // the super class must implement the method. 01926 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true)) 01927 continue; 01928 InsMap.insert(Sel); 01929 } 01930 01931 for (const auto *I : CatIMPDecl->class_methods()) { 01932 Selector Sel = I->getSelector(); 01933 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false)) 01934 continue; 01935 ClsMap.insert(Sel); 01936 } 01937 if (InsMap.empty() && ClsMap.empty()) 01938 return; 01939 01940 SelectorSet InsMapSeen, ClsMapSeen; 01941 bool IncompleteImpl = false; 01942 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 01943 CatIMPDecl, IDecl, 01944 IncompleteImpl, false, 01945 true /*WarnCategoryMethodImpl*/); 01946 } 01947 01948 void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl, 01949 ObjCContainerDecl* CDecl, 01950 bool IncompleteImpl) { 01951 SelectorSet InsMap; 01952 // Check and see if instance methods in class interface have been 01953 // implemented in the implementation class. 01954 for (const auto *I : IMPDecl->instance_methods()) 01955 InsMap.insert(I->getSelector()); 01956 01957 // Check and see if properties declared in the interface have either 1) 01958 // an implementation or 2) there is a @synthesize/@dynamic implementation 01959 // of the property in the @implementation. 01960 if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) { 01961 bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties && 01962 LangOpts.ObjCRuntime.isNonFragile() && 01963 !IDecl->isObjCRequiresPropertyDefs(); 01964 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties); 01965 } 01966 01967 SelectorSet ClsMap; 01968 for (const auto *I : IMPDecl->class_methods()) 01969 ClsMap.insert(I->getSelector()); 01970 01971 // Check for type conflict of methods declared in a class/protocol and 01972 // its implementation; if any. 01973 SelectorSet InsMapSeen, ClsMapSeen; 01974 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 01975 IMPDecl, CDecl, 01976 IncompleteImpl, true); 01977 01978 // check all methods implemented in category against those declared 01979 // in its primary class. 01980 if (ObjCCategoryImplDecl *CatDecl = 01981 dyn_cast<ObjCCategoryImplDecl>(IMPDecl)) 01982 CheckCategoryVsClassMethodMatches(CatDecl); 01983 01984 // Check the protocol list for unimplemented methods in the @implementation 01985 // class. 01986 // Check and see if class methods in class interface have been 01987 // implemented in the implementation class. 01988 01989 LazyProtocolNameSet ExplicitImplProtocols; 01990 01991 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { 01992 for (auto *PI : I->all_referenced_protocols()) 01993 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl, 01994 InsMap, ClsMap, I, ExplicitImplProtocols); 01995 // Check class extensions (unnamed categories) 01996 for (auto *Ext : I->visible_extensions()) 01997 ImplMethodsVsClassMethods(S, IMPDecl, Ext, IncompleteImpl); 01998 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) { 01999 // For extended class, unimplemented methods in its protocols will 02000 // be reported in the primary class. 02001 if (!C->IsClassExtension()) { 02002 for (auto *P : C->protocols()) 02003 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P, 02004 IncompleteImpl, InsMap, ClsMap, CDecl, 02005 ExplicitImplProtocols); 02006 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, 02007 /* SynthesizeProperties */ false); 02008 } 02009 } else 02010 llvm_unreachable("invalid ObjCContainerDecl type."); 02011 } 02012 02013 /// ActOnForwardClassDeclaration - 02014 Sema::DeclGroupPtrTy 02015 Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc, 02016 IdentifierInfo **IdentList, 02017 SourceLocation *IdentLocs, 02018 unsigned NumElts) { 02019 SmallVector<Decl *, 8> DeclsInGroup; 02020 for (unsigned i = 0; i != NumElts; ++i) { 02021 // Check for another declaration kind with the same name. 02022 NamedDecl *PrevDecl 02023 = LookupSingleName(TUScope, IdentList[i], IdentLocs[i], 02024 LookupOrdinaryName, ForRedeclaration); 02025 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 02026 // GCC apparently allows the following idiom: 02027 // 02028 // typedef NSObject < XCElementTogglerP > XCElementToggler; 02029 // @class XCElementToggler; 02030 // 02031 // Here we have chosen to ignore the forward class declaration 02032 // with a warning. Since this is the implied behavior. 02033 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl); 02034 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) { 02035 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i]; 02036 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 02037 } else { 02038 // a forward class declaration matching a typedef name of a class refers 02039 // to the underlying class. Just ignore the forward class with a warning 02040 // as this will force the intended behavior which is to lookup the typedef 02041 // name. 02042 if (isa<ObjCObjectType>(TDD->getUnderlyingType())) { 02043 Diag(AtClassLoc, diag::warn_forward_class_redefinition) << IdentList[i]; 02044 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 02045 continue; 02046 } 02047 } 02048 } 02049 02050 // Create a declaration to describe this forward declaration. 02051 ObjCInterfaceDecl *PrevIDecl 02052 = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 02053 02054 IdentifierInfo *ClassName = IdentList[i]; 02055 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) { 02056 // A previous decl with a different name is because of 02057 // @compatibility_alias, for example: 02058 // \code 02059 // @class NewImage; 02060 // @compatibility_alias OldImage NewImage; 02061 // \endcode 02062 // A lookup for 'OldImage' will return the 'NewImage' decl. 02063 // 02064 // In such a case use the real declaration name, instead of the alias one, 02065 // otherwise we will break IdentifierResolver and redecls-chain invariants. 02066 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl 02067 // has been aliased. 02068 ClassName = PrevIDecl->getIdentifier(); 02069 } 02070 02071 ObjCInterfaceDecl *IDecl 02072 = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc, 02073 ClassName, PrevIDecl, IdentLocs[i]); 02074 IDecl->setAtEndRange(IdentLocs[i]); 02075 02076 PushOnScopeChains(IDecl, TUScope); 02077 CheckObjCDeclScope(IDecl); 02078 DeclsInGroup.push_back(IDecl); 02079 } 02080 02081 return BuildDeclaratorGroup(DeclsInGroup, false); 02082 } 02083 02084 static bool tryMatchRecordTypes(ASTContext &Context, 02085 Sema::MethodMatchStrategy strategy, 02086 const Type *left, const Type *right); 02087 02088 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy, 02089 QualType leftQT, QualType rightQT) { 02090 const Type *left = 02091 Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr(); 02092 const Type *right = 02093 Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr(); 02094 02095 if (left == right) return true; 02096 02097 // If we're doing a strict match, the types have to match exactly. 02098 if (strategy == Sema::MMS_strict) return false; 02099 02100 if (left->isIncompleteType() || right->isIncompleteType()) return false; 02101 02102 // Otherwise, use this absurdly complicated algorithm to try to 02103 // validate the basic, low-level compatibility of the two types. 02104 02105 // As a minimum, require the sizes and alignments to match. 02106 TypeInfo LeftTI = Context.getTypeInfo(left); 02107 TypeInfo RightTI = Context.getTypeInfo(right); 02108 if (LeftTI.Width != RightTI.Width) 02109 return false; 02110 02111 if (LeftTI.Align != RightTI.Align) 02112 return false; 02113 02114 // Consider all the kinds of non-dependent canonical types: 02115 // - functions and arrays aren't possible as return and parameter types 02116 02117 // - vector types of equal size can be arbitrarily mixed 02118 if (isa<VectorType>(left)) return isa<VectorType>(right); 02119 if (isa<VectorType>(right)) return false; 02120 02121 // - references should only match references of identical type 02122 // - structs, unions, and Objective-C objects must match more-or-less 02123 // exactly 02124 // - everything else should be a scalar 02125 if (!left->isScalarType() || !right->isScalarType()) 02126 return tryMatchRecordTypes(Context, strategy, left, right); 02127 02128 // Make scalars agree in kind, except count bools as chars, and group 02129 // all non-member pointers together. 