clang API Documentation
00001 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 /// 00010 /// \file 00011 /// \brief Implements semantic analysis for C++ expressions. 00012 /// 00013 //===----------------------------------------------------------------------===// 00014 00015 #include "clang/Sema/SemaInternal.h" 00016 #include "TreeTransform.h" 00017 #include "TypeLocBuilder.h" 00018 #include "clang/AST/ASTContext.h" 00019 #include "clang/AST/ASTLambda.h" 00020 #include "clang/AST/CXXInheritance.h" 00021 #include "clang/AST/CharUnits.h" 00022 #include "clang/AST/DeclObjC.h" 00023 #include "clang/AST/EvaluatedExprVisitor.h" 00024 #include "clang/AST/ExprCXX.h" 00025 #include "clang/AST/ExprObjC.h" 00026 #include "clang/AST/RecursiveASTVisitor.h" 00027 #include "clang/AST/TypeLoc.h" 00028 #include "clang/Basic/PartialDiagnostic.h" 00029 #include "clang/Basic/TargetInfo.h" 00030 #include "clang/Lex/Preprocessor.h" 00031 #include "clang/Sema/DeclSpec.h" 00032 #include "clang/Sema/Initialization.h" 00033 #include "clang/Sema/Lookup.h" 00034 #include "clang/Sema/ParsedTemplate.h" 00035 #include "clang/Sema/Scope.h" 00036 #include "clang/Sema/ScopeInfo.h" 00037 #include "clang/Sema/SemaLambda.h" 00038 #include "clang/Sema/TemplateDeduction.h" 00039 #include "llvm/ADT/APInt.h" 00040 #include "llvm/ADT/STLExtras.h" 00041 #include "llvm/Support/ErrorHandling.h" 00042 using namespace clang; 00043 using namespace sema; 00044 00045 /// \brief Handle the result of the special case name lookup for inheriting 00046 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as 00047 /// constructor names in member using declarations, even if 'X' is not the 00048 /// name of the corresponding type. 00049 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS, 00050 SourceLocation NameLoc, 00051 IdentifierInfo &Name) { 00052 NestedNameSpecifier *NNS = SS.getScopeRep(); 00053 00054 // Convert the nested-name-specifier into a type. 00055 QualType Type; 00056 switch (NNS->getKind()) { 00057 case NestedNameSpecifier::TypeSpec: 00058 case NestedNameSpecifier::TypeSpecWithTemplate: 00059 Type = QualType(NNS->getAsType(), 0); 00060 break; 00061 00062 case NestedNameSpecifier::Identifier: 00063 // Strip off the last layer of the nested-name-specifier and build a 00064 // typename type for it. 00065 assert(NNS->getAsIdentifier() == &Name && "not a constructor name"); 00066 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(), 00067 NNS->getAsIdentifier()); 00068 break; 00069 00070 case NestedNameSpecifier::Global: 00071 case NestedNameSpecifier::Super: 00072 case NestedNameSpecifier::Namespace: 00073 case NestedNameSpecifier::NamespaceAlias: 00074 llvm_unreachable("Nested name specifier is not a type for inheriting ctor"); 00075 } 00076 00077 // This reference to the type is located entirely at the location of the 00078 // final identifier in the qualified-id. 00079 return CreateParsedType(Type, 00080 Context.getTrivialTypeSourceInfo(Type, NameLoc)); 00081 } 00082 00083 ParsedType Sema::getDestructorName(SourceLocation TildeLoc, 00084 IdentifierInfo &II, 00085 SourceLocation NameLoc, 00086 Scope *S, CXXScopeSpec &SS, 00087 ParsedType ObjectTypePtr, 00088 bool EnteringContext) { 00089 // Determine where to perform name lookup. 00090 00091 // FIXME: This area of the standard is very messy, and the current 00092 // wording is rather unclear about which scopes we search for the 00093 // destructor name; see core issues 399 and 555. Issue 399 in 00094 // particular shows where the current description of destructor name 00095 // lookup is completely out of line with existing practice, e.g., 00096 // this appears to be ill-formed: 00097 // 00098 // namespace N { 00099 // template <typename T> struct S { 00100 // ~S(); 00101 // }; 00102 // } 00103 // 00104 // void f(N::S<int>* s) { 00105 // s->N::S<int>::~S(); 00106 // } 00107 // 00108 // See also PR6358 and PR6359. 00109 // For this reason, we're currently only doing the C++03 version of this 00110 // code; the C++0x version has to wait until we get a proper spec. 00111 QualType SearchType; 00112 DeclContext *LookupCtx = nullptr; 00113 bool isDependent = false; 00114 bool LookInScope = false; 00115 00116 // If we have an object type, it's because we are in a 00117 // pseudo-destructor-expression or a member access expression, and 00118 // we know what type we're looking for. 00119 if (ObjectTypePtr) 00120 SearchType = GetTypeFromParser(ObjectTypePtr); 00121 00122 if (SS.isSet()) { 00123 NestedNameSpecifier *NNS = SS.getScopeRep(); 00124 00125 bool AlreadySearched = false; 00126 bool LookAtPrefix = true; 00127 // C++11 [basic.lookup.qual]p6: 00128 // If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier, 00129 // the type-names are looked up as types in the scope designated by the 00130 // nested-name-specifier. Similarly, in a qualified-id of the form: 00131 // 00132 // nested-name-specifier[opt] class-name :: ~ class-name 00133 // 00134 // the second class-name is looked up in the same scope as the first. 00135 // 00136 // Here, we determine whether the code below is permitted to look at the 00137 // prefix of the nested-name-specifier. 00138 DeclContext *DC = computeDeclContext(SS, EnteringContext); 00139 if (DC && DC->isFileContext()) { 00140 AlreadySearched = true; 00141 LookupCtx = DC; 00142 isDependent = false; 00143 } else if (DC && isa<CXXRecordDecl>(DC)) { 00144 LookAtPrefix = false; 00145 LookInScope = true; 00146 } 00147 00148 // The second case from the C++03 rules quoted further above. 00149 NestedNameSpecifier *Prefix = nullptr; 00150 if (AlreadySearched) { 00151 // Nothing left to do. 00152 } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) { 00153 CXXScopeSpec PrefixSS; 00154 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data())); 00155 LookupCtx = computeDeclContext(PrefixSS, EnteringContext); 00156 isDependent = isDependentScopeSpecifier(PrefixSS); 00157 } else if (ObjectTypePtr) { 00158 LookupCtx = computeDeclContext(SearchType); 00159 isDependent = SearchType->isDependentType(); 00160 } else { 00161 LookupCtx = computeDeclContext(SS, EnteringContext); 00162 isDependent = LookupCtx && LookupCtx->isDependentContext(); 00163 } 00164 } else if (ObjectTypePtr) { 00165 // C++ [basic.lookup.classref]p3: 00166 // If the unqualified-id is ~type-name, the type-name is looked up 00167 // in the context of the entire postfix-expression. If the type T 00168 // of the object expression is of a class type C, the type-name is 00169 // also looked up in the scope of class C. At least one of the 00170 // lookups shall find a name that refers to (possibly 00171 // cv-qualified) T. 00172 LookupCtx = computeDeclContext(SearchType); 00173 isDependent = SearchType->isDependentType(); 00174 assert((isDependent || !SearchType->isIncompleteType()) && 00175 "Caller should have completed object type"); 00176 00177 LookInScope = true; 00178 } else { 00179 // Perform lookup into the current scope (only). 00180 LookInScope = true; 00181 } 00182 00183 TypeDecl *NonMatchingTypeDecl = nullptr; 00184 LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName); 00185 for (unsigned Step = 0; Step != 2; ++Step) { 00186 // Look for the name first in the computed lookup context (if we 00187 // have one) and, if that fails to find a match, in the scope (if 00188 // we're allowed to look there). 00189 Found.clear(); 00190 if (Step == 0 && LookupCtx) 00191 LookupQualifiedName(Found, LookupCtx); 00192 else if (Step == 1 && LookInScope && S) 00193 LookupName(Found, S); 00194 else 00195 continue; 00196 00197 // FIXME: Should we be suppressing ambiguities here? 00198 if (Found.isAmbiguous()) 00199 return ParsedType(); 00200 00201 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) { 00202 QualType T = Context.getTypeDeclType(Type); 00203 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 00204 00205 if (SearchType.isNull() || SearchType->isDependentType() || 00206 Context.hasSameUnqualifiedType(T, SearchType)) { 00207 // We found our type! 00208 00209 return CreateParsedType(T, 00210 Context.getTrivialTypeSourceInfo(T, NameLoc)); 00211 } 00212 00213 if (!SearchType.isNull()) 00214 NonMatchingTypeDecl = Type; 00215 } 00216 00217 // If the name that we found is a class template name, and it is 00218 // the same name as the template name in the last part of the 00219 // nested-name-specifier (if present) or the object type, then 00220 // this is the destructor for that class. 00221 // FIXME: This is a workaround until we get real drafting for core 00222 // issue 399, for which there isn't even an obvious direction. 00223 if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) { 00224 QualType MemberOfType; 00225 if (SS.isSet()) { 00226 if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) { 00227 // Figure out the type of the context, if it has one. 00228 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) 00229 MemberOfType = Context.getTypeDeclType(Record); 00230 } 00231 } 00232 if (MemberOfType.isNull()) 00233 MemberOfType = SearchType; 00234 00235 if (MemberOfType.isNull()) 00236 continue; 00237 00238 // We're referring into a class template specialization. If the 00239 // class template we found is the same as the template being 00240 // specialized, we found what we are looking for. 00241 if (const RecordType *Record = MemberOfType->getAs<RecordType>()) { 00242 if (ClassTemplateSpecializationDecl *Spec 00243 = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) { 00244 if (Spec->getSpecializedTemplate()->getCanonicalDecl() == 00245 Template->getCanonicalDecl()) 00246 return CreateParsedType( 00247 MemberOfType, 00248 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc)); 00249 } 00250 00251 continue; 00252 } 00253 00254 // We're referring to an unresolved class template 00255 // specialization. Determine whether we class template we found 00256 // is the same as the template being specialized or, if we don't 00257 // know which template is being specialized, that it at least 00258 // has the same name. 00259 if (const TemplateSpecializationType *SpecType 00260 = MemberOfType->getAs<TemplateSpecializationType>()) { 00261 TemplateName SpecName = SpecType->getTemplateName(); 00262 00263 // The class template we found is the same template being 00264 // specialized. 00265 if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) { 00266 if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl()) 00267 return CreateParsedType( 00268 MemberOfType, 00269 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc)); 00270 00271 continue; 00272 } 00273 00274 // The class template we found has the same name as the 00275 // (dependent) template name being specialized. 00276 if (DependentTemplateName *DepTemplate 00277 = SpecName.getAsDependentTemplateName()) { 00278 if (DepTemplate->isIdentifier() && 00279 DepTemplate->getIdentifier() == Template->getIdentifier()) 00280 return CreateParsedType( 00281 MemberOfType, 00282 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc)); 00283 00284 continue; 00285 } 00286 } 00287 } 00288 } 00289 00290 if (isDependent) { 00291 // We didn't find our type, but that's okay: it's dependent 00292 // anyway. 00293 00294 // FIXME: What if we have no nested-name-specifier? 00295 QualType T = CheckTypenameType(ETK_None, SourceLocation(), 00296 SS.getWithLocInContext(Context), 00297 II, NameLoc); 00298 return ParsedType::make(T); 00299 } 00300 00301 if (NonMatchingTypeDecl) { 00302 QualType T = Context.getTypeDeclType(NonMatchingTypeDecl); 00303 Diag(NameLoc, diag::err_destructor_expr_type_mismatch) 00304 << T << SearchType; 00305 Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here) 00306 << T; 00307 } else if (ObjectTypePtr) 00308 Diag(NameLoc, diag::err_ident_in_dtor_not_a_type) 00309 << &II; 00310 else { 00311 SemaDiagnosticBuilder DtorDiag = Diag(NameLoc, 00312 diag::err_destructor_class_name); 00313 if (S) { 00314 const DeclContext *Ctx = S->getEntity(); 00315 if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx)) 00316 DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc), 00317 Class->getNameAsString()); 00318 } 00319 } 00320 00321 return ParsedType(); 00322 } 00323 00324 ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) { 00325 if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType) 00326 return ParsedType(); 00327 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype 00328 && "only get destructor types from declspecs"); 00329 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc()); 00330 QualType SearchType = GetTypeFromParser(ObjectType); 00331 if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) { 00332 return ParsedType::make(T); 00333 } 00334 00335 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch) 00336 << T << SearchType; 00337 return ParsedType(); 00338 } 00339 00340 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS, 00341 const UnqualifiedId &Name) { 00342 assert(Name.getKind() == UnqualifiedId::IK_LiteralOperatorId); 00343 00344 if (!SS.isValid()) 00345 return false; 00346 00347 switch (SS.getScopeRep()->getKind()) { 00348 case NestedNameSpecifier::Identifier: 00349 case NestedNameSpecifier::TypeSpec: 00350 case NestedNameSpecifier::TypeSpecWithTemplate: 00351 // Per C++11 [over.literal]p2, literal operators can only be declared at 00352 // namespace scope. Therefore, this unqualified-id cannot name anything. 00353 // Reject it early, because we have no AST representation for this in the 00354 // case where the scope is dependent. 00355 Diag(Name.getLocStart(), diag::err_literal_operator_id_outside_namespace) 00356 << SS.getScopeRep(); 00357 return true; 00358 00359 case NestedNameSpecifier::Global: 00360 case NestedNameSpecifier::Super: 00361 case NestedNameSpecifier::Namespace: 00362 case NestedNameSpecifier::NamespaceAlias: 00363 return false; 00364 } 00365 00366 llvm_unreachable("unknown nested name specifier kind"); 00367 } 00368 00369 /// \brief Build a C++ typeid expression with a type operand. 00370 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, 00371 SourceLocation TypeidLoc, 00372 TypeSourceInfo *Operand, 00373 SourceLocation RParenLoc) { 00374 // C++ [expr.typeid]p4: 00375 // The top-level cv-qualifiers of the lvalue expression or the type-id 00376 // that is the operand of typeid are always ignored. 00377 // If the type of the type-id is a class type or a reference to a class 00378 // type, the class shall be completely-defined. 00379 Qualifiers Quals; 00380 QualType T 00381 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(), 00382 Quals); 00383 if (T->getAs<RecordType>() && 00384 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) 00385 return ExprError(); 00386 00387 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand, 00388 SourceRange(TypeidLoc, RParenLoc)); 00389 } 00390 00391 /// \brief Build a C++ typeid expression with an expression operand. 00392 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, 00393 SourceLocation TypeidLoc, 00394 Expr *E, 00395 SourceLocation RParenLoc) { 00396 if (E && !E->isTypeDependent()) { 00397 if (E->getType()->isPlaceholderType()) { 00398 ExprResult result = CheckPlaceholderExpr(E); 00399 if (result.isInvalid()) return ExprError(); 00400 E = result.get(); 00401 } 00402 00403 QualType T = E->getType(); 00404 if (const RecordType *RecordT = T->getAs<RecordType>()) { 00405 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl()); 00406 // C++ [expr.typeid]p3: 00407 // [...] If the type of the expression is a class type, the class 00408 // shall be completely-defined. 00409 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) 00410 return ExprError(); 00411 00412 // C++ [expr.typeid]p3: 00413 // When typeid is applied to an expression other than an glvalue of a 00414 // polymorphic class type [...] [the] expression is an unevaluated 00415 // operand. [...] 00416 if (RecordD->isPolymorphic() && E->isGLValue()) { 00417 // The subexpression is potentially evaluated; switch the context 00418 // and recheck the subexpression. 00419 ExprResult Result = TransformToPotentiallyEvaluated(E); 00420 if (Result.isInvalid()) return ExprError(); 00421 E = Result.get(); 00422 00423 // We require a vtable to query the type at run time. 00424 MarkVTableUsed(TypeidLoc, RecordD); 00425 } 00426 } 00427 00428 // C++ [expr.typeid]p4: 00429 // [...] If the type of the type-id is a reference to a possibly 00430 // cv-qualified type, the result of the typeid expression refers to a 00431 // std::type_info object representing the cv-unqualified referenced 00432 // type. 00433 Qualifiers Quals; 00434 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals); 00435 if (!Context.hasSameType(T, UnqualT)) { 00436 T = UnqualT; 00437 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get(); 00438 } 00439 } 00440 00441 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E, 00442 SourceRange(TypeidLoc, RParenLoc)); 00443 } 00444 00445 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression); 00446 ExprResult 00447 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, 00448 bool isType, void *TyOrExpr, SourceLocation RParenLoc) { 00449 // Find the std::type_info type. 00450 if (!getStdNamespace()) 00451 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); 00452 00453 if (!CXXTypeInfoDecl) { 00454 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info"); 00455 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName); 00456 LookupQualifiedName(R, getStdNamespace()); 00457 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); 00458 // Microsoft's typeinfo doesn't have type_info in std but in the global 00459 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153. 00460 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) { 00461 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 00462 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); 00463 } 00464 if (!CXXTypeInfoDecl) 00465 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); 00466 } 00467 00468 if (!getLangOpts().RTTI) { 00469 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti)); 00470 } 00471 00472 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl); 00473 00474 if (isType) { 00475 // The operand is a type; handle it as such. 00476 TypeSourceInfo *TInfo = nullptr; 00477 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), 00478 &TInfo); 00479 if (T.isNull()) 00480 return ExprError(); 00481 00482 if (!TInfo) 00483 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); 00484 00485 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc); 00486 } 00487 00488 // The operand is an expression. 00489 return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc); 00490 } 00491 00492 /// \brief Build a Microsoft __uuidof expression with a type operand. 00493 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType, 00494 SourceLocation TypeidLoc, 00495 TypeSourceInfo *Operand, 00496 SourceLocation RParenLoc) { 00497 if (!Operand->getType()->isDependentType()) { 00498 bool HasMultipleGUIDs = false; 00499 if (!CXXUuidofExpr::GetUuidAttrOfType(Operand->getType(), 00500 &HasMultipleGUIDs)) { 00501 if (HasMultipleGUIDs) 00502 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); 00503 else 00504 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); 00505 } 00506 } 00507 00508 return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), Operand, 00509 SourceRange(TypeidLoc, RParenLoc)); 00510 } 00511 00512 /// \brief Build a Microsoft __uuidof expression with an expression operand. 00513 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType, 00514 SourceLocation TypeidLoc, 00515 Expr *E, 00516 SourceLocation RParenLoc) { 00517 if (!E->getType()->isDependentType()) { 00518 bool HasMultipleGUIDs = false; 00519 if (!CXXUuidofExpr::GetUuidAttrOfType(E->getType(), &HasMultipleGUIDs) && 00520 !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 00521 if (HasMultipleGUIDs) 00522 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); 00523 else 00524 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); 00525 } 00526 } 00527 00528 return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), E, 00529 SourceRange(TypeidLoc, RParenLoc)); 00530 } 00531 00532 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression); 00533 ExprResult 00534 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc, 00535 bool isType, void *TyOrExpr, SourceLocation RParenLoc) { 00536 // If MSVCGuidDecl has not been cached, do the lookup. 00537 if (!MSVCGuidDecl) { 00538 IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID"); 00539 LookupResult R(*this, GuidII, SourceLocation(), LookupTagName); 00540 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 00541 MSVCGuidDecl = R.getAsSingle<RecordDecl>(); 00542 if (!MSVCGuidDecl) 00543 return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof)); 00544 } 00545 00546 QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl); 00547 00548 if (isType) { 00549 // The operand is a type; handle it as such. 00550 TypeSourceInfo *TInfo = nullptr; 00551 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), 00552 &TInfo); 00553 if (T.isNull()) 00554 return ExprError(); 00555 00556 if (!TInfo) 00557 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); 00558 00559 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc); 00560 } 00561 00562 // The operand is an expression. 00563 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc); 00564 } 00565 00566 /// ActOnCXXBoolLiteral - Parse {true,false} literals. 00567 ExprResult 00568 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { 00569 assert((Kind == tok::kw_true || Kind == tok::kw_false) && 00570 "Unknown C++ Boolean value!"); 00571 return new (Context) 00572 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc); 00573 } 00574 00575 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'. 00576 ExprResult 00577 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) { 00578 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); 00579 } 00580 00581 /// ActOnCXXThrow - Parse throw expressions. 00582 ExprResult 00583 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) { 00584 bool IsThrownVarInScope = false; 00585 if (Ex) { 00586 // C++0x [class.copymove]p31: 00587 // When certain criteria are met, an implementation is allowed to omit the 00588 // copy/move construction of a class object [...] 00589 // 00590 // - in a throw-expression, when the operand is the name of a 00591 // non-volatile automatic object (other than a function or catch- 00592 // clause parameter) whose scope does not extend beyond the end of the 00593 // innermost enclosing try-block (if there is one), the copy/move 00594 // operation from the operand to the exception object (15.1) can be 00595 // omitted by constructing the automatic object directly into the 00596 // exception object 00597 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens())) 00598 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 00599 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) { 00600 for( ; S; S = S->getParent()) { 00601 if (S->isDeclScope(Var)) { 00602 IsThrownVarInScope = true; 00603 break; 00604 } 00605 00606 if (S->getFlags() & 00607 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope | 00608 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope | 00609 Scope::TryScope)) 00610 break; 00611 } 00612 } 00613 } 00614 } 00615 00616 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope); 00617 } 00618 00619 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex, 00620 bool IsThrownVarInScope) { 00621 // Don't report an error if 'throw' is used in system headers. 00622 if (!getLangOpts().CXXExceptions && 00623 !getSourceManager().isInSystemHeader(OpLoc)) 00624 Diag(OpLoc, diag::err_exceptions_disabled) << "throw"; 00625 00626 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope()) 00627 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw"; 00628 00629 if (Ex && !Ex->isTypeDependent()) { 00630 ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope); 00631 if (ExRes.isInvalid()) 00632 return ExprError(); 00633 Ex = ExRes.get(); 00634 } 00635 00636 return new (Context) 00637 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope); 00638 } 00639 00640 /// CheckCXXThrowOperand - Validate the operand of a throw. 00641 ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E, 00642 bool IsThrownVarInScope) { 00643 // C++ [except.throw]p3: 00644 // A throw-expression initializes a temporary object, called the exception 00645 // object, the type of which is determined by removing any top-level 00646 // cv-qualifiers from the static type of the operand of throw and adjusting 00647 // the type from "array of T" or "function returning T" to "pointer to T" 00648 // or "pointer to function returning T", [...] 00649 if (E->getType().hasQualifiers()) 00650 E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp, 00651 E->getValueKind()).get(); 00652 00653 ExprResult Res = DefaultFunctionArrayConversion(E); 00654 if (Res.isInvalid()) 00655 return ExprError(); 00656 E = Res.get(); 00657 00658 // If the type of the exception would be an incomplete type or a pointer 00659 // to an incomplete type other than (cv) void the program is ill-formed. 00660 QualType Ty = E->getType(); 00661 bool isPointer = false; 00662 if (const PointerType* Ptr = Ty->getAs<PointerType>()) { 00663 Ty = Ptr->getPointeeType(); 00664 isPointer = true; 00665 } 00666 if (!isPointer || !Ty->isVoidType()) { 00667 if (RequireCompleteType(ThrowLoc, Ty, 00668 isPointer? diag::err_throw_incomplete_ptr 00669 : diag::err_throw_incomplete, 00670 E->getSourceRange())) 00671 return ExprError(); 00672 00673 if (RequireNonAbstractType(ThrowLoc, E->getType(), 00674 diag::err_throw_abstract_type, E)) 00675 return ExprError(); 00676 } 00677 00678 // Initialize the exception result. This implicitly weeds out 00679 // abstract types or types with inaccessible copy constructors. 