02130 Type::ScalarTypeKind leftSK = left->getScalarTypeKind(); 02131 Type::ScalarTypeKind rightSK = right->getScalarTypeKind(); 02132 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral; 02133 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral; 02134 if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer) 02135 leftSK = Type::STK_ObjCObjectPointer; 02136 if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer) 02137 rightSK = Type::STK_ObjCObjectPointer; 02138 02139 // Note that data member pointers and function member pointers don't 02140 // intermix because of the size differences. 02141 02142 return (leftSK == rightSK); 02143 } 02144 02145 static bool tryMatchRecordTypes(ASTContext &Context, 02146 Sema::MethodMatchStrategy strategy, 02147 const Type *lt, const Type *rt) { 02148 assert(lt && rt && lt != rt); 02149 02150 if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false; 02151 RecordDecl *left = cast<RecordType>(lt)->getDecl(); 02152 RecordDecl *right = cast<RecordType>(rt)->getDecl(); 02153 02154 // Require union-hood to match. 02155 if (left->isUnion() != right->isUnion()) return false; 02156 02157 // Require an exact match if either is non-POD. 02158 if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) || 02159 (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD())) 02160 return false; 02161 02162 // Require size and alignment to match. 02163 TypeInfo LeftTI = Context.getTypeInfo(lt); 02164 TypeInfo RightTI = Context.getTypeInfo(rt); 02165 if (LeftTI.Width != RightTI.Width) 02166 return false; 02167 02168 if (LeftTI.Align != RightTI.Align) 02169 return false; 02170 02171 // Require fields to match. 02172 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end(); 02173 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end(); 02174 for (; li != le && ri != re; ++li, ++ri) { 02175 if (!matchTypes(Context, strategy, li->getType(), ri->getType())) 02176 return false; 02177 } 02178 return (li == le && ri == re); 02179 } 02180 02181 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and 02182 /// returns true, or false, accordingly. 02183 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons 02184 bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left, 02185 const ObjCMethodDecl *right, 02186 MethodMatchStrategy strategy) { 02187 if (!matchTypes(Context, strategy, left->getReturnType(), 02188 right->getReturnType())) 02189 return false; 02190 02191 // If either is hidden, it is not considered to match. 02192 if (left->isHidden() || right->isHidden()) 02193 return false; 02194 02195 if (getLangOpts().ObjCAutoRefCount && 02196 (left->hasAttr<NSReturnsRetainedAttr>() 02197 != right->hasAttr<NSReturnsRetainedAttr>() || 02198 left->hasAttr<NSConsumesSelfAttr>() 02199 != right->hasAttr<NSConsumesSelfAttr>())) 02200 return false; 02201 02202 ObjCMethodDecl::param_const_iterator 02203 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(), 02204 re = right->param_end(); 02205 02206 for (; li != le && ri != re; ++li, ++ri) { 02207 assert(ri != right->param_end() && "Param mismatch"); 02208 const ParmVarDecl *lparm = *li, *rparm = *ri; 02209 02210 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType())) 02211 return false; 02212 02213 if (getLangOpts().ObjCAutoRefCount && 02214 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>()) 02215 return false; 02216 } 02217 return true; 02218 } 02219 02220 void Sema::addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method) { 02221 // Record at the head of the list whether there were 0, 1, or >= 2 methods 02222 // inside categories. 02223 if (ObjCCategoryDecl * 02224 CD = dyn_cast<ObjCCategoryDecl>(Method->getDeclContext())) 02225 if (!CD->IsClassExtension() && List->getBits() < 2) 02226 List->setBits(List->getBits()+1); 02227 02228 // If the list is empty, make it a singleton list. 02229 if (List->Method == nullptr) { 02230 List->Method = Method; 02231 List->setNext(nullptr); 02232 List->Count = Method->isDefined() ? 0 : 1; 02233 return; 02234 } 02235 02236 // We've seen a method with this name, see if we have already seen this type 02237 // signature. 02238 ObjCMethodList *Previous = List; 02239 for (; List; Previous = List, List = List->getNext()) { 02240 // If we are building a module, keep all of the methods. 02241 if (getLangOpts().Modules && !getLangOpts().CurrentModule.empty()) 02242 continue; 02243 02244 if (!MatchTwoMethodDeclarations(Method, List->Method)) 02245 continue; 02246 02247 ObjCMethodDecl *PrevObjCMethod = List->Method; 02248 02249 // Propagate the 'defined' bit. 02250 if (Method->isDefined()) 02251 PrevObjCMethod->setDefined(true); 02252 else 02253 ++List->Count; 02254 02255 // If a method is deprecated, push it in the global pool. 02256 // This is used for better diagnostics. 02257 if (Method->isDeprecated()) { 02258 if (!PrevObjCMethod->isDeprecated()) 02259 List->Method = Method; 02260 } 02261 // If new method is unavailable, push it into global pool 02262 // unless previous one is deprecated. 02263 if (Method->isUnavailable()) { 02264 if (PrevObjCMethod->getAvailability() < AR_Deprecated) 02265 List->Method = Method; 02266 } 02267 02268 return; 02269 } 02270 02271 // We have a new signature for an existing method - add it. 02272 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded". 02273 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>(); 02274 Previous->setNext(new (Mem) ObjCMethodList(Method, 0, nullptr)); 02275 } 02276 02277 /// \brief Read the contents of the method pool for a given selector from 02278 /// external storage. 02279 void Sema::ReadMethodPool(Selector Sel) { 02280 assert(ExternalSource && "We need an external AST source"); 02281 ExternalSource->ReadMethodPool(Sel); 02282 } 02283 02284 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, 02285 bool instance) { 02286 // Ignore methods of invalid containers. 02287 if (cast<Decl>(Method->getDeclContext())->isInvalidDecl()) 02288 return; 02289 02290 if (ExternalSource) 02291 ReadMethodPool(Method->getSelector()); 02292 02293 GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector()); 02294 if (Pos == MethodPool.end()) 02295 Pos = MethodPool.insert(std::make_pair(Method->getSelector(), 02296 GlobalMethods())).first; 02297 02298 Method->setDefined(impl); 02299 02300 ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second; 02301 addMethodToGlobalList(&Entry, Method); 02302 } 02303 02304 /// Determines if this is an "acceptable" loose mismatch in the global 02305 /// method pool. This exists mostly as a hack to get around certain 02306 /// global mismatches which we can't afford to make warnings / errors. 02307 /// Really, what we want is a way to take a method out of the global 02308 /// method pool. 02309 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen, 02310 ObjCMethodDecl *other) { 02311 if (!chosen->isInstanceMethod()) 02312 return false; 02313 02314 Selector sel = chosen->getSelector(); 02315 if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length") 02316 return false; 02317 02318 // Don't complain about mismatches for -length if the method we 02319 // chose has an integral result type. 02320 return (chosen->getReturnType()->isIntegerType()); 02321 } 02322 02323 bool Sema::CollectMultipleMethodsInGlobalPool(Selector Sel, 02324 SmallVectorImpl<ObjCMethodDecl*>& Methods, 02325 bool instance) { 02326 if (ExternalSource) 02327 ReadMethodPool(Sel); 02328 02329 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 02330 if (Pos == MethodPool.end()) 02331 return false; 02332 // Gather the non-hidden methods. 