00680 00681 // C++0x [class.copymove]p31: 00682 // When certain criteria are met, an implementation is allowed to omit the 00683 // copy/move construction of a class object [...] 00684 // 00685 // - in a throw-expression, when the operand is the name of a 00686 // non-volatile automatic object (other than a function or catch-clause 00687 // parameter) whose scope does not extend beyond the end of the 00688 // innermost enclosing try-block (if there is one), the copy/move 00689 // operation from the operand to the exception object (15.1) can be 00690 // omitted by constructing the automatic object directly into the 00691 // exception object 00692 const VarDecl *NRVOVariable = nullptr; 00693 if (IsThrownVarInScope) 00694 NRVOVariable = getCopyElisionCandidate(QualType(), E, false); 00695 00696 InitializedEntity Entity = 00697 InitializedEntity::InitializeException(ThrowLoc, E->getType(), 00698 /*NRVO=*/NRVOVariable != nullptr); 00699 Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable, 00700 QualType(), E, 00701 IsThrownVarInScope); 00702 if (Res.isInvalid()) 00703 return ExprError(); 00704 E = Res.get(); 00705 00706 // If the exception has class type, we need additional handling. 00707 const RecordType *RecordTy = Ty->getAs<RecordType>(); 00708 if (!RecordTy) 00709 return E; 00710 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl()); 00711 00712 // If we are throwing a polymorphic class type or pointer thereof, 00713 // exception handling will make use of the vtable. 00714 MarkVTableUsed(ThrowLoc, RD); 00715 00716 // If a pointer is thrown, the referenced object will not be destroyed. 00717 if (isPointer) 00718 return E; 00719 00720 // If the class has a destructor, we must be able to call it. 00721 if (RD->hasIrrelevantDestructor()) 00722 return E; 00723 00724 CXXDestructorDecl *Destructor = LookupDestructor(RD); 00725 if (!Destructor) 00726 return E; 00727 00728 MarkFunctionReferenced(E->getExprLoc(), Destructor); 00729 CheckDestructorAccess(E->getExprLoc(), Destructor, 00730 PDiag(diag::err_access_dtor_exception) << Ty); 00731 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) 00732 return ExprError(); 00733 return E; 00734 } 00735 00736 QualType Sema::getCurrentThisType() { 00737 DeclContext *DC = getFunctionLevelDeclContext(); 00738 QualType ThisTy = CXXThisTypeOverride; 00739 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) { 00740 if (method && method->isInstance()) 00741 ThisTy = method->getThisType(Context); 00742 } 00743 if (ThisTy.isNull()) { 00744 if (isGenericLambdaCallOperatorSpecialization(CurContext) && 00745 CurContext->getParent()->getParent()->isRecord()) { 00746 // This is a generic lambda call operator that is being instantiated 00747 // within a default initializer - so use the enclosing class as 'this'. 00748 // There is no enclosing member function to retrieve the 'this' pointer 00749 // from. 00750 QualType ClassTy = Context.getTypeDeclType( 00751 cast<CXXRecordDecl>(CurContext->getParent()->getParent())); 00752 // There are no cv-qualifiers for 'this' within default initializers, 00753 // per [expr.prim.general]p4. 00754 return Context.getPointerType(ClassTy); 00755 } 00756 } 00757 return ThisTy; 00758 } 00759 00760 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S, 00761 Decl *ContextDecl, 00762 unsigned CXXThisTypeQuals, 00763 bool Enabled) 00764 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false) 00765 { 00766 if (!Enabled || !ContextDecl) 00767 return; 00768 00769 CXXRecordDecl *Record = nullptr; 00770 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl)) 00771 Record = Template->getTemplatedDecl(); 00772 else 00773 Record = cast<CXXRecordDecl>(ContextDecl); 00774 00775 S.CXXThisTypeOverride 00776 = S.Context.getPointerType( 00777 S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals)); 00778 00779 this->Enabled = true; 00780 } 00781 00782 00783 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() { 00784 if (Enabled) { 00785 S.CXXThisTypeOverride = OldCXXThisTypeOverride; 00786 } 00787 } 00788 00789 static Expr *captureThis(ASTContext &Context, RecordDecl *RD, 00790 QualType ThisTy, SourceLocation Loc) { 00791 FieldDecl *Field 00792 = FieldDecl::Create(Context, RD, Loc, Loc, nullptr, ThisTy, 00793 Context.getTrivialTypeSourceInfo(ThisTy, Loc), 00794 nullptr, false, ICIS_NoInit); 00795 Field->setImplicit(true); 00796 Field->setAccess(AS_private); 00797 RD->addDecl(Field); 00798 return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit*/true); 00799 } 00800 00801 bool Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit, 00802 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt) { 00803 // We don't need to capture this in an unevaluated context. 00804 if (isUnevaluatedContext() && !Explicit) 00805 return true; 00806 00807 const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt ? 00808 *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1; 00809 // Otherwise, check that we can capture 'this'. 00810 unsigned NumClosures = 0; 00811 for (unsigned idx = MaxFunctionScopesIndex; idx != 0; idx--) { 00812 if (CapturingScopeInfo *CSI = 00813 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) { 00814 if (CSI->CXXThisCaptureIndex != 0) { 00815 // 'this' is already being captured; there isn't anything more to do. 00816 break; 00817 } 00818 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI); 00819 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) { 00820 // This context can't implicitly capture 'this'; fail out. 00821 if (BuildAndDiagnose) 00822 Diag(Loc, diag::err_this_capture) << Explicit; 00823 return true; 00824 } 00825 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref || 00826 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval || 00827 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block || 00828 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion || 00829 Explicit) { 00830 // This closure can capture 'this'; continue looking upwards. 00831 NumClosures++; 00832 Explicit = false; 00833 continue; 00834 } 00835 // This context can't implicitly capture 'this'; fail out. 00836 if (BuildAndDiagnose) 00837 Diag(Loc, diag::err_this_capture) << Explicit; 00838 return true; 00839 } 00840 break; 00841 } 00842 if (!BuildAndDiagnose) return false; 00843 // Mark that we're implicitly capturing 'this' in all the scopes we skipped. 00844 // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated 00845 // contexts. 00846 for (unsigned idx = MaxFunctionScopesIndex; NumClosures; 00847 --idx, --NumClosures) { 00848 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]); 00849 Expr *ThisExpr = nullptr; 00850 QualType ThisTy = getCurrentThisType(); 00851 if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) 00852 // For lambda expressions, build a field and an initializing expression. 00853 ThisExpr = captureThis(Context, LSI->Lambda, ThisTy, Loc); 00854 else if (CapturedRegionScopeInfo *RSI 00855 = dyn_cast<CapturedRegionScopeInfo>(FunctionScopes[idx])) 00856 ThisExpr = captureThis(Context, RSI->TheRecordDecl, ThisTy, Loc); 00857 00858 bool isNested = NumClosures > 1; 00859 CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr); 00860 } 00861 return false; 00862 } 00863 00864 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) { 00865 /// C++ 9.3.2: In the body of a non-static member function, the keyword this 00866 /// is a non-lvalue expression whose value is the address of the object for 00867 /// which the function is called. 00868 00869 QualType ThisTy = getCurrentThisType(); 00870 if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use); 00871 00872 CheckCXXThisCapture(Loc); 00873 return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false); 00874 } 00875 00876 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) { 00877 // If we're outside the body of a member function, then we'll have a specified 00878 // type for 'this'. 00879 if (CXXThisTypeOverride.isNull()) 00880 return false; 00881 00882 // Determine whether we're looking into a class that's currently being 00883 // defined. 00884 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl(); 00885 return Class && Class->isBeingDefined(); 00886 } 00887 00888 ExprResult 00889 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep, 00890 SourceLocation LParenLoc, 00891 MultiExprArg exprs, 00892 SourceLocation RParenLoc) { 00893 if (!TypeRep) 00894 return ExprError(); 00895 00896 TypeSourceInfo *TInfo; 00897 QualType Ty = GetTypeFromParser(TypeRep, &TInfo); 00898 if (!TInfo) 00899 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation()); 00900 00901 return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc); 00902 } 00903 00904 /// ActOnCXXTypeConstructExpr - Parse construction of a specified type. 00905 /// Can be interpreted either as function-style casting ("int(x)") 00906 /// or class type construction ("ClassType(x,y,z)") 00907 /// or creation of a value-initialized type ("int()"). 00908 ExprResult 00909 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo, 00910 SourceLocation LParenLoc, 00911 MultiExprArg Exprs, 00912 SourceLocation RParenLoc) { 00913 QualType Ty = TInfo->getType(); 00914 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc(); 00915 00916 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) { 00917 return CXXUnresolvedConstructExpr::Create(Context, TInfo, LParenLoc, Exprs, 00918 RParenLoc); 00919 } 00920 00921 bool ListInitialization = LParenLoc.isInvalid(); 00922 assert((!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) 00923 && "List initialization must have initializer list as expression."); 00924 SourceRange FullRange = SourceRange(TyBeginLoc, 00925 ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc); 00926 00927 // C++ [expr.type.conv]p1: 00928 // If the expression list is a single expression, the type conversion 00929 // expression is equivalent (in definedness, and if defined in meaning) to the 00930 // corresponding cast expression. 00931 if (Exprs.size() == 1 && !ListInitialization) { 00932 Expr *Arg = Exprs[0]; 00933 return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc); 00934 } 00935 00936 QualType ElemTy = Ty; 00937 if (Ty->isArrayType()) { 00938 if (!ListInitialization) 00939 return ExprError(Diag(TyBeginLoc, 00940 diag::err_value_init_for_array_type) << FullRange); 00941 ElemTy = Context.getBaseElementType(Ty); 00942 } 00943 00944 if (!Ty->isVoidType() && 00945 RequireCompleteType(TyBeginLoc, ElemTy, 00946 diag::err_invalid_incomplete_type_use, FullRange)) 00947 return ExprError(); 00948 00949 if (RequireNonAbstractType(TyBeginLoc, Ty, 00950 diag::err_allocation_of_abstract_type)) 00951 return ExprError(); 00952 00953 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo); 00954 InitializationKind Kind = 00955 Exprs.size() ? ListInitialization 00956 ? InitializationKind::CreateDirectList(TyBeginLoc) 00957 : InitializationKind::CreateDirect(TyBeginLoc, LParenLoc, RParenLoc) 00958 : InitializationKind::CreateValue(TyBeginLoc, LParenLoc, RParenLoc); 00959 InitializationSequence InitSeq(*this, Entity, Kind, Exprs); 00960 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs); 00961 00962 if (Result.isInvalid() || !ListInitialization) 00963 return Result; 00964 00965 Expr *Inner = Result.get(); 00966 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner)) 00967 Inner = BTE->getSubExpr(); 00968 if (isa<InitListExpr>(Inner)) { 00969 // If the list-initialization doesn't involve a constructor call, we'll get 00970 // the initializer-list (with corrected type) back, but that's not what we 00971 // want, since it will be treated as an initializer list in further 00972 // processing. Explicitly insert a cast here. 00973 QualType ResultType = Result.get()->getType(); 00974 Result = CXXFunctionalCastExpr::Create( 00975 Context, ResultType, Expr::getValueKindForType(TInfo->getType()), TInfo, 00976 CK_NoOp, Result.get(), /*Path=*/nullptr, LParenLoc, RParenLoc); 00977 } 00978 00979 // FIXME: Improve AST representation? 00980 return Result; 00981 } 00982 00983 /// doesUsualArrayDeleteWantSize - Answers whether the usual 00984 /// operator delete[] for the given type has a size_t parameter. 00985 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc, 00986 QualType allocType) { 00987 const RecordType *record = 00988 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>(); 00989 if (!record) return false; 00990 00991 // Try to find an operator delete[] in class scope. 00992 00993 DeclarationName deleteName = 00994 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete); 00995 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName); 00996 S.LookupQualifiedName(ops, record->getDecl()); 00997 00998 // We're just doing this for information. 00999 ops.suppressDiagnostics(); 01000 01001 // Very likely: there's no operator delete[]. 01002 if (ops.empty()) return false; 01003 01004 // If it's ambiguous, it should be illegal to call operator delete[] 01005 // on this thing, so it doesn't matter if we allocate extra space or not. 01006 if (ops.isAmbiguous()) return false; 01007 01008 LookupResult::Filter filter = ops.makeFilter(); 01009 while (filter.hasNext()) { 01010 NamedDecl *del = filter.next()->getUnderlyingDecl(); 01011 01012 // C++0x [basic.stc.dynamic.deallocation]p2: 01013 // A template instance is never a usual deallocation function, 01014 // regardless of its signature. 01015 if (isa<FunctionTemplateDecl>(del)) { 01016 filter.erase(); 01017 continue; 01018 } 01019 01020 // C++0x [basic.stc.dynamic.deallocation]p2: 01021 // If class T does not declare [an operator delete[] with one 01022 // parameter] but does declare a member deallocation function 01023 // named operator delete[] with exactly two parameters, the 01024 // second of which has type std::size_t, then this function 01025 // is a usual deallocation function. 01026 if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) { 01027 filter.erase(); 01028 continue; 01029 } 01030 } 01031 filter.done(); 01032 01033 if (!ops.isSingleResult()) return false; 01034 01035 const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl()); 01036 return (del->getNumParams() == 2); 01037 } 01038 01039 /// \brief Parsed a C++ 'new' expression (C++ 5.3.4). 01040 /// 01041 /// E.g.: 01042 /// @code new (memory) int[size][4] @endcode 01043 /// or 01044 /// @code ::new Foo(23, "hello") @endcode 01045 /// 01046 /// \param StartLoc The first location of the expression. 01047 /// \param UseGlobal True if 'new' was prefixed with '::'. 01048 /// \param PlacementLParen Opening paren of the placement arguments. 01049 /// \param PlacementArgs Placement new arguments. 01050 /// \param PlacementRParen Closing paren of the placement arguments. 01051 /// \param TypeIdParens If the type is in parens, the source range. 01052 /// \param D The type to be allocated, as well as array dimensions. 01053 /// \param Initializer The initializing expression or initializer-list, or null 01054 /// if there is none. 01055 ExprResult 01056 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, 01057 SourceLocation PlacementLParen, MultiExprArg PlacementArgs, 01058 SourceLocation PlacementRParen, SourceRange TypeIdParens, 01059 Declarator &D, Expr *Initializer) { 01060 bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType(); 01061 01062 Expr *ArraySize = nullptr; 01063 // If the specified type is an array, unwrap it and save the expression. 01064 if (D.getNumTypeObjects() > 0 && 01065 D.getTypeObject(0).Kind == DeclaratorChunk::Array) { 01066 DeclaratorChunk &Chunk = D.getTypeObject(0); 01067 if (TypeContainsAuto) 01068 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto) 01069 << D.getSourceRange()); 01070 if (Chunk.Arr.hasStatic) 01071 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) 01072 << D.getSourceRange()); 01073 if (!Chunk.Arr.NumElts) 01074 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) 01075 << D.getSourceRange()); 01076 01077 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); 01078 D.DropFirstTypeObject(); 01079 } 01080 01081 // Every dimension shall be of constant size. 01082 if (ArraySize) { 01083 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { 01084 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) 01085 break; 01086 01087 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; 01088 if (Expr *NumElts = (Expr *)Array.NumElts) { 01089 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) { 01090 if (getLangOpts().CPlusPlus14) { 01091 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator 01092 // shall be a converted constant expression (5.19) of type std::size_t 01093 // and shall evaluate to a strictly positive value. 01094 unsigned IntWidth = Context.getTargetInfo().getIntWidth(); 01095 assert(IntWidth && "Builtin type of size 0?"); 01096 llvm::APSInt Value(IntWidth); 01097 Array.NumElts 01098 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value, 01099 CCEK_NewExpr) 01100 .get(); 01101 } else { 01102 Array.NumElts 01103 = VerifyIntegerConstantExpression(NumElts, nullptr, 01104 diag::err_new_array_nonconst) 01105 .get(); 01106 } 01107 if (!Array.NumElts) 01108 return ExprError(); 01109 } 01110 } 01111 } 01112 } 01113 01114 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr); 01115 QualType AllocType = TInfo->getType(); 01116 if (D.isInvalidType()) 01117 return ExprError(); 01118 01119 SourceRange DirectInitRange; 01120 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) 01121 DirectInitRange = List->getSourceRange(); 01122 01123 return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal, 01124 PlacementLParen, 01125 PlacementArgs, 01126 PlacementRParen, 01127 TypeIdParens, 01128 AllocType, 01129 TInfo, 01130 ArraySize, 01131 DirectInitRange, 01132 Initializer, 01133 TypeContainsAuto); 01134 } 01135 01136 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style, 01137 Expr *Init) { 01138 if (!Init) 01139 return true; 01140 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) 01141 return PLE->getNumExprs() == 0; 01142 if (isa<ImplicitValueInitExpr>(Init)) 01143 return true; 01144 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) 01145 return !CCE->isListInitialization() && 01146 CCE->getConstructor()->isDefaultConstructor(); 01147 else if (Style == CXXNewExpr::ListInit) { 01148 assert(isa<InitListExpr>(Init) && 01149 "Shouldn't create list CXXConstructExprs for arrays."); 01150 return true; 01151 } 01152 return false; 01153 } 01154 01155 ExprResult 01156 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal, 01157 SourceLocation PlacementLParen, 01158 MultiExprArg PlacementArgs, 01159 SourceLocation PlacementRParen, 01160 SourceRange TypeIdParens, 01161 QualType AllocType, 01162 TypeSourceInfo *AllocTypeInfo, 01163 Expr *ArraySize, 01164 SourceRange DirectInitRange, 01165 Expr *Initializer, 01166 bool TypeMayContainAuto) { 01167 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange(); 01168 SourceLocation StartLoc = Range.getBegin(); 01169 01170 CXXNewExpr::InitializationStyle initStyle; 01171 if (DirectInitRange.isValid()) { 01172 assert(Initializer && "Have parens but no initializer."); 01173 initStyle = CXXNewExpr::CallInit; 01174 } else if (Initializer && isa<InitListExpr>(Initializer)) 01175 initStyle = CXXNewExpr::ListInit; 01176 else { 01177 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) || 01178 isa<CXXConstructExpr>(Initializer)) && 01179 "Initializer expression that cannot have been implicitly created."); 01180 initStyle = CXXNewExpr::NoInit; 01181 } 01182 01183 Expr **Inits = &Initializer; 01184 unsigned NumInits = Initializer ? 1 : 0; 01185 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) { 01186 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init"); 01187 Inits = List->getExprs(); 01188 NumInits = List->getNumExprs(); 01189 } 01190 01191 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for. 01192 if (TypeMayContainAuto && AllocType->isUndeducedType()) { 01193 if (initStyle == CXXNewExpr::NoInit || NumInits == 0) 01194 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg) 01195 << AllocType << TypeRange); 01196 if (initStyle == CXXNewExpr::ListInit || 01197 (NumInits == 1 && isa<InitListExpr>(Inits[0]))) 01198 return ExprError(Diag(Inits[0]->getLocStart(), 01199 diag::err_auto_new_list_init) 01200 << AllocType << TypeRange); 01201 if (NumInits > 1) { 01202 Expr *FirstBad = Inits[1]; 01203 return ExprError(Diag(FirstBad->getLocStart(), 01204 diag::err_auto_new_ctor_multiple_expressions) 01205 << AllocType << TypeRange); 01206 } 01207 Expr *Deduce = Inits[0]; 01208 QualType DeducedType; 01209 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed) 01210 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure) 01211 << AllocType << Deduce->getType() 01212 << TypeRange << Deduce->getSourceRange()); 01213 if (DeducedType.isNull()) 01214 return ExprError(); 01215 AllocType = DeducedType; 01216 } 01217 01218 // Per C++0x [expr.new]p5, the type being constructed may be a 01219 // typedef of an array type. 01220 if (!ArraySize) { 01221 if (const ConstantArrayType *Array 01222 = Context.getAsConstantArrayType(AllocType)) { 01223 ArraySize = IntegerLiteral::Create(Context, Array->getSize(), 01224 Context.getSizeType(), 01225 TypeRange.getEnd()); 01226 AllocType = Array->getElementType(); 01227 } 01228 } 01229 01230 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange)) 01231 return ExprError(); 01232 01233 if (initStyle == CXXNewExpr::ListInit && 01234 isStdInitializerList(AllocType, nullptr)) { 01235 Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(), 01236 diag::warn_dangling_std_initializer_list) 01237 << /*at end of FE*/0 << Inits[0]->getSourceRange(); 01238 } 01239 01240 // In ARC, infer 'retaining' for the allocated 01241 if (getLangOpts().ObjCAutoRefCount && 01242 AllocType.getObjCLifetime() == Qualifiers::OCL_None && 01243 AllocType->isObjCLifetimeType()) { 01244 AllocType = Context.getLifetimeQualifiedType(AllocType, 01245 AllocType->getObjCARCImplicitLifetime()); 01246 } 01247 01248 QualType ResultType = Context.getPointerType(AllocType); 01249 01250 if (ArraySize && ArraySize->getType()->isNonOverloadPlaceholderType()) { 01251 ExprResult result = CheckPlaceholderExpr(ArraySize); 01252 if (result.isInvalid()) return ExprError(); 01253 ArraySize = result.get(); 01254 } 01255 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have 01256 // integral or enumeration type with a non-negative value." 01257 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped 01258 // enumeration type, or a class type for which a single non-explicit 01259 // conversion function to integral or unscoped enumeration type exists. 01260 // C++1y [expr.new]p6: The expression [...] is implicitly converted to 01261 // std::size_t. 01262 if (ArraySize && !ArraySize->isTypeDependent()) { 01263 ExprResult ConvertedSize; 01264 if (getLangOpts().CPlusPlus14) { 01265 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?"); 01266 01267 ConvertedSize = PerformImplicitConversion(ArraySize, Context.getSizeType(), 01268 AA_Converting); 01269 01270 if (!ConvertedSize.isInvalid() && 01271 ArraySize->getType()->getAs<RecordType>()) 01272 // Diagnose the compatibility of this conversion. 01273 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion) 01274 << ArraySize->getType() << 0 << "'size_t'"; 01275 } else { 01276 class SizeConvertDiagnoser : public ICEConvertDiagnoser { 01277 protected: 01278 Expr *ArraySize; 01279 01280 public: 01281 SizeConvertDiagnoser(Expr *ArraySize) 01282 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false), 01283 ArraySize(ArraySize) {} 01284 01285 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, 01286 QualType T) override { 01287 return S.Diag(Loc, diag::err_array_size_not_integral) 01288 << S.getLangOpts().CPlusPlus11 << T; 01289 } 01290 01291 SemaDiagnosticBuilder diagnoseIncomplete( 01292 Sema &S, SourceLocation Loc, QualType T) override { 01293 return S.Diag(Loc, diag::err_array_size_incomplete_type) 01294 << T << ArraySize->getSourceRange(); 01295 } 01296 01297 SemaDiagnosticBuilder diagnoseExplicitConv( 01298 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { 01299 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy; 01300 } 01301 01302 SemaDiagnosticBuilder noteExplicitConv( 01303 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 01304 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 01305 << ConvTy->isEnumeralType() << ConvTy; 01306 } 01307 01308 SemaDiagnosticBuilder diagnoseAmbiguous( 01309 Sema &S, SourceLocation Loc, QualType T) override { 01310 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T; 01311 } 01312 01313 SemaDiagnosticBuilder noteAmbiguous( 01314 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 01315 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 01316 << ConvTy->isEnumeralType() << ConvTy; 01317 } 01318 01319 virtual SemaDiagnosticBuilder diagnoseConversion( 01320 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { 01321 return S.Diag(Loc, 01322 S.getLangOpts().CPlusPlus11 01323 ? diag::warn_cxx98_compat_array_size_conversion 01324 : diag::ext_array_size_conversion) 01325 << T << ConvTy->isEnumeralType() << ConvTy; 01326 } 01327 } SizeDiagnoser(ArraySize); 01328 01329 ConvertedSize = PerformContextualImplicitConversion(StartLoc, ArraySize, 01330 SizeDiagnoser); 01331 } 01332 if (ConvertedSize.isInvalid()) 01333 return ExprError(); 01334 01335 ArraySize = ConvertedSize.get(); 01336 QualType SizeType = ArraySize->getType(); 01337 01338 if (!SizeType->isIntegralOrUnscopedEnumerationType()) 01339 return ExprError(); 01340 01341 // C++98 [expr.new]p7: 01342 // The expression in a direct-new-declarator shall have integral type 01343 // with a non-negative value. 