02333 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second; 02334 for (ObjCMethodList *M = &MethList; M; M = M->getNext()) 02335 if (M->Method && !M->Method->isHidden()) 02336 Methods.push_back(M->Method); 02337 return (Methods.size() > 1); 02338 } 02339 02340 bool Sema::AreMultipleMethodsInGlobalPool(Selector Sel, 02341 bool instance) { 02342 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 02343 // Test for no method in the pool which should not trigger any warning by caller. 02344 if (Pos == MethodPool.end()) 02345 return true; 02346 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second; 02347 return MethList.Count > 1; 02348 } 02349 02350 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R, 02351 bool receiverIdOrClass, 02352 bool warn, bool instance) { 02353 if (ExternalSource) 02354 ReadMethodPool(Sel); 02355 02356 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 02357 if (Pos == MethodPool.end()) 02358 return nullptr; 02359 02360 // Gather the non-hidden methods. 02361 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second; 02362 SmallVector<ObjCMethodDecl *, 4> Methods; 02363 for (ObjCMethodList *M = &MethList; M; M = M->getNext()) { 02364 if (M->Method && !M->Method->isHidden()) { 02365 // If we're not supposed to warn about mismatches, we're done. 02366 if (!warn) 02367 return M->Method; 02368 02369 Methods.push_back(M->Method); 02370 } 02371 } 02372 02373 // If there aren't any visible methods, we're done. 02374 // FIXME: Recover if there are any known-but-hidden methods? 02375 if (Methods.empty()) 02376 return nullptr; 02377 02378 if (Methods.size() == 1) 02379 return Methods[0]; 02380 02381 // We found multiple methods, so we may have to complain. 02382 bool issueDiagnostic = false, issueError = false; 02383 02384 // We support a warning which complains about *any* difference in 02385 // method signature. 02386 bool strictSelectorMatch = 02387 receiverIdOrClass && warn && 02388 !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin()); 02389 if (strictSelectorMatch) { 02390 for (unsigned I = 1, N = Methods.size(); I != N; ++I) { 02391 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) { 02392 issueDiagnostic = true; 02393 break; 02394 } 02395 } 02396 } 02397 02398 // If we didn't see any strict differences, we won't see any loose 02399 // differences. In ARC, however, we also need to check for loose 02400 // mismatches, because most of them are errors. 02401 if (!strictSelectorMatch || 02402 (issueDiagnostic && getLangOpts().ObjCAutoRefCount)) 02403 for (unsigned I = 1, N = Methods.size(); I != N; ++I) { 02404 // This checks if the methods differ in type mismatch. 02405 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) && 02406 !isAcceptableMethodMismatch(Methods[0], Methods[I])) { 02407 issueDiagnostic = true; 02408 if (getLangOpts().ObjCAutoRefCount) 02409 issueError = true; 02410 break; 02411 } 02412 } 02413 02414 if (issueDiagnostic) { 02415 if (issueError) 02416 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R; 02417 else if (strictSelectorMatch) 02418 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R; 02419 else 02420 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R; 02421 02422 Diag(Methods[0]->getLocStart(), 02423 issueError ? diag::note_possibility : diag::note_using) 02424 << Methods[0]->getSourceRange(); 02425 for (unsigned I = 1, N = Methods.size(); I != N; ++I) { 02426 Diag(Methods[I]->getLocStart(), diag::note_also_found) 02427 << Methods[I]->getSourceRange(); 02428 } 02429 } 02430 return Methods[0]; 02431 } 02432 02433 ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) { 02434 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 02435 if (Pos == MethodPool.end()) 02436 return nullptr; 02437 02438 GlobalMethods &Methods = Pos->second; 02439 for (const ObjCMethodList *Method = &Methods.first; Method; 02440 Method = Method->getNext()) 02441 if (Method->Method && Method->Method->isDefined()) 02442 return Method->Method; 02443 02444 for (const ObjCMethodList *Method = &Methods.second; Method; 02445 Method = Method->getNext()) 02446 if (Method->Method && Method->Method->isDefined()) 02447 return Method->Method; 02448 return nullptr; 02449 } 02450 02451 static void 02452 HelperSelectorsForTypoCorrection( 02453 SmallVectorImpl<const ObjCMethodDecl *> &BestMethod, 02454 StringRef Typo, const ObjCMethodDecl * Method) { 02455 const unsigned MaxEditDistance = 1; 02456 unsigned BestEditDistance = MaxEditDistance + 1; 02457 std::string MethodName = Method->getSelector().getAsString(); 02458 02459 unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size()); 02460 if (MinPossibleEditDistance > 0 && 02461 Typo.size() / MinPossibleEditDistance < 1) 02462 return; 02463 unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance); 02464 if (EditDistance > MaxEditDistance) 02465 return; 02466 if (EditDistance == BestEditDistance) 02467 BestMethod.push_back(Method); 02468 else if (EditDistance < BestEditDistance) { 02469 BestMethod.clear(); 02470 BestMethod.push_back(Method); 02471 } 02472 } 02473 02474 static bool HelperIsMethodInObjCType(Sema &S, Selector Sel, 02475 QualType ObjectType) { 02476 if (ObjectType.isNull()) 02477 return true; 02478 if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/)) 02479 return true; 02480 return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) != 02481 nullptr; 02482 } 02483 02484 const ObjCMethodDecl * 02485 Sema::SelectorsForTypoCorrection(Selector Sel, 02486 QualType ObjectType) { 02487 unsigned NumArgs = Sel.getNumArgs(); 02488 SmallVector<const ObjCMethodDecl *, 8> Methods; 02489 bool ObjectIsId = true, ObjectIsClass = true; 02490 if (ObjectType.isNull()) 02491 ObjectIsId = ObjectIsClass = false; 02492 else if (!ObjectType->isObjCObjectPointerType()) 02493 return nullptr; 02494 else if (const ObjCObjectPointerType *ObjCPtr = 02495 ObjectType->getAsObjCInterfacePointerType()) { 02496 ObjectType = QualType(ObjCPtr->getInterfaceType(), 0); 02497 ObjectIsId = ObjectIsClass = false; 02498 } 02499 else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType()) 02500 ObjectIsClass = false; 02501 else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType()) 02502 ObjectIsId = false; 02503 else 02504 return nullptr; 02505 02506 for (GlobalMethodPool::iterator b = MethodPool.begin(), 02507 e = MethodPool.end(); b != e; b++) { 02508 // instance methods 02509 for (ObjCMethodList *M = &b->second.first; M; M=M->getNext()) 02510 if (M->Method && 02511 (M->Method->getSelector().getNumArgs() == NumArgs) && 02512 (M->Method->getSelector() != Sel)) { 02513 if (ObjectIsId) 02514 Methods.push_back(M->Method); 02515 else if (!ObjectIsClass && 02516 HelperIsMethodInObjCType(*this, M->Method->getSelector(), ObjectType)) 02517 Methods.push_back(M->Method); 02518 } 02519 // class methods 02520 for (ObjCMethodList *M = &b->second.second; M; M=M->getNext()) 02521 if (M->Method && 02522 (M->Method->getSelector().getNumArgs() == NumArgs) && 02523 (M->Method->getSelector() != Sel)) { 02524 if (ObjectIsClass) 02525 Methods.push_back(M->Method); 02526 else if (!ObjectIsId && 02527 HelperIsMethodInObjCType(*this, M->Method->getSelector(), ObjectType)) 02528 Methods.push_back(M->Method); 02529 } 02530 } 02531 02532 SmallVector<const ObjCMethodDecl *, 8> SelectedMethods; 02533 for (unsigned i = 0, e = Methods.size(); i < e; i++) { 02534 HelperSelectorsForTypoCorrection(SelectedMethods, 02535 Sel.getAsString(), Methods[i]); 02536 } 02537 return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr; 02538 } 02539 02540 /// DiagnoseDuplicateIvars - 02541 /// Check for duplicate ivars in the entire class at the start of 02542 /// \@implementation. This becomes necesssary because class extension can 02543 /// add ivars to a class in random order which will not be known until 02544 /// class's \@implementation is seen. 02545 void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, 02546 ObjCInterfaceDecl *SID) { 02547 for (auto *Ivar : ID->ivars()) { 02548 if (Ivar->isInvalidDecl()) 02549 continue; 02550 if (IdentifierInfo *II = Ivar->getIdentifier()) { 02551 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II); 02552 if (prevIvar) { 02553 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II; 02554 Diag(prevIvar->getLocation(), diag::note_previous_declaration); 02555 Ivar->setInvalidDecl(); 02556 } 02557 } 02558 } 02559 } 02560 02561 Sema::ObjCContainerKind Sema::getObjCContainerKind() const { 02562 switch (CurContext->getDeclKind()) { 02563 case Decl::ObjCInterface: 02564 return Sema::OCK_Interface; 02565 case Decl::ObjCProtocol: 02566 return Sema::OCK_Protocol; 02567 case Decl::ObjCCategory: 02568 if (dyn_cast<ObjCCategoryDecl>(CurContext)->IsClassExtension()) 02569 return Sema::OCK_ClassExtension; 02570 else 02571 return Sema::OCK_Category; 02572 case Decl::ObjCImplementation: 02573 return Sema::OCK_Implementation; 02574 case Decl::ObjCCategoryImpl: 02575 return Sema::OCK_CategoryImplementation; 02576 02577 default: 02578 return Sema::OCK_None; 02579 } 02580 } 02581 02582 // Note: For class/category implementations, allMethods is always null. 02583 Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods, 02584 ArrayRef<DeclGroupPtrTy> allTUVars) { 02585 if (getObjCContainerKind() == Sema::OCK_None) 02586 return nullptr; 02587 02588 assert(AtEnd.isValid() && "Invalid location for '@end'"); 02589 02590 ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext); 02591 Decl *ClassDecl = cast<Decl>(OCD); 02592 02593 bool isInterfaceDeclKind = 02594 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl) 02595 || isa<ObjCProtocolDecl>(ClassDecl); 02596 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl); 02597 02598 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext. 02599 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap; 02600 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap; 02601 02602 for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) { 02603 ObjCMethodDecl *Method = 02604 cast_or_null<ObjCMethodDecl>(allMethods[i]); 02605 02606 if (!Method) continue; // Already issued a diagnostic. 02607 if (Method->isInstanceMethod()) { 02608 /// Check for instance method of the same name with incompatible types 02609 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()]; 02610 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) 02611 : false; 02612 if ((isInterfaceDeclKind && PrevMethod && !match) 02613 || (checkIdenticalMethods && match)) { 02614 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 02615 << Method->getDeclName(); 02616 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 02617 Method->setInvalidDecl(); 02618 } else { 02619 if (PrevMethod) { 02620 Method->setAsRedeclaration(PrevMethod); 02621 if (!Context.getSourceManager().isInSystemHeader( 02622 Method->getLocation())) 02623 Diag(Method->getLocation(), diag::warn_duplicate_method_decl) 02624 << Method->getDeclName(); 02625 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 02626 } 02627 InsMap[Method->getSelector()] = Method; 02628 /// The following allows us to typecheck messages to "id". 02629 AddInstanceMethodToGlobalPool(Method); 02630 } 02631 } else { 02632 /// Check for class method of the same name with incompatible types 02633 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()]; 02634 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) 02635 : false; 02636 if ((isInterfaceDeclKind && PrevMethod && !match) 02637 || (checkIdenticalMethods && match)) { 02638 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 02639 << Method->getDeclName(); 02640 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 02641 Method->setInvalidDecl(); 02642 } else { 02643 if (PrevMethod) { 02644 Method->setAsRedeclaration(PrevMethod); 02645 if (!Context.getSourceManager().isInSystemHeader( 02646 Method->getLocation())) 02647 Diag(Method->getLocation(), diag::warn_duplicate_method_decl) 02648 << Method->getDeclName(); 02649 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 02650 } 02651 ClsMap[Method->getSelector()] = Method; 02652 AddFactoryMethodToGlobalPool(Method); 02653 } 02654 } 02655 } 02656 if (isa<ObjCInterfaceDecl>(ClassDecl)) { 02657 // Nothing to do here. 02658 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) { 02659 // Categories are used to extend the class by declaring new methods. 02660 // By the same token, they are also used to add new properties. No 02661 // need to compare the added property to those in the class. 02662 02663 if (C->IsClassExtension()) { 02664 ObjCInterfaceDecl *CCPrimary = C->getClassInterface(); 02665 DiagnoseClassExtensionDupMethods(C, CCPrimary); 02666 } 02667 } 02668 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) { 02669 if (CDecl->getIdentifier()) 02670 // ProcessPropertyDecl is responsible for diagnosing conflicts with any 02671 // user-defined setter/getter. It also synthesizes setter/getter methods 02672 // and adds them to the DeclContext and global method pools. 02673 for (auto *I : CDecl->properties()) 02674 ProcessPropertyDecl(I, CDecl); 02675 CDecl->setAtEndRange(AtEnd); 02676 } 02677 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) { 02678 IC->setAtEndRange(AtEnd); 02679 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) { 02680 // Any property declared in a class extension might have user 02681 // declared setter or getter in current class extension or one 02682 // of the other class extensions. Mark them as synthesized as 02683 // property will be synthesized when property with same name is 02684 // seen in the @implementation. 02685 for (const auto *Ext : IDecl->visible_extensions()) { 02686 for (const auto *Property : Ext->properties()) { 02687 // Skip over properties declared @dynamic 02688 if (const ObjCPropertyImplDecl *PIDecl 02689 = IC->FindPropertyImplDecl(Property->getIdentifier())) 02690 if (PIDecl->getPropertyImplementation() 02691 == ObjCPropertyImplDecl::Dynamic) 02692 continue; 02693 02694 for (const auto *Ext : IDecl->visible_extensions()) { 02695 if (ObjCMethodDecl *GetterMethod 02696 = Ext->getInstanceMethod(Property->getGetterName())) 02697 GetterMethod->setPropertyAccessor(true); 02698 if (!Property->isReadOnly()) 02699 if (ObjCMethodDecl *SetterMethod 02700 = Ext->getInstanceMethod(Property->getSetterName())) 02701 SetterMethod->setPropertyAccessor(true); 02702 } 02703 } 02704 } 02705 ImplMethodsVsClassMethods(S, IC, IDecl); 02706 AtomicPropertySetterGetterRules(IC, IDecl); 02707 DiagnoseOwningPropertyGetterSynthesis(IC); 02708 DiagnoseUnusedBackingIvarInAccessor(S, IC); 02709 if (IDecl->hasDesignatedInitializers()) 02710 DiagnoseMissingDesignatedInitOverrides(IC, IDecl); 02711 02712 bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>(); 02713 if (IDecl->getSuperClass() == nullptr) { 02714 // This class has no superclass, so check that it has been marked with 02715 // __attribute((objc_root_class)). 02716 if (!HasRootClassAttr) { 02717 SourceLocation DeclLoc(IDecl->getLocation()); 02718 SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc)); 02719 Diag(DeclLoc, diag::warn_objc_root_class_missing) 02720 << IDecl->getIdentifier(); 02721 // See if NSObject is in the current scope, and if it is, suggest 02722 // adding " : NSObject " to the class declaration. 02723 NamedDecl *IF = LookupSingleName(TUScope, 02724 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject), 02725 DeclLoc, LookupOrdinaryName); 02726 ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF); 02727 if (NSObjectDecl && NSObjectDecl->getDefinition()) { 02728 Diag(SuperClassLoc, diag::note_objc_needs_superclass) 02729 << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject "); 02730 } else { 02731 Diag(SuperClassLoc, diag::note_objc_needs_superclass); 02732 } 02733 } 02734 } else if (HasRootClassAttr) { 02735 // Complain that only root classes may have this attribute. 02736 Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass); 02737 } 02738 02739 if (LangOpts.ObjCRuntime.isNonFragile()) { 02740 while (IDecl->getSuperClass()) { 02741 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass()); 02742 IDecl = IDecl->getSuperClass(); 02743 } 02744 } 02745 } 02746 SetIvarInitializers(IC); 02747 } else if (ObjCCategoryImplDecl* CatImplClass = 02748 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) { 02749 CatImplClass->setAtEndRange(AtEnd); 02750 02751 // Find category interface decl and then check that all methods declared 02752 // in this interface are implemented in the category @implementation. 02753 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) { 02754 if (ObjCCategoryDecl *Cat 02755 = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) { 02756 ImplMethodsVsClassMethods(S, CatImplClass, Cat); 02757 } 02758 } 02759 } 02760 if (isInterfaceDeclKind) { 02761 // Reject invalid vardecls. 02762 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) { 02763 DeclGroupRef DG = allTUVars[i].get(); 02764 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) 02765 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) { 02766 if (!VDecl->hasExternalStorage()) 02767 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass); 02768 } 02769 } 02770 } 02771 ActOnObjCContainerFinishDefinition(); 02772 02773 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) { 02774 DeclGroupRef DG = allTUVars[i].get(); 02775 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) 02776 (*I)->setTopLevelDeclInObjCContainer(); 02777 Consumer.HandleTopLevelDeclInObjCContainer(DG); 02778 } 02779 02780 ActOnDocumentableDecl(ClassDecl); 02781 return ClassDecl; 02782 } 02783 02784 02785 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for 02786 /// objective-c's type qualifier from the parser version of the same info. 02787 static Decl::ObjCDeclQualifier 02788 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) { 02789 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal; 02790 } 02791 02792 /// \brief Check whether the declared result type of the given Objective-C 02793 /// method declaration is compatible with the method's class. 02794 /// 02795 static Sema::ResultTypeCompatibilityKind 02796 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method, 02797 ObjCInterfaceDecl *CurrentClass) { 02798 QualType ResultType = Method->getReturnType(); 02799 02800 // If an Objective-C method inherits its related result type, then its 02801 // declared result type must be compatible with its own class type. The 02802 // declared result type is compatible if: 02803 if (const ObjCObjectPointerType *ResultObjectType 02804 = ResultType->getAs<ObjCObjectPointerType>()) { 02805 // - it is id or qualified id, or 02806 if (ResultObjectType->isObjCIdType() || 02807 ResultObjectType->isObjCQualifiedIdType()) 02808 return Sema::RTC_Compatible; 02809 02810 if (CurrentClass) { 02811 if (ObjCInterfaceDecl *ResultClass 02812 = ResultObjectType->getInterfaceDecl()) { 02813 // - it is the same as the method's class type, or 02814 if (declaresSameEntity(CurrentClass, ResultClass)) 02815 return Sema::RTC_Compatible; 02816 02817 // - it is a superclass of the method's class type 02818 if (ResultClass->isSuperClassOf(CurrentClass)) 02819 return Sema::RTC_Compatible; 02820 } 02821 } else { 02822 // Any Objective-C pointer type might be acceptable for a protocol 02823 // method; we just don't know. 02824 return Sema::RTC_Unknown; 02825 } 02826 } 02827 02828 return Sema::RTC_Incompatible; 02829 } 02830 02831 namespace { 02832 /// A helper class for searching for methods which a particular method 02833 /// overrides. 02834 class OverrideSearch { 02835 public: 02836 Sema &S; 02837 ObjCMethodDecl *Method; 02838 llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden; 02839 bool Recursive; 02840 02841 public: 02842 OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) { 02843 Selector selector = method->getSelector(); 02844 02845 // Bypass this search if we've never seen an instance/class method 02846 // with this selector before. 02847 Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector); 02848 if (it == S.MethodPool.end()) { 02849 if (!S.getExternalSource()) return; 02850 S.ReadMethodPool(selector); 02851 02852 it = S.MethodPool.find(selector); 02853 if (it == S.MethodPool.end()) 02854 return; 02855 } 02856 ObjCMethodList &list = 02857 method->isInstanceMethod() ? it->second.first : it->second.second; 02858 if (!list.Method) return; 02859 02860 ObjCContainerDecl *container 02861 = cast<ObjCContainerDecl>(method->getDeclContext()); 02862 02863 // Prevent the search from reaching this container again. This is 02864 // important with categories, which override methods from the 02865 // interface and each other. 02866 if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) { 02867 searchFromContainer(container); 02868 if (ObjCInterfaceDecl *Interface = Category->getClassInterface()) 02869 searchFromContainer(Interface); 02870 } else { 02871 searchFromContainer(container); 02872 } 02873 } 02874 02875 typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator; 02876 iterator begin() const { return Overridden.begin(); } 02877 iterator end() const { return Overridden.end(); } 02878 02879 private: 02880 void searchFromContainer(ObjCContainerDecl *container) { 02881 if (container->isInvalidDecl()) return; 02882 02883 switch (container->getDeclKind()) { 02884 #define OBJCCONTAINER(type, base) \ 02885 case Decl::type: \ 02886 searchFrom(cast<type##Decl>(container)); \ 02887 break; 02888 #define ABSTRACT_DECL(expansion) 02889 #define DECL(type, base) \ 02890 case Decl::type: 02891 #include "clang/AST/DeclNodes.inc" 02892 llvm_unreachable("not an ObjC container!"); 02893 } 02894 } 02895 02896 void searchFrom(ObjCProtocolDecl *protocol) { 02897 if (!protocol->hasDefinition()) 02898 return; 02899 02900 // A method in a protocol declaration overrides declarations from 02901 // referenced ("parent") protocols. 02902 search(protocol->getReferencedProtocols()); 02903 } 02904 02905 void searchFrom(ObjCCategoryDecl *category) { 02906 // A method in a category declaration overrides declarations from 02907 // the main class and from protocols the category references. 02908 // The main class is handled in the constructor. 02909 search(category->getReferencedProtocols()); 02910 } 02911 02912 void searchFrom(ObjCCategoryImplDecl *impl) { 02913 // A method in a category definition that has a category 02914 // declaration overrides declarations from the category 02915 // declaration. 02916 if (ObjCCategoryDecl *category = impl->getCategoryDecl()) { 02917 search(category); 02918 if (ObjCInterfaceDecl *Interface = category->getClassInterface()) 02919 search(Interface); 02920 02921 // Otherwise it overrides declarations from the class. 02922 } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) { 02923 search(Interface); 02924 } 02925 } 02926 02927 void searchFrom(ObjCInterfaceDecl *iface) { 02928 // A method in a class declaration overrides declarations from 02929 if (!iface->hasDefinition()) 02930 return; 02931 02932 // - categories, 02933 for (auto *Cat : iface->known_categories()) 02934 search(Cat); 02935 02936 // - the super class, and 02937 if (ObjCInterfaceDecl *super = iface->getSuperClass()) 02938 search(super); 02939 02940 // - any referenced protocols. 02941 search(iface->getReferencedProtocols()); 02942 } 02943 02944 void searchFrom(ObjCImplementationDecl *impl) { 02945 // A method in a class implementation overrides declarations from 02946 // the class interface. 