01344 // 01345 // Let's see if this is a constant < 0. If so, we reject it out of 01346 // hand. Otherwise, if it's not a constant, we must have an unparenthesized 01347 // array type. 01348 // 01349 // Note: such a construct has well-defined semantics in C++11: it throws 01350 // std::bad_array_new_length. 01351 if (!ArraySize->isValueDependent()) { 01352 llvm::APSInt Value; 01353 // We've already performed any required implicit conversion to integer or 01354 // unscoped enumeration type. 01355 if (ArraySize->isIntegerConstantExpr(Value, Context)) { 01356 if (Value < llvm::APSInt( 01357 llvm::APInt::getNullValue(Value.getBitWidth()), 01358 Value.isUnsigned())) { 01359 if (getLangOpts().CPlusPlus11) 01360 Diag(ArraySize->getLocStart(), 01361 diag::warn_typecheck_negative_array_new_size) 01362 << ArraySize->getSourceRange(); 01363 else 01364 return ExprError(Diag(ArraySize->getLocStart(), 01365 diag::err_typecheck_negative_array_size) 01366 << ArraySize->getSourceRange()); 01367 } else if (!AllocType->isDependentType()) { 01368 unsigned ActiveSizeBits = 01369 ConstantArrayType::getNumAddressingBits(Context, AllocType, Value); 01370 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) { 01371 if (getLangOpts().CPlusPlus11) 01372 Diag(ArraySize->getLocStart(), 01373 diag::warn_array_new_too_large) 01374 << Value.toString(10) 01375 << ArraySize->getSourceRange(); 01376 else 01377 return ExprError(Diag(ArraySize->getLocStart(), 01378 diag::err_array_too_large) 01379 << Value.toString(10) 01380 << ArraySize->getSourceRange()); 01381 } 01382 } 01383 } else if (TypeIdParens.isValid()) { 01384 // Can't have dynamic array size when the type-id is in parentheses. 01385 Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst) 01386 << ArraySize->getSourceRange() 01387 << FixItHint::CreateRemoval(TypeIdParens.getBegin()) 01388 << FixItHint::CreateRemoval(TypeIdParens.getEnd()); 01389 01390 TypeIdParens = SourceRange(); 01391 } 01392 } 01393 01394 // Note that we do *not* convert the argument in any way. It can 01395 // be signed, larger than size_t, whatever. 01396 } 01397 01398 FunctionDecl *OperatorNew = nullptr; 01399 FunctionDecl *OperatorDelete = nullptr; 01400 01401 if (!AllocType->isDependentType() && 01402 !Expr::hasAnyTypeDependentArguments(PlacementArgs) && 01403 FindAllocationFunctions(StartLoc, 01404 SourceRange(PlacementLParen, PlacementRParen), 01405 UseGlobal, AllocType, ArraySize, PlacementArgs, 01406 OperatorNew, OperatorDelete)) 01407 return ExprError(); 01408 01409 // If this is an array allocation, compute whether the usual array 01410 // deallocation function for the type has a size_t parameter. 01411 bool UsualArrayDeleteWantsSize = false; 01412 if (ArraySize && !AllocType->isDependentType()) 01413 UsualArrayDeleteWantsSize 01414 = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType); 01415 01416 SmallVector<Expr *, 8> AllPlaceArgs; 01417 if (OperatorNew) { 01418 const FunctionProtoType *Proto = 01419 OperatorNew->getType()->getAs<FunctionProtoType>(); 01420 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction 01421 : VariadicDoesNotApply; 01422 01423 // We've already converted the placement args, just fill in any default 01424 // arguments. Skip the first parameter because we don't have a corresponding 01425 // argument. 01426 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 1, 01427 PlacementArgs, AllPlaceArgs, CallType)) 01428 return ExprError(); 01429 01430 if (!AllPlaceArgs.empty()) 01431 PlacementArgs = AllPlaceArgs; 01432 01433 // FIXME: This is wrong: PlacementArgs misses out the first (size) argument. 01434 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs); 01435 01436 // FIXME: Missing call to CheckFunctionCall or equivalent 01437 } 01438 01439 // Warn if the type is over-aligned and is being allocated by global operator 01440 // new. 01441 if (PlacementArgs.empty() && OperatorNew && 01442 (OperatorNew->isImplicit() || 01443 getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) { 01444 if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){ 01445 unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign(); 01446 if (Align > SuitableAlign) 01447 Diag(StartLoc, diag::warn_overaligned_type) 01448 << AllocType 01449 << unsigned(Align / Context.getCharWidth()) 01450 << unsigned(SuitableAlign / Context.getCharWidth()); 01451 } 01452 } 01453 01454 QualType InitType = AllocType; 01455 // Array 'new' can't have any initializers except empty parentheses. 01456 // Initializer lists are also allowed, in C++11. Rely on the parser for the 01457 // dialect distinction. 01458 if (ResultType->isArrayType() || ArraySize) { 01459 if (!isLegalArrayNewInitializer(initStyle, Initializer)) { 01460 SourceRange InitRange(Inits[0]->getLocStart(), 01461 Inits[NumInits - 1]->getLocEnd()); 01462 Diag(StartLoc, diag::err_new_array_init_args) << InitRange; 01463 return ExprError(); 01464 } 01465 if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) { 01466 // We do the initialization typechecking against the array type 01467 // corresponding to the number of initializers + 1 (to also check 01468 // default-initialization). 01469 unsigned NumElements = ILE->getNumInits() + 1; 01470 InitType = Context.getConstantArrayType(AllocType, 01471 llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements), 01472 ArrayType::Normal, 0); 01473 } 01474 } 01475 01476 // If we can perform the initialization, and we've not already done so, 01477 // do it now. 01478 if (!AllocType->isDependentType() && 01479 !Expr::hasAnyTypeDependentArguments( 01480 llvm::makeArrayRef(Inits, NumInits))) { 01481 // C++11 [expr.new]p15: 01482 // A new-expression that creates an object of type T initializes that 01483 // object as follows: 01484 InitializationKind Kind 01485 // - If the new-initializer is omitted, the object is default- 01486 // initialized (8.5); if no initialization is performed, 01487 // the object has indeterminate value 01488 = initStyle == CXXNewExpr::NoInit 01489 ? InitializationKind::CreateDefault(TypeRange.getBegin()) 01490 // - Otherwise, the new-initializer is interpreted according to the 01491 // initialization rules of 8.5 for direct-initialization. 01492 : initStyle == CXXNewExpr::ListInit 01493 ? InitializationKind::CreateDirectList(TypeRange.getBegin()) 01494 : InitializationKind::CreateDirect(TypeRange.getBegin(), 01495 DirectInitRange.getBegin(), 01496 DirectInitRange.getEnd()); 01497 01498 InitializedEntity Entity 01499 = InitializedEntity::InitializeNew(StartLoc, InitType); 01500 InitializationSequence InitSeq(*this, Entity, Kind, MultiExprArg(Inits, NumInits)); 01501 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, 01502 MultiExprArg(Inits, NumInits)); 01503 if (FullInit.isInvalid()) 01504 return ExprError(); 01505 01506 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because 01507 // we don't want the initialized object to be destructed. 01508 if (CXXBindTemporaryExpr *Binder = 01509 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get())) 01510 FullInit = Binder->getSubExpr(); 01511 01512 Initializer = FullInit.get(); 01513 } 01514 01515 // Mark the new and delete operators as referenced. 01516 if (OperatorNew) { 01517 if (DiagnoseUseOfDecl(OperatorNew, StartLoc)) 01518 return ExprError(); 01519 MarkFunctionReferenced(StartLoc, OperatorNew); 01520 } 01521 if (OperatorDelete) { 01522 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc)) 01523 return ExprError(); 01524 MarkFunctionReferenced(StartLoc, OperatorDelete); 01525 } 01526 01527 // C++0x [expr.new]p17: 01528 // If the new expression creates an array of objects of class type, 01529 // access and ambiguity control are done for the destructor. 01530 QualType BaseAllocType = Context.getBaseElementType(AllocType); 01531 if (ArraySize && !BaseAllocType->isDependentType()) { 01532 if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) { 01533 if (CXXDestructorDecl *dtor = LookupDestructor( 01534 cast<CXXRecordDecl>(BaseRecordType->getDecl()))) { 01535 MarkFunctionReferenced(StartLoc, dtor); 01536 CheckDestructorAccess(StartLoc, dtor, 01537 PDiag(diag::err_access_dtor) 01538 << BaseAllocType); 01539 if (DiagnoseUseOfDecl(dtor, StartLoc)) 01540 return ExprError(); 01541 } 01542 } 01543 } 01544 01545 return new (Context) 01546 CXXNewExpr(Context, UseGlobal, OperatorNew, OperatorDelete, 01547 UsualArrayDeleteWantsSize, PlacementArgs, TypeIdParens, 01548 ArraySize, initStyle, Initializer, ResultType, AllocTypeInfo, 01549 Range, DirectInitRange); 01550 } 01551 01552 /// \brief Checks that a type is suitable as the allocated type 01553 /// in a new-expression. 01554 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, 01555 SourceRange R) { 01556 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an 01557 // abstract class type or array thereof. 01558 if (AllocType->isFunctionType()) 01559 return Diag(Loc, diag::err_bad_new_type) 01560 << AllocType << 0 << R; 01561 else if (AllocType->isReferenceType()) 01562 return Diag(Loc, diag::err_bad_new_type) 01563 << AllocType << 1 << R; 01564 else if (!AllocType->isDependentType() && 01565 RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R)) 01566 return true; 01567 else if (RequireNonAbstractType(Loc, AllocType, 01568 diag::err_allocation_of_abstract_type)) 01569 return true; 01570 else if (AllocType->isVariablyModifiedType()) 01571 return Diag(Loc, diag::err_variably_modified_new_type) 01572 << AllocType; 01573 else if (unsigned AddressSpace = AllocType.getAddressSpace()) 01574 return Diag(Loc, diag::err_address_space_qualified_new) 01575 << AllocType.getUnqualifiedType() << AddressSpace; 01576 else if (getLangOpts().ObjCAutoRefCount) { 01577 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) { 01578 QualType BaseAllocType = Context.getBaseElementType(AT); 01579 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None && 01580 BaseAllocType->isObjCLifetimeType()) 01581 return Diag(Loc, diag::err_arc_new_array_without_ownership) 01582 << BaseAllocType; 01583 } 01584 } 01585 01586 return false; 01587 } 01588 01589 /// \brief Determine whether the given function is a non-placement 01590 /// deallocation function. 01591 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) { 01592 if (FD->isInvalidDecl()) 01593 return false; 01594 01595 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD)) 01596 return Method->isUsualDeallocationFunction(); 01597 01598 if (FD->getOverloadedOperator() != OO_Delete && 01599 FD->getOverloadedOperator() != OO_Array_Delete) 01600 return false; 01601 01602 if (FD->getNumParams() == 1) 01603 return true; 01604 01605 return S.getLangOpts().SizedDeallocation && FD->getNumParams() == 2 && 01606 S.Context.hasSameUnqualifiedType(FD->getParamDecl(1)->getType(), 01607 S.Context.getSizeType()); 01608 } 01609 01610 /// FindAllocationFunctions - Finds the overloads of operator new and delete 01611 /// that are appropriate for the allocation. 01612 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, 01613 bool UseGlobal, QualType AllocType, 01614 bool IsArray, MultiExprArg PlaceArgs, 01615 FunctionDecl *&OperatorNew, 01616 FunctionDecl *&OperatorDelete) { 01617 // --- Choosing an allocation function --- 01618 // C++ 5.3.4p8 - 14 & 18 01619 // 1) If UseGlobal is true, only look in the global scope. Else, also look 01620 // in the scope of the allocated class. 01621 // 2) If an array size is given, look for operator new[], else look for 01622 // operator new. 01623 // 3) The first argument is always size_t. Append the arguments from the 01624 // placement form. 01625 01626 SmallVector<Expr*, 8> AllocArgs(1 + PlaceArgs.size()); 01627 // We don't care about the actual value of this argument. 01628 // FIXME: Should the Sema create the expression and embed it in the syntax 01629 // tree? Or should the consumer just recalculate the value? 01630 IntegerLiteral Size(Context, llvm::APInt::getNullValue( 01631 Context.getTargetInfo().getPointerWidth(0)), 01632 Context.getSizeType(), 01633 SourceLocation()); 01634 AllocArgs[0] = &Size; 01635 std::copy(PlaceArgs.begin(), PlaceArgs.end(), AllocArgs.begin() + 1); 01636 01637 // C++ [expr.new]p8: 01638 // If the allocated type is a non-array type, the allocation 01639 // function's name is operator new and the deallocation function's 01640 // name is operator delete. If the allocated type is an array 01641 // type, the allocation function's name is operator new[] and the 01642 // deallocation function's name is operator delete[]. 