02947 if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) 02948 search(Interface); 02949 } 02950 02951 02952 void search(const ObjCProtocolList &protocols) { 02953 for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end(); 02954 i != e; ++i) 02955 search(*i); 02956 } 02957 02958 void search(ObjCContainerDecl *container) { 02959 // Check for a method in this container which matches this selector. 02960 ObjCMethodDecl *meth = container->getMethod(Method->getSelector(), 02961 Method->isInstanceMethod(), 02962 /*AllowHidden=*/true); 02963 02964 // If we find one, record it and bail out. 02965 if (meth) { 02966 Overridden.insert(meth); 02967 return; 02968 } 02969 02970 // Otherwise, search for methods that a hypothetical method here 02971 // would have overridden. 02972 02973 // Note that we're now in a recursive case. 02974 Recursive = true; 02975 02976 searchFromContainer(container); 02977 } 02978 }; 02979 } 02980 02981 void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod, 02982 ObjCInterfaceDecl *CurrentClass, 02983 ResultTypeCompatibilityKind RTC) { 02984 // Search for overridden methods and merge information down from them. 02985 OverrideSearch overrides(*this, ObjCMethod); 02986 // Keep track if the method overrides any method in the class's base classes, 02987 // its protocols, or its categories' protocols; we will keep that info 02988 // in the ObjCMethodDecl. 02989 // For this info, a method in an implementation is not considered as 02990 // overriding the same method in the interface or its categories. 02991 bool hasOverriddenMethodsInBaseOrProtocol = false; 02992 for (OverrideSearch::iterator 02993 i = overrides.begin(), e = overrides.end(); i != e; ++i) { 02994 ObjCMethodDecl *overridden = *i; 02995 02996 if (!hasOverriddenMethodsInBaseOrProtocol) { 02997 if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) || 02998 CurrentClass != overridden->getClassInterface() || 02999 overridden->isOverriding()) { 03000 hasOverriddenMethodsInBaseOrProtocol = true; 03001 03002 } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) { 03003 // OverrideSearch will return as "overridden" the same method in the 03004 // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to 03005 // check whether a category of a base class introduced a method with the 03006 // same selector, after the interface method declaration. 03007 // To avoid unnecessary lookups in the majority of cases, we use the 03008 // extra info bits in GlobalMethodPool to check whether there were any 03009 // category methods with this selector. 03010 GlobalMethodPool::iterator It = 03011 MethodPool.find(ObjCMethod->getSelector()); 03012 if (It != MethodPool.end()) { 03013 ObjCMethodList &List = 03014 ObjCMethod->isInstanceMethod()? It->second.first: It->second.second; 03015 unsigned CategCount = List.getBits(); 03016 if (CategCount > 0) { 03017 // If the method is in a category we'll do lookup if there were at 03018 // least 2 category methods recorded, otherwise only one will do. 03019 if (CategCount > 1 || 03020 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) { 03021 OverrideSearch overrides(*this, overridden); 03022 for (OverrideSearch::iterator 03023 OI= overrides.begin(), OE= overrides.end(); OI!=OE; ++OI) { 03024 ObjCMethodDecl *SuperOverridden = *OI; 03025 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) || 03026 CurrentClass != SuperOverridden->getClassInterface()) { 03027 hasOverriddenMethodsInBaseOrProtocol = true; 03028 overridden->setOverriding(true); 03029 break; 03030 } 03031 } 03032 } 03033 } 03034 } 03035 } 03036 } 03037 03038 // Propagate down the 'related result type' bit from overridden methods. 03039 if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType()) 03040 ObjCMethod->SetRelatedResultType(); 03041 03042 // Then merge the declarations. 03043 mergeObjCMethodDecls(ObjCMethod, overridden); 03044 03045 if (ObjCMethod->isImplicit() && overridden->isImplicit()) 03046 continue; // Conflicting properties are detected elsewhere. 03047 03048 // Check for overriding methods 03049 if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) || 03050 isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext())) 03051 CheckConflictingOverridingMethod(ObjCMethod, overridden, 03052 isa<ObjCProtocolDecl>(overridden->getDeclContext())); 03053 03054 if (CurrentClass && overridden->getDeclContext() != CurrentClass && 03055 isa<ObjCInterfaceDecl>(overridden->getDeclContext()) && 03056 !overridden->isImplicit() /* not meant for properties */) { 03057 ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(), 03058 E = ObjCMethod->param_end(); 03059 ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(), 03060 PrevE = overridden->param_end(); 03061 for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) { 03062 assert(PrevI != overridden->param_end() && "Param mismatch"); 03063 QualType T1 = Context.getCanonicalType((*ParamI)->getType()); 03064 QualType T2 = Context.getCanonicalType((*PrevI)->getType()); 03065 // If type of argument of method in this class does not match its 03066 // respective argument type in the super class method, issue warning; 03067 if (!Context.typesAreCompatible(T1, T2)) { 03068 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super) 03069 << T1 << T2; 03070 Diag(overridden->getLocation(), diag::note_previous_declaration); 03071 break; 03072 } 03073 } 03074 } 03075 } 03076 03077 ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol); 03078 } 03079 03080 Decl *Sema::ActOnMethodDeclaration( 03081 Scope *S, 03082 SourceLocation MethodLoc, SourceLocation EndLoc, 03083 tok::TokenKind MethodType, 03084 ObjCDeclSpec &ReturnQT, ParsedType ReturnType, 03085 ArrayRef<SourceLocation> SelectorLocs, 03086 Selector Sel, 03087 // optional arguments. The number of types/arguments is obtained 03088 // from the Sel.getNumArgs(). 03089 ObjCArgInfo *ArgInfo, 03090 DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args 03091 AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind, 03092 bool isVariadic, bool MethodDefinition) { 03093 // Make sure we can establish a context for the method. 03094 if (!CurContext->isObjCContainer()) { 03095 Diag(MethodLoc, diag::error_missing_method_context); 03096 return nullptr; 03097 } 03098 ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext); 03099 Decl *ClassDecl = cast<Decl>(OCD); 03100 QualType resultDeclType; 03101 03102 bool HasRelatedResultType = false; 03103 TypeSourceInfo *ReturnTInfo = nullptr; 03104 if (ReturnType) { 03105 resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo); 03106 03107 if (CheckFunctionReturnType(resultDeclType, MethodLoc)) 03108 return nullptr; 03109 03110 HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType()); 03111 } else { // get the type for "id". 03112 resultDeclType = Context.getObjCIdType(); 03113 Diag(MethodLoc, diag::warn_missing_method_return_type) 03114 << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)"); 03115 } 03116 03117 ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create( 03118 Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext, 03119 MethodType == tok::minus, isVariadic, 03120 /*isPropertyAccessor=*/false, 03121 /*isImplicitlyDeclared=*/false, /*isDefined=*/false, 03122 MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional 03123 : ObjCMethodDecl::Required, 03124 HasRelatedResultType); 03125 03126 SmallVector<ParmVarDecl*, 16> Params; 03127 03128 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) { 03129 QualType ArgType; 03130 TypeSourceInfo *DI; 03131 03132 if (!ArgInfo[i].Type) { 03133 ArgType = Context.getObjCIdType(); 03134 DI = nullptr; 03135 } else { 03136 ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI); 03137 } 03138 03139 LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc, 03140 LookupOrdinaryName, ForRedeclaration); 03141 LookupName(R, S); 03142 if (R.isSingleResult()) { 03143 NamedDecl *PrevDecl = R.getFoundDecl(); 03144 if (S->isDeclScope(PrevDecl)) { 03145 Diag(ArgInfo[i].NameLoc, 03146 (MethodDefinition ? diag::warn_method_param_redefinition 03147 : diag::warn_method_param_declaration)) 03148 << ArgInfo[i].Name; 03149 Diag(PrevDecl->getLocation(), 03150 diag::note_previous_declaration); 03151 } 03152 } 03153 03154 SourceLocation StartLoc = DI 03155 ? DI->getTypeLoc().getBeginLoc() 03156 : ArgInfo[i].NameLoc; 03157 03158 ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc, 03159 ArgInfo[i].NameLoc, ArgInfo[i].Name, 03160 ArgType, DI, SC_None); 03161 03162 Param->setObjCMethodScopeInfo(i); 03163 03164 Param->setObjCDeclQualifier( 03165 CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier())); 03166 03167 // Apply the attributes to the parameter. 03168 ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs); 03169 03170 if (Param->hasAttr<BlocksAttr>()) { 03171 Diag(Param->getLocation(), diag::err_block_on_nonlocal); 03172 Param->setInvalidDecl(); 03173 } 03174 S->AddDecl(Param); 03175 IdResolver.AddDecl(Param); 03176 03177 Params.push_back(Param); 03178 } 03179 03180 for (unsigned i = 0, e = CNumArgs; i != e; ++i) { 03181 ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param); 03182 QualType ArgType = Param->getType(); 03183 if (ArgType.isNull()) 03184 ArgType = Context.getObjCIdType(); 03185 else 03186 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). 03187 ArgType = Context.getAdjustedParameterType(ArgType); 03188 03189 Param->setDeclContext(ObjCMethod); 03190 Params.push_back(Param); 03191 } 03192 03193 ObjCMethod->setMethodParams(Context, Params, SelectorLocs); 03194 ObjCMethod->setObjCDeclQualifier( 03195 CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier())); 03196 03197 if (AttrList) 03198 ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList); 03199 03200 // Add the method now. 03201 const ObjCMethodDecl *PrevMethod = nullptr; 03202 if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) { 03203 if (MethodType == tok::minus) { 03204 PrevMethod = ImpDecl->getInstanceMethod(Sel); 03205 ImpDecl->addInstanceMethod(ObjCMethod); 03206 } else { 03207 PrevMethod = ImpDecl->getClassMethod(Sel); 03208 ImpDecl->addClassMethod(ObjCMethod); 03209 } 03210 03211 ObjCMethodDecl *IMD = nullptr; 03212 if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) 03213 IMD = IDecl->lookupMethod(ObjCMethod->getSelector(), 03214 ObjCMethod->isInstanceMethod()); 03215 if (IMD && IMD->hasAttr<ObjCRequiresSuperAttr>() && 03216 !ObjCMethod->hasAttr<ObjCRequiresSuperAttr>()) { 03217 // merge the attribute into implementation. 03218 ObjCMethod->addAttr(ObjCRequiresSuperAttr::CreateImplicit(Context, 03219 ObjCMethod->getLocation())); 03220 } 03221 if (isa<ObjCCategoryImplDecl>(ImpDecl)) { 03222 ObjCMethodFamily family = 03223 ObjCMethod->getSelector().getMethodFamily(); 03224 if (family == OMF_dealloc && IMD && IMD->isOverriding()) 03225 Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category) 03226 << ObjCMethod->getDeclName(); 03227 } 03228 } else { 03229 cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod); 03230 } 03231 03232 if (PrevMethod) { 03233 // You can never have two method definitions with the same name. 03234 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl) 03235 << ObjCMethod->getDeclName(); 03236 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 03237 ObjCMethod->setInvalidDecl(); 03238 return ObjCMethod; 03239 } 03240 03241 // If this Objective-C method does not have a related result type, but we 03242 // are allowed to infer related result types, try to do so based on the 03243 // method family. 03244 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl); 03245 if (!CurrentClass) { 03246 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl)) 03247 CurrentClass = Cat->getClassInterface(); 03248 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl)) 03249 CurrentClass = Impl->getClassInterface(); 03250 else if (ObjCCategoryImplDecl *CatImpl 03251 = dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) 03252 CurrentClass = CatImpl->getClassInterface(); 03253 } 03254 03255 ResultTypeCompatibilityKind RTC 03256 = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass); 03257 03258 CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC); 03259 03260 bool ARCError = false; 03261 if (getLangOpts().ObjCAutoRefCount) 03262 ARCError = CheckARCMethodDecl(ObjCMethod); 03263 03264 // Infer the related result type when possible. 03265 if (!ARCError && RTC == Sema::RTC_Compatible && 03266 !ObjCMethod->hasRelatedResultType() && 03267 LangOpts.ObjCInferRelatedResultType) { 03268 bool InferRelatedResultType = false; 03269 switch (ObjCMethod->getMethodFamily()) { 03270 case OMF_None: 03271 case OMF_copy: 03272 case OMF_dealloc: 03273 case OMF_finalize: 03274 case OMF_mutableCopy: 03275 case OMF_release: 03276 case OMF_retainCount: 03277 case OMF_initialize: 03278 case OMF_performSelector: 03279 break; 03280 03281 case OMF_alloc: 03282 case OMF_new: 03283 InferRelatedResultType = ObjCMethod->isClassMethod(); 03284 break; 03285 03286 case OMF_init: 03287 case OMF_autorelease: 03288 case OMF_retain: 03289 case OMF_self: 03290 InferRelatedResultType = ObjCMethod->isInstanceMethod(); 03291 break; 03292 } 03293 03294 if (InferRelatedResultType) 03295 ObjCMethod->SetRelatedResultType(); 03296 } 03297 03298 ActOnDocumentableDecl(ObjCMethod); 03299 03300 return ObjCMethod; 03301 } 03302 03303 bool Sema::CheckObjCDeclScope(Decl *D) { 03304 // Following is also an error. But it is caused by a missing @end 03305 // and diagnostic is issued elsewhere. 03306 if (isa<ObjCContainerDecl>(CurContext->getRedeclContext())) 03307 return false; 03308 03309 // If we switched context to translation unit while we are still lexically in 03310 // an objc container, it means the parser missed emitting an error. 03311 if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext())) 03312 return false; 03313 03314 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope); 03315 D->setInvalidDecl(); 03316 03317 return true; 03318 } 03319 03320 /// Called whenever \@defs(ClassName) is encountered in the source. Inserts the 03321 /// instance variables of ClassName into Decls. 03322 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart, 03323 IdentifierInfo *ClassName, 03324 SmallVectorImpl<Decl*> &Decls) { 03325 // Check that ClassName is a valid class 03326 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart); 03327 if (!Class) { 03328 Diag(DeclStart, diag::err_undef_interface) << ClassName; 03329 return; 03330 } 03331 if (LangOpts.ObjCRuntime.isNonFragile()) { 03332 Diag(DeclStart, diag::err_atdef_nonfragile_interface); 03333 return; 03334 } 03335 03336 // Collect the instance variables 03337 SmallVector<const ObjCIvarDecl*, 32> Ivars; 03338 Context.DeepCollectObjCIvars(Class, true, Ivars); 03339 // For each ivar, create a fresh ObjCAtDefsFieldDecl. 03340 for (unsigned i = 0; i < Ivars.size(); i++) { 03341 const FieldDecl* ID = cast<FieldDecl>(Ivars[i]); 03342 RecordDecl *Record = dyn_cast<RecordDecl>(TagD); 03343 Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record, 03344 /*FIXME: StartL=*/ID->getLocation(), 03345 ID->getLocation(), 03346 ID->getIdentifier(), ID->getType(), 03347 ID->getBitWidth()); 03348 Decls.push_back(FD); 03349 } 03350 03351 // Introduce all of these fields into the appropriate scope. 03352 for (SmallVectorImpl<Decl*>::iterator D = Decls.begin(); 03353 D != Decls.end(); ++D) { 03354 FieldDecl *FD = cast<FieldDecl>(*D); 03355 if (getLangOpts().CPlusPlus) 03356 PushOnScopeChains(cast<FieldDecl>(FD), S); 03357 else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD)) 03358 Record->addDecl(FD); 03359 } 03360 } 03361 03362 /// \brief Build a type-check a new Objective-C exception variable declaration. 03363 VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T, 03364 SourceLocation StartLoc, 03365 SourceLocation IdLoc, 03366 IdentifierInfo *Id, 03367 bool Invalid) { 03368 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage 03369 // duration shall not be qualified by an address-space qualifier." 