01643 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( 01644 IsArray ? OO_Array_New : OO_New); 01645 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 01646 IsArray ? OO_Array_Delete : OO_Delete); 01647 01648 QualType AllocElemType = Context.getBaseElementType(AllocType); 01649 01650 if (AllocElemType->isRecordType() && !UseGlobal) { 01651 CXXRecordDecl *Record 01652 = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl()); 01653 if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, Record, 01654 /*AllowMissing=*/true, OperatorNew)) 01655 return true; 01656 } 01657 01658 if (!OperatorNew) { 01659 // Didn't find a member overload. Look for a global one. 01660 DeclareGlobalNewDelete(); 01661 DeclContext *TUDecl = Context.getTranslationUnitDecl(); 01662 bool FallbackEnabled = IsArray && Context.getLangOpts().MSVCCompat; 01663 if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl, 01664 /*AllowMissing=*/FallbackEnabled, OperatorNew, 01665 /*Diagnose=*/!FallbackEnabled)) { 01666 if (!FallbackEnabled) 01667 return true; 01668 01669 // MSVC will fall back on trying to find a matching global operator new 01670 // if operator new[] cannot be found. Also, MSVC will leak by not 01671 // generating a call to operator delete or operator delete[], but we 01672 // will not replicate that bug. 01673 NewName = Context.DeclarationNames.getCXXOperatorName(OO_New); 01674 DeleteName = Context.DeclarationNames.getCXXOperatorName(OO_Delete); 01675 if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl, 01676 /*AllowMissing=*/false, OperatorNew)) 01677 return true; 01678 } 01679 } 01680 01681 // We don't need an operator delete if we're running under 01682 // -fno-exceptions. 01683 if (!getLangOpts().Exceptions) { 01684 OperatorDelete = nullptr; 01685 return false; 01686 } 01687 01688 // C++ [expr.new]p19: 01689 // 01690 // If the new-expression begins with a unary :: operator, the 01691 // deallocation function's name is looked up in the global 01692 // scope. Otherwise, if the allocated type is a class type T or an 01693 // array thereof, the deallocation function's name is looked up in 01694 // the scope of T. If this lookup fails to find the name, or if 01695 // the allocated type is not a class type or array thereof, the 01696 // deallocation function's name is looked up in the global scope. 01697 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName); 01698 if (AllocElemType->isRecordType() && !UseGlobal) { 01699 CXXRecordDecl *RD 01700 = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl()); 01701 LookupQualifiedName(FoundDelete, RD); 01702 } 01703 if (FoundDelete.isAmbiguous()) 01704 return true; // FIXME: clean up expressions? 01705 01706 if (FoundDelete.empty()) { 01707 DeclareGlobalNewDelete(); 01708 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 01709 } 01710 01711 FoundDelete.suppressDiagnostics(); 01712 01713 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches; 01714 01715 // Whether we're looking for a placement operator delete is dictated 01716 // by whether we selected a placement operator new, not by whether 01717 // we had explicit placement arguments. This matters for things like 01718 // struct A { void *operator new(size_t, int = 0); ... }; 01719 // A *a = new A() 01720 bool isPlacementNew = (!PlaceArgs.empty() || OperatorNew->param_size() != 1); 01721 01722 if (isPlacementNew) { 01723 // C++ [expr.new]p20: 01724 // A declaration of a placement deallocation function matches the 01725 // declaration of a placement allocation function if it has the 01726 // same number of parameters and, after parameter transformations 01727 // (8.3.5), all parameter types except the first are 01728 // identical. [...] 01729 // 01730 // To perform this comparison, we compute the function type that 01731 // the deallocation function should have, and use that type both 01732 // for template argument deduction and for comparison purposes. 01733 // 01734 // FIXME: this comparison should ignore CC and the like. 01735 QualType ExpectedFunctionType; 01736 { 01737 const FunctionProtoType *Proto 01738 = OperatorNew->getType()->getAs<FunctionProtoType>(); 01739 01740 SmallVector<QualType, 4> ArgTypes; 01741 ArgTypes.push_back(Context.VoidPtrTy); 01742 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I) 01743 ArgTypes.push_back(Proto->getParamType(I)); 01744 01745 FunctionProtoType::ExtProtoInfo EPI; 01746 EPI.Variadic = Proto->isVariadic(); 01747 01748 ExpectedFunctionType 01749 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI); 01750 } 01751 01752 for (LookupResult::iterator D = FoundDelete.begin(), 01753 DEnd = FoundDelete.end(); 01754 D != DEnd; ++D) { 01755 FunctionDecl *Fn = nullptr; 01756 if (FunctionTemplateDecl *FnTmpl 01757 = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) { 01758 // Perform template argument deduction to try to match the 01759 // expected function type. 01760 TemplateDeductionInfo Info(StartLoc); 01761 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn, 01762 Info)) 01763 continue; 01764 } else 01765 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl()); 01766 01767 if (Context.hasSameType(Fn->getType(), ExpectedFunctionType)) 01768 Matches.push_back(std::make_pair(D.getPair(), Fn)); 01769 } 01770 } else { 01771 // C++ [expr.new]p20: 01772 // [...] Any non-placement deallocation function matches a 01773 // non-placement allocation function. [...] 01774 for (LookupResult::iterator D = FoundDelete.begin(), 01775 DEnd = FoundDelete.end(); 01776 D != DEnd; ++D) { 01777 if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl())) 01778 if (isNonPlacementDeallocationFunction(*this, Fn)) 01779 Matches.push_back(std::make_pair(D.getPair(), Fn)); 01780 } 01781 01782 // C++1y [expr.new]p22: 01783 // For a non-placement allocation function, the normal deallocation 01784 // function lookup is used 01785 // C++1y [expr.delete]p?: 01786 // If [...] deallocation function lookup finds both a usual deallocation 01787 // function with only a pointer parameter and a usual deallocation 01788 // function with both a pointer parameter and a size parameter, then the 01789 // selected deallocation function shall be the one with two parameters. 01790 // Otherwise, the selected deallocation function shall be the function 01791 // with one parameter. 01792 if (getLangOpts().SizedDeallocation && Matches.size() == 2) { 01793 if (Matches[0].second->getNumParams() == 1) 01794 Matches.erase(Matches.begin()); 01795 else 01796 Matches.erase(Matches.begin() + 1); 01797 assert(Matches[0].second->getNumParams() == 2 && 01798 "found an unexpected usual deallocation function"); 01799 } 01800 } 01801 01802 // C++ [expr.new]p20: 01803 // [...] If the lookup finds a single matching deallocation 01804 // function, that function will be called; otherwise, no 01805 // deallocation function will be called. 01806 if (Matches.size() == 1) { 01807 OperatorDelete = Matches[0].second; 01808 01809 // C++0x [expr.new]p20: 01810 // If the lookup finds the two-parameter form of a usual 01811 // deallocation function (3.7.4.2) and that function, considered 01812 // as a placement deallocation function, would have been 01813 // selected as a match for the allocation function, the program 01814 // is ill-formed. 01815 if (!PlaceArgs.empty() && getLangOpts().CPlusPlus11 && 01816 isNonPlacementDeallocationFunction(*this, OperatorDelete)) { 01817 Diag(StartLoc, diag::err_placement_new_non_placement_delete) 01818 << SourceRange(PlaceArgs.front()->getLocStart(), 01819 PlaceArgs.back()->getLocEnd()); 01820 if (!OperatorDelete->isImplicit()) 01821 Diag(OperatorDelete->getLocation(), diag::note_previous_decl) 01822 << DeleteName; 01823 } else { 01824 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(), 01825 Matches[0].first); 01826 } 01827 } 01828 01829 return false; 01830 } 01831 01832 /// \brief Find an fitting overload for the allocation function 01833 /// in the specified scope. 01834 /// 01835 /// \param StartLoc The location of the 'new' token. 01836 /// \param Range The range of the placement arguments. 01837 /// \param Name The name of the function ('operator new' or 'operator new[]'). 01838 /// \param Args The placement arguments specified. 01839 /// \param Ctx The scope in which we should search; either a class scope or the 01840 /// translation unit. 01841 /// \param AllowMissing If \c true, report an error if we can't find any 01842 /// allocation functions. Otherwise, succeed but don't fill in \p 01843 /// Operator. 01844 /// \param Operator Filled in with the found allocation function. Unchanged if 01845 /// no allocation function was found. 01846 /// \param Diagnose If \c true, issue errors if the allocation function is not 01847 /// usable. 01848 bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range, 01849 DeclarationName Name, MultiExprArg Args, 01850 DeclContext *Ctx, 01851 bool AllowMissing, FunctionDecl *&Operator, 01852 bool Diagnose) { 01853 LookupResult R(*this, Name, StartLoc, LookupOrdinaryName); 01854 LookupQualifiedName(R, Ctx); 01855 if (R.empty()) { 01856 if (AllowMissing || !Diagnose) 01857 return false; 01858 return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) 01859 << Name << Range; 01860 } 01861 01862 if (R.isAmbiguous()) 01863 return true; 01864 01865 R.suppressDiagnostics(); 01866 01867 OverloadCandidateSet Candidates(StartLoc, OverloadCandidateSet::CSK_Normal); 01868 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); 01869 Alloc != AllocEnd; ++Alloc) { 01870 // Even member operator new/delete are implicitly treated as 01871 // static, so don't use AddMemberCandidate. 01872 NamedDecl *D = (*Alloc)->getUnderlyingDecl(); 01873 01874 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 01875 AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(), 01876 /*ExplicitTemplateArgs=*/nullptr, 01877 Args, Candidates, 01878 /*SuppressUserConversions=*/false); 01879 continue; 01880 } 01881 01882 FunctionDecl *Fn = cast<FunctionDecl>(D); 01883 AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates, 01884 /*SuppressUserConversions=*/false); 01885 } 01886 01887 // Do the resolution. 01888 OverloadCandidateSet::iterator Best; 01889 switch (Candidates.BestViableFunction(*this, StartLoc, Best)) { 01890 case OR_Success: { 01891 // Got one! 01892 FunctionDecl *FnDecl = Best->Function; 01893 if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), 01894 Best->FoundDecl, Diagnose) == AR_inaccessible) 01895 return true; 01896 01897 Operator = FnDecl; 01898 return false; 01899 } 01900 01901 case OR_No_Viable_Function: 01902 if (Diagnose) { 01903 Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) 01904 << Name << Range; 01905 Candidates.NoteCandidates(*this, OCD_AllCandidates, Args); 01906 } 01907 return true; 01908 01909 case OR_Ambiguous: 01910 if (Diagnose) { 01911 Diag(StartLoc, diag::err_ovl_ambiguous_call) 01912 << Name << Range; 01913 Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args); 01914 } 01915 return true; 01916 01917 case OR_Deleted: { 01918 if (Diagnose) { 01919 Diag(StartLoc, diag::err_ovl_deleted_call) 01920 << Best->Function->isDeleted() 01921 << Name 01922 << getDeletedOrUnavailableSuffix(Best->Function) 01923 << Range; 01924 Candidates.NoteCandidates(*this, OCD_AllCandidates, Args); 01925 } 01926 return true; 01927 } 01928 } 01929 llvm_unreachable("Unreachable, bad result from BestViableFunction"); 01930 } 01931 01932 01933 /// DeclareGlobalNewDelete - Declare the global forms of operator new and 01934 /// delete. These are: 01935 /// @code 01936 /// // C++03: 01937 /// void* operator new(std::size_t) throw(std::bad_alloc); 01938 /// void* operator new[](std::size_t) throw(std::bad_alloc); 01939 /// void operator delete(void *) throw(); 01940 /// void operator delete[](void *) throw(); 01941 /// // C++11: 01942 /// void* operator new(std::size_t); 01943 /// void* operator new[](std::size_t); 01944 /// void operator delete(void *) noexcept; 01945 /// void operator delete[](void *) noexcept; 01946 /// // C++1y: 01947 /// void* operator new(std::size_t); 01948 /// void* operator new[](std::size_t); 01949 /// void operator delete(void *) noexcept; 01950 /// void operator delete[](void *) noexcept; 01951 /// void operator delete(void *, std::size_t) noexcept; 01952 /// void operator delete[](void *, std::size_t) noexcept; 01953 /// @endcode 01954 /// Note that the placement and nothrow forms of new are *not* implicitly 01955 /// declared. Their use requires including <new>. 01956 void Sema::DeclareGlobalNewDelete() { 01957 if (GlobalNewDeleteDeclared) 01958 return; 01959 01960 // C++ [basic.std.dynamic]p2: 01961 // [...] The following allocation and deallocation functions (18.4) are 01962 // implicitly declared in global scope in each translation unit of a 01963 // program 01964 // 01965 // C++03: 01966 // void* operator new(std::size_t) throw(std::bad_alloc); 01967 // void* operator new[](std::size_t) throw(std::bad_alloc); 01968 // void operator delete(void*) throw(); 01969 // void operator delete[](void*) throw(); 01970 // C++11: 01971 // void* operator new(std::size_t); 01972 // void* operator new[](std::size_t); 01973 // void operator delete(void*) noexcept; 01974 // void operator delete[](void*) noexcept; 01975 // C++1y: 01976 // void* operator new(std::size_t); 01977 // void* operator new[](std::size_t); 01978 // void operator delete(void*) noexcept; 01979 // void operator delete[](void*) noexcept; 01980 // void operator delete(void*, std::size_t) noexcept; 01981 // void operator delete[](void*, std::size_t) noexcept; 01982 // 01983 // These implicit declarations introduce only the function names operator 01984 // new, operator new[], operator delete, operator delete[]. 