03370 // Since all parameters have automatic store duration, they can not have 03371 // an address space. 03372 if (T.getAddressSpace() != 0) { 03373 Diag(IdLoc, diag::err_arg_with_address_space); 03374 Invalid = true; 03375 } 03376 03377 // An @catch parameter must be an unqualified object pointer type; 03378 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"? 03379 if (Invalid) { 03380 // Don't do any further checking. 03381 } else if (T->isDependentType()) { 03382 // Okay: we don't know what this type will instantiate to. 03383 } else if (!T->isObjCObjectPointerType()) { 03384 Invalid = true; 03385 Diag(IdLoc ,diag::err_catch_param_not_objc_type); 03386 } else if (T->isObjCQualifiedIdType()) { 03387 Invalid = true; 03388 Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm); 03389 } 03390 03391 VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id, 03392 T, TInfo, SC_None); 03393 New->setExceptionVariable(true); 03394 03395 // In ARC, infer 'retaining' for variables of retainable type. 03396 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New)) 03397 Invalid = true; 03398 03399 if (Invalid) 03400 New->setInvalidDecl(); 03401 return New; 03402 } 03403 03404 Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) { 03405 const DeclSpec &DS = D.getDeclSpec(); 03406 03407 // We allow the "register" storage class on exception variables because 03408 // GCC did, but we drop it completely. Any other storage class is an error. 03409 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { 03410 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm) 03411 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc())); 03412 } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) { 03413 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm) 03414 << DeclSpec::getSpecifierName(SCS); 03415 } 03416 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 03417 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 03418 diag::err_invalid_thread) 03419 << DeclSpec::getSpecifierName(TSCS); 03420 D.getMutableDeclSpec().ClearStorageClassSpecs(); 03421 03422 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 03423 03424 // Check that there are no default arguments inside the type of this 03425 // exception object (C++ only). 03426 if (getLangOpts().CPlusPlus) 03427 CheckExtraCXXDefaultArguments(D); 03428 03429 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 03430 QualType ExceptionType = TInfo->getType(); 03431 03432 VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType, 03433 D.getSourceRange().getBegin(), 03434 D.getIdentifierLoc(), 03435 D.getIdentifier(), 03436 D.isInvalidType()); 03437 03438 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). 03439 if (D.getCXXScopeSpec().isSet()) { 03440 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm) 03441 << D.getCXXScopeSpec().getRange(); 03442 New->setInvalidDecl(); 03443 } 03444 03445 // Add the parameter declaration into this scope. 03446 S->AddDecl(New); 03447 if (D.getIdentifier()) 03448 IdResolver.AddDecl(New); 03449 03450 ProcessDeclAttributes(S, New, D); 03451 03452 if (New->hasAttr<BlocksAttr>()) 03453 Diag(New->getLocation(), diag::err_block_on_nonlocal); 03454 return New; 03455 } 03456 03457 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require 03458 /// initialization. 03459 void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI, 03460 SmallVectorImpl<ObjCIvarDecl*> &Ivars) { 03461 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv; 03462 Iv= Iv->getNextIvar()) { 03463 QualType QT = Context.getBaseElementType(Iv->getType()); 03464 if (QT->isRecordType()) 03465 Ivars.push_back(Iv); 03466 } 03467 } 03468 03469 void Sema::DiagnoseUseOfUnimplementedSelectors() { 03470 // Load referenced selectors from the external source. 03471 if (ExternalSource) { 03472 SmallVector<std::pair<Selector, SourceLocation>, 4> Sels; 03473 ExternalSource->ReadReferencedSelectors(Sels); 03474 for (unsigned I = 0, N = Sels.size(); I != N; ++I) 03475 ReferencedSelectors[Sels[I].first] = Sels[I].second; 03476 } 03477 03478 // Warning will be issued only when selector table is 03479 // generated (which means there is at lease one implementation 03480 // in the TU). This is to match gcc's behavior. 03481 if (ReferencedSelectors.empty() || 03482 !Context.AnyObjCImplementation()) 03483 return; 03484 for (llvm::DenseMap<Selector, SourceLocation>::iterator S = 03485 ReferencedSelectors.begin(), 03486 E = ReferencedSelectors.end(); S != E; ++S) { 03487 Selector Sel = (*S).first; 03488 if (!LookupImplementedMethodInGlobalPool(Sel)) 03489 Diag((*S).second, diag::warn_unimplemented_selector) << Sel; 03490 } 03491 return; 03492 } 03493 03494 ObjCIvarDecl * 03495 Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method, 03496 const ObjCPropertyDecl *&PDecl) const { 03497 if (Method->isClassMethod()) 03498 return nullptr; 03499 const ObjCInterfaceDecl *IDecl = Method->getClassInterface(); 03500 if (!IDecl) 03501 return nullptr; 03502 Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true, 03503 /*shallowCategoryLookup=*/false, 03504 /*followSuper=*/false); 03505 if (!Method || !Method->isPropertyAccessor()) 03506 return nullptr; 03507 if ((PDecl = Method->findPropertyDecl())) 03508 if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) { 03509 // property backing ivar must belong to property's class 03510 // or be a private ivar in class's implementation. 03511 // FIXME. fix the const-ness issue. 03512 IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable( 03513 IV->getIdentifier()); 03514 return IV; 03515 } 03516 return nullptr; 03517 } 03518 03519 namespace { 03520 /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property 03521 /// accessor references the backing ivar. 03522 class UnusedBackingIvarChecker : 03523 public DataRecursiveASTVisitor<UnusedBackingIvarChecker> { 03524 public: 03525 Sema &S; 03526 const ObjCMethodDecl *Method; 03527 const ObjCIvarDecl *IvarD; 03528 bool AccessedIvar; 03529 bool InvokedSelfMethod; 03530 03531 UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method, 03532 const ObjCIvarDecl *IvarD) 03533 : S(S), Method(Method), IvarD(IvarD), 03534 AccessedIvar(false), InvokedSelfMethod(false) { 03535 assert(IvarD); 03536 } 03537 03538 bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 03539 if (E->getDecl() == IvarD) { 03540 AccessedIvar = true; 03541 return false; 03542 } 03543 return true; 03544 } 03545 03546 bool VisitObjCMessageExpr(ObjCMessageExpr *E) { 03547 if (E->getReceiverKind() == ObjCMessageExpr::Instance && 03548 S.isSelfExpr(E->getInstanceReceiver(), Method)) { 03549 InvokedSelfMethod = true; 03550 } 03551 return true; 03552 } 03553 }; 03554 } 03555 03556 void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S, 03557 const ObjCImplementationDecl *ImplD) { 03558 if (S->hasUnrecoverableErrorOccurred()) 03559 return; 03560 03561 for (const auto *CurMethod : ImplD->instance_methods()) { 03562 unsigned DIAG = diag::warn_unused_property_backing_ivar; 03563 SourceLocation Loc = CurMethod->getLocation(); 03564 if (Diags.isIgnored(DIAG, Loc)) 03565 continue; 03566 03567 const ObjCPropertyDecl *PDecl; 03568 const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl); 03569 if (!IV) 03570 continue; 03571 03572 UnusedBackingIvarChecker Checker(*this, CurMethod, IV); 03573 Checker.TraverseStmt(CurMethod->getBody()); 03574 if (Checker.AccessedIvar) 03575 continue; 03576 03577 // Do not issue this warning if backing ivar is used somewhere and accessor 03578 // implementation makes a self call. This is to prevent false positive in 03579 // cases where the ivar is accessed by another method that the accessor 03580 // delegates to. 03581 if (!IV->isReferenced() || !Checker.InvokedSelfMethod) { 03582 Diag(Loc, DIAG) << IV; 03583 Diag(PDecl->getLocation(), diag::note_property_declare); 03584 } 03585 } 03586 }