01985 // 01986 // Here, we need to refer to std::bad_alloc, so we will implicitly declare 01987 // "std" or "bad_alloc" as necessary to form the exception specification. 01988 // However, we do not make these implicit declarations visible to name 01989 // lookup. 01990 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) { 01991 // The "std::bad_alloc" class has not yet been declared, so build it 01992 // implicitly. 01993 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class, 01994 getOrCreateStdNamespace(), 01995 SourceLocation(), SourceLocation(), 01996 &PP.getIdentifierTable().get("bad_alloc"), 01997 nullptr); 01998 getStdBadAlloc()->setImplicit(true); 01999 } 02000 02001 GlobalNewDeleteDeclared = true; 02002 02003 QualType VoidPtr = Context.getPointerType(Context.VoidTy); 02004 QualType SizeT = Context.getSizeType(); 02005 bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew; 02006 02007 DeclareGlobalAllocationFunction( 02008 Context.DeclarationNames.getCXXOperatorName(OO_New), 02009 VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew); 02010 DeclareGlobalAllocationFunction( 02011 Context.DeclarationNames.getCXXOperatorName(OO_Array_New), 02012 VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew); 02013 DeclareGlobalAllocationFunction( 02014 Context.DeclarationNames.getCXXOperatorName(OO_Delete), 02015 Context.VoidTy, VoidPtr); 02016 DeclareGlobalAllocationFunction( 02017 Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete), 02018 Context.VoidTy, VoidPtr); 02019 if (getLangOpts().SizedDeallocation) { 02020 DeclareGlobalAllocationFunction( 02021 Context.DeclarationNames.getCXXOperatorName(OO_Delete), 02022 Context.VoidTy, VoidPtr, Context.getSizeType()); 02023 DeclareGlobalAllocationFunction( 02024 Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete), 02025 Context.VoidTy, VoidPtr, Context.getSizeType()); 02026 } 02027 } 02028 02029 /// DeclareGlobalAllocationFunction - Declares a single implicit global 02030 /// allocation function if it doesn't already exist. 02031 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, 02032 QualType Return, 02033 QualType Param1, QualType Param2, 02034 bool AddMallocAttr) { 02035 DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); 02036 unsigned NumParams = Param2.isNull() ? 1 : 2; 02037 02038 // Check if this function is already declared. 02039 DeclContext::lookup_result R = GlobalCtx->lookup(Name); 02040 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end(); 02041 Alloc != AllocEnd; ++Alloc) { 02042 // Only look at non-template functions, as it is the predefined, 02043 // non-templated allocation function we are trying to declare here. 02044 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) { 02045 if (Func->getNumParams() == NumParams) { 02046 QualType InitialParam1Type = 02047 Context.getCanonicalType(Func->getParamDecl(0) 02048 ->getType().getUnqualifiedType()); 02049 QualType InitialParam2Type = 02050 NumParams == 2 02051 ? Context.getCanonicalType(Func->getParamDecl(1) 02052 ->getType().getUnqualifiedType()) 02053 : QualType(); 02054 // FIXME: Do we need to check for default arguments here? 02055 if (InitialParam1Type == Param1 && 02056 (NumParams == 1 || InitialParam2Type == Param2)) { 02057 if (AddMallocAttr && !Func->hasAttr<MallocAttr>()) 02058 Func->addAttr(MallocAttr::CreateImplicit(Context)); 02059 // Make the function visible to name lookup, even if we found it in 02060 // an unimported module. It either is an implicitly-declared global 02061 // allocation function, or is suppressing that function. 02062 Func->setHidden(false); 02063 return; 02064 } 02065 } 02066 } 02067 } 02068 02069 FunctionProtoType::ExtProtoInfo EPI; 02070 02071 QualType BadAllocType; 02072 bool HasBadAllocExceptionSpec 02073 = (Name.getCXXOverloadedOperator() == OO_New || 02074 Name.getCXXOverloadedOperator() == OO_Array_New); 02075 if (HasBadAllocExceptionSpec) { 02076 if (!getLangOpts().CPlusPlus11) { 02077 BadAllocType = Context.getTypeDeclType(getStdBadAlloc()); 02078 assert(StdBadAlloc && "Must have std::bad_alloc declared"); 02079 EPI.ExceptionSpec.Type = EST_Dynamic; 02080 EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType); 02081 } 02082 } else { 02083 EPI.ExceptionSpec = 02084 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; 02085 } 02086 02087 QualType Params[] = { Param1, Param2 }; 02088 02089 QualType FnType = Context.getFunctionType( 02090 Return, llvm::makeArrayRef(Params, NumParams), EPI); 02091 FunctionDecl *Alloc = 02092 FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), 02093 SourceLocation(), Name, 02094 FnType, /*TInfo=*/nullptr, SC_None, false, true); 02095 Alloc->setImplicit(); 02096 02097 if (AddMallocAttr) 02098 Alloc->addAttr(MallocAttr::CreateImplicit(Context)); 02099 02100 ParmVarDecl *ParamDecls[2]; 02101 for (unsigned I = 0; I != NumParams; ++I) { 02102 ParamDecls[I] = ParmVarDecl::Create(Context, Alloc, SourceLocation(), 02103 SourceLocation(), nullptr, 02104 Params[I], /*TInfo=*/nullptr, 02105 SC_None, nullptr); 02106 ParamDecls[I]->setImplicit(); 02107 } 02108 Alloc->setParams(llvm::makeArrayRef(ParamDecls, NumParams)); 02109 02110 Context.getTranslationUnitDecl()->addDecl(Alloc); 02111 IdResolver.tryAddTopLevelDecl(Alloc, Name); 02112 } 02113 02114 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc, 02115 bool CanProvideSize, 02116 DeclarationName Name) { 02117 DeclareGlobalNewDelete(); 02118 02119 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName); 02120 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 02121 02122 // C++ [expr.new]p20: 02123 // [...] Any non-placement deallocation function matches a 02124 // non-placement allocation function. [...] 02125 llvm::SmallVector<FunctionDecl*, 2> Matches; 02126 for (LookupResult::iterator D = FoundDelete.begin(), 02127 DEnd = FoundDelete.end(); 02128 D != DEnd; ++D) { 02129 if (FunctionDecl *Fn = dyn_cast<FunctionDecl>(*D)) 02130 if (isNonPlacementDeallocationFunction(*this, Fn)) 02131 Matches.push_back(Fn); 02132 } 02133 02134 // C++1y [expr.delete]p?: 02135 // If the type is complete and deallocation function lookup finds both a 02136 // usual deallocation function with only a pointer parameter and a usual 02137 // deallocation function with both a pointer parameter and a size 02138 // parameter, then the selected deallocation function shall be the one 02139 // with two parameters. Otherwise, the selected deallocation function 02140 // shall be the function with one parameter. 02141 if (getLangOpts().SizedDeallocation && Matches.size() == 2) { 02142 unsigned NumArgs = CanProvideSize ? 2 : 1; 02143 if (Matches[0]->getNumParams() != NumArgs) 02144 Matches.erase(Matches.begin()); 02145 else 02146 Matches.erase(Matches.begin() + 1); 02147 assert(Matches[0]->getNumParams() == NumArgs && 02148 "found an unexpected usual deallocation function"); 02149 } 02150 02151 assert(Matches.size() == 1 && 02152 "unexpectedly have multiple usual deallocation functions"); 02153 return Matches.front(); 02154 } 02155 02156 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, 02157 DeclarationName Name, 02158 FunctionDecl* &Operator, bool Diagnose) { 02159 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); 02160 // Try to find operator delete/operator delete[] in class scope. 02161 LookupQualifiedName(Found, RD); 02162 02163 if (Found.isAmbiguous()) 02164 return true; 02165 02166 Found.suppressDiagnostics(); 02167 02168 SmallVector<DeclAccessPair,4> Matches; 02169 for (LookupResult::iterator F = Found.begin(), FEnd = Found.end(); 02170 F != FEnd; ++F) { 02171 NamedDecl *ND = (*F)->getUnderlyingDecl(); 02172 02173 // Ignore template operator delete members from the check for a usual 02174 // deallocation function. 02175 if (isa<FunctionTemplateDecl>(ND)) 02176 continue; 02177 02178 if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction()) 02179 Matches.push_back(F.getPair()); 02180 } 02181 02182 // There's exactly one suitable operator; pick it. 02183 if (Matches.size() == 1) { 02184 Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl()); 02185 02186 if (Operator->isDeleted()) { 02187 if (Diagnose) { 02188 Diag(StartLoc, diag::err_deleted_function_use); 02189 NoteDeletedFunction(Operator); 02190 } 02191 return true; 02192 } 02193 02194 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(), 02195 Matches[0], Diagnose) == AR_inaccessible) 02196 return true; 02197 02198 return false; 02199 02200 // We found multiple suitable operators; complain about the ambiguity. 02201 } else if (!Matches.empty()) { 02202 if (Diagnose) { 02203 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found) 02204 << Name << RD; 02205 02206 for (SmallVectorImpl<DeclAccessPair>::iterator 02207 F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F) 02208 Diag((*F)->getUnderlyingDecl()->getLocation(), 02209 diag::note_member_declared_here) << Name; 02210 } 02211 return true; 02212 } 02213 02214 // We did find operator delete/operator delete[] declarations, but 02215 // none of them were suitable. 02216 if (!Found.empty()) { 02217 if (Diagnose) { 02218 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) 02219 << Name << RD; 02220 02221 for (LookupResult::iterator F = Found.begin(), FEnd = Found.end(); 02222 F != FEnd; ++F) 02223 Diag((*F)->getUnderlyingDecl()->getLocation(), 02224 diag::note_member_declared_here) << Name; 02225 } 02226 return true; 02227 } 02228 02229 Operator = nullptr; 02230 return false; 02231 } 02232 02233 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: 02234 /// @code ::delete ptr; @endcode 02235 /// or 02236 /// @code delete [] ptr; @endcode 02237 ExprResult 02238 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, 02239 bool ArrayForm, Expr *ExE) { 02240 // C++ [expr.delete]p1: 02241 // The operand shall have a pointer type, or a class type having a single 02242 // non-explicit conversion function to a pointer type. The result has type 02243 // void. 02244 // 02245 // DR599 amends "pointer type" to "pointer to object type" in both cases. 02246 02247 ExprResult Ex = ExE; 02248 FunctionDecl *OperatorDelete = nullptr; 02249 bool ArrayFormAsWritten = ArrayForm; 02250 bool UsualArrayDeleteWantsSize = false; 02251 02252 if (!Ex.get()->isTypeDependent()) { 02253 // Perform lvalue-to-rvalue cast, if needed. 02254 Ex = DefaultLvalueConversion(Ex.get()); 02255 if (Ex.isInvalid()) 02256 return ExprError(); 02257 02258 QualType Type = Ex.get()->getType(); 02259 02260 class DeleteConverter : public ContextualImplicitConverter { 02261 public: 02262 DeleteConverter() : ContextualImplicitConverter(false, true) {} 02263 02264 bool match(QualType ConvType) override { 02265 // FIXME: If we have an operator T* and an operator void*, we must pick 02266 // the operator T*. 02267 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 02268 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType()) 02269 return true; 02270 return false; 02271 } 02272 02273 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc, 02274 QualType T) override { 02275 return S.Diag(Loc, diag::err_delete_operand) << T; 02276 } 02277 02278 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc, 02279 QualType T) override { 02280 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T; 02281 } 02282 02283 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc, 02284 QualType T, 02285 QualType ConvTy) override { 02286 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy; 02287 } 02288 02289 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv, 02290 QualType ConvTy) override { 02291 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 02292 << ConvTy; 02293 } 02294 02295 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, 02296 QualType T) override { 02297 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T; 02298 } 02299 02300 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv, 02301 QualType ConvTy) override { 02302 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 02303 << ConvTy; 02304 } 02305 02306 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 02307 QualType T, 02308 QualType ConvTy) override { 02309 llvm_unreachable("conversion functions are permitted"); 02310 } 02311 } Converter; 02312 02313 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter); 02314 if (Ex.isInvalid()) 02315 return ExprError(); 02316 Type = Ex.get()->getType(); 02317 if (!Converter.match(Type)) 02318 // FIXME: PerformContextualImplicitConversion should return ExprError 02319 // itself in this case. 02320 return ExprError(); 02321 02322 QualType Pointee = Type->getAs<PointerType>()->getPointeeType(); 02323 QualType PointeeElem = Context.getBaseElementType(Pointee); 02324 02325 if (unsigned AddressSpace = Pointee.getAddressSpace()) 02326 return Diag(Ex.get()->getLocStart(), 02327 diag::err_address_space_qualified_delete) 02328 << Pointee.getUnqualifiedType() << AddressSpace; 02329 02330 CXXRecordDecl *PointeeRD = nullptr; 02331 if (Pointee->isVoidType() && !isSFINAEContext()) { 02332 // The C++ standard bans deleting a pointer to a non-object type, which 02333 // effectively bans deletion of "void*". However, most compilers support 02334 // this, so we treat it as a warning unless we're in a SFINAE context. 02335 Diag(StartLoc, diag::ext_delete_void_ptr_operand) 02336 << Type << Ex.get()->getSourceRange(); 02337 } else if (Pointee->isFunctionType() || Pointee->isVoidType()) { 02338 return ExprError(Diag(StartLoc, diag::err_delete_operand) 02339 << Type << Ex.get()->getSourceRange()); 02340 } else if (!Pointee->isDependentType()) { 02341 if (!RequireCompleteType(StartLoc, Pointee, 02342 diag::warn_delete_incomplete, Ex.get())) { 02343 if (const RecordType *RT = PointeeElem->getAs<RecordType>()) 02344 PointeeRD = cast<CXXRecordDecl>(RT->getDecl()); 02345 } 02346 } 02347 02348 // C++ [expr.delete]p2: 02349 // [Note: a pointer to a const type can be the operand of a 02350 // delete-expression; it is not necessary to cast away the constness 02351 // (5.2.11) of the pointer expression before it is used as the operand 02352 // of the delete-expression. ] 02353 02354 if (Pointee->isArrayType() && !ArrayForm) { 02355 Diag(StartLoc, diag::warn_delete_array_type) 02356 << Type << Ex.get()->getSourceRange() 02357 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]"); 02358 ArrayForm = true; 02359 } 02360 02361 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 02362 ArrayForm ? OO_Array_Delete : OO_Delete); 02363 02364 if (PointeeRD) { 02365 if (!UseGlobal && 02366 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName, 02367 OperatorDelete)) 02368 return ExprError(); 02369 02370 // If we're allocating an array of records, check whether the 02371 // usual operator delete[] has a size_t parameter. 02372 if (ArrayForm) { 02373 // If the user specifically asked to use the global allocator, 02374 // we'll need to do the lookup into the class. 02375 if (UseGlobal) 02376 UsualArrayDeleteWantsSize = 02377 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem); 02378 02379 // Otherwise, the usual operator delete[] should be the 02380 // function we just found. 02381 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete)) 02382 UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2); 02383 } 02384 02385 if (!PointeeRD->hasIrrelevantDestructor()) 02386 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 02387 MarkFunctionReferenced(StartLoc, 02388 const_cast<CXXDestructorDecl*>(Dtor)); 02389 if (DiagnoseUseOfDecl(Dtor, StartLoc)) 02390 return ExprError(); 02391 } 02392 02393 // C++ [expr.delete]p3: 02394 // In the first alternative (delete object), if the static type of the 02395 // object to be deleted is different from its dynamic type, the static 02396 // type shall be a base class of the dynamic type of the object to be 02397 // deleted and the static type shall have a virtual destructor or the 02398 // behavior is undefined. 02399 // 02400 // Note: a final class cannot be derived from, no issue there 02401 if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) { 02402 CXXDestructorDecl *dtor = PointeeRD->getDestructor(); 02403 if (dtor && !dtor->isVirtual()) { 02404 if (PointeeRD->isAbstract()) { 02405 // If the class is abstract, we warn by default, because we're 02406 // sure the code has undefined behavior. 02407 Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor) 02408 << PointeeElem; 02409 } else if (!ArrayForm) { 02410 // Otherwise, if this is not an array delete, it's a bit suspect, 02411 // but not necessarily wrong. 02412 Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem; 02413 } 02414 } 02415 } 02416 02417 } 02418 02419 if (!OperatorDelete) 02420 // Look for a global declaration. 02421 OperatorDelete = FindUsualDeallocationFunction( 02422 StartLoc, !RequireCompleteType(StartLoc, Pointee, 0) && 02423 (!ArrayForm || UsualArrayDeleteWantsSize || 02424 Pointee.isDestructedType()), 02425 DeleteName); 02426 02427 MarkFunctionReferenced(StartLoc, OperatorDelete); 02428 02429 // Check access and ambiguity of operator delete and destructor. 02430 if (PointeeRD) { 02431 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 02432 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor, 02433 PDiag(diag::err_access_dtor) << PointeeElem); 02434 } 02435 } 02436 } 02437 02438 return new (Context) CXXDeleteExpr( 02439 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten, 02440 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc); 02441 } 02442 02443 /// \brief Check the use of the given variable as a C++ condition in an if, 02444 /// while, do-while, or switch statement. 02445 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar, 02446 SourceLocation StmtLoc, 02447 bool ConvertToBoolean) { 02448 if (ConditionVar->isInvalidDecl()) 02449 return ExprError(); 02450 02451 QualType T = ConditionVar->getType(); 02452 02453 // C++ [stmt.select]p2: 02454 // The declarator shall not specify a function or an array. 02455 if (T->isFunctionType()) 02456 return ExprError(Diag(ConditionVar->getLocation(), 02457 diag::err_invalid_use_of_function_type) 02458 << ConditionVar->getSourceRange()); 02459 else if (T->isArrayType()) 02460 return ExprError(Diag(ConditionVar->getLocation(), 02461 diag::err_invalid_use_of_array_type) 02462 << ConditionVar->getSourceRange()); 02463 02464 ExprResult Condition = DeclRefExpr::Create( 02465 Context, NestedNameSpecifierLoc(), SourceLocation(), ConditionVar, 02466 /*enclosing*/ false, ConditionVar->getLocation(), 02467 ConditionVar->getType().getNonReferenceType(), VK_LValue); 02468 02469 MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get())); 02470 02471 if (ConvertToBoolean) { 02472 Condition = CheckBooleanCondition(Condition.get(), StmtLoc); 02473 if (Condition.isInvalid()) 02474 return ExprError(); 02475 } 02476 02477 return Condition; 02478 } 02479 02480 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. 02481 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) { 02482 // C++ 6.4p4: 02483 // The value of a condition that is an initialized declaration in a statement 02484 // other than a switch statement is the value of the declared variable 02485 // implicitly converted to type bool. If that conversion is ill-formed, the 02486 // program is ill-formed. 02487 // The value of a condition that is an expression is the value of the 02488 // expression, implicitly converted to bool. 02489 // 02490 return PerformContextuallyConvertToBool(CondExpr); 02491 } 02492 02493 /// Helper function to determine whether this is the (deprecated) C++ 02494 /// conversion from a string literal to a pointer to non-const char or 02495 /// non-const wchar_t (for narrow and wide string literals, 02496 /// respectively). 02497 bool 02498 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { 02499 // Look inside the implicit cast, if it exists. 02500 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From)) 02501 From = Cast->getSubExpr(); 02502 02503 // A string literal (2.13.4) that is not a wide string literal can 02504 // be converted to an rvalue of type "pointer to char"; a wide 02505 // string literal can be converted to an rvalue of type "pointer 02506 // to wchar_t" (C++ 4.2p2). 02507 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens())) 02508 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) 02509 if (const BuiltinType *ToPointeeType 02510 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) { 02511 // This conversion is considered only when there is an 02512 // explicit appropriate pointer target type (C++ 4.2p2). 02513 if (!ToPtrType->getPointeeType().hasQualifiers()) { 02514 switch (StrLit->getKind()) { 02515 case StringLiteral::UTF8: 02516 case StringLiteral::UTF16: 02517 case StringLiteral::UTF32: 02518 // We don't allow UTF literals to be implicitly converted 02519 break; 02520 case StringLiteral::Ascii: 02521 return (ToPointeeType->getKind() == BuiltinType::Char_U || 02522 ToPointeeType->getKind() == BuiltinType::Char_S); 02523 case StringLiteral::Wide: 02524 return ToPointeeType->isWideCharType(); 02525 } 02526 } 02527 } 02528 02529 return false; 02530 } 02531 02532 static ExprResult BuildCXXCastArgument(Sema &S, 02533 SourceLocation CastLoc, 02534 QualType Ty, 02535 CastKind Kind, 02536 CXXMethodDecl *Method, 02537 DeclAccessPair FoundDecl, 02538 bool HadMultipleCandidates, 02539 Expr *From) { 02540 switch (Kind) { 02541 default: llvm_unreachable("Unhandled cast kind!"); 02542 case CK_ConstructorConversion: { 02543 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method); 02544 SmallVector<Expr*, 8> ConstructorArgs; 02545 02546 if (S.RequireNonAbstractType(CastLoc, Ty, 02547 diag::err_allocation_of_abstract_type)) 02548 return ExprError(); 02549 02550 if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs)) 02551 return ExprError(); 02552 02553 S.CheckConstructorAccess(CastLoc, Constructor, 02554 InitializedEntity::InitializeTemporary(Ty), 02555 Constructor->getAccess()); 02556 02557 ExprResult Result = S.BuildCXXConstructExpr( 02558 CastLoc, Ty, cast<CXXConstructorDecl>(Method), 02559 ConstructorArgs, HadMultipleCandidates, 02560 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 02561 CXXConstructExpr::CK_Complete, SourceRange()); 02562 if (Result.isInvalid()) 02563 return ExprError(); 02564 02565 return S.MaybeBindToTemporary(Result.getAs<Expr>()); 02566 } 02567 02568 case CK_UserDefinedConversion: { 02569 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!"); 02570 02571 // Create an implicit call expr that calls it. 02572 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method); 02573 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv, 02574 HadMultipleCandidates); 02575 if (Result.isInvalid()) 02576 return ExprError(); 02577 // Record usage of conversion in an implicit cast. 02578 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(), 02579 CK_UserDefinedConversion, Result.get(), 02580 nullptr, Result.get()->getValueKind()); 02581 02582 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl); 02583 02584 return S.MaybeBindToTemporary(Result.get()); 02585 } 02586 } 02587 } 02588 02589 /// PerformImplicitConversion - Perform an implicit conversion of the 02590 /// expression From to the type ToType using the pre-computed implicit 02591 /// conversion sequence ICS. Returns the converted 02592 /// expression. Action is the kind of conversion we're performing, 02593 /// used in the error message. 02594 ExprResult 02595 Sema::PerformImplicitConversion(Expr *From, QualType ToType, 02596 const ImplicitConversionSequence &ICS, 02597 AssignmentAction Action, 02598 CheckedConversionKind CCK) { 02599 switch (ICS.getKind()) { 02600 case ImplicitConversionSequence::StandardConversion: { 02601 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard, 02602 Action, CCK); 02603 if (Res.isInvalid()) 02604 return ExprError(); 02605 From = Res.get(); 02606 break; 02607 } 02608 02609 case ImplicitConversionSequence::UserDefinedConversion: { 02610 02611 FunctionDecl *FD = ICS.UserDefined.ConversionFunction; 02612 CastKind CastKind; 02613 QualType BeforeToType; 02614 assert(FD && "FIXME: aggregate initialization from init list"); 02615 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) { 02616 CastKind = CK_UserDefinedConversion; 02617 02618 // If the user-defined conversion is specified by a conversion function, 02619 // the initial standard conversion sequence converts the source type to 02620 // the implicit object parameter of the conversion function. 02621 BeforeToType = Context.getTagDeclType(Conv->getParent()); 02622 } else { 02623 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD); 02624 CastKind = CK_ConstructorConversion; 02625 // Do no conversion if dealing with ... for the first conversion. 02626 if (!ICS.UserDefined.EllipsisConversion) { 02627 // If the user-defined conversion is specified by a constructor, the 02628 // initial standard conversion sequence converts the source type to the 02629 // type required by the argument of the constructor 02630 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); 02631 } 02632 } 02633 // Watch out for ellipsis conversion. 02634 if (!ICS.UserDefined.EllipsisConversion) { 02635 ExprResult Res = 02636 PerformImplicitConversion(From, BeforeToType, 02637 ICS.UserDefined.Before, AA_Converting, 02638 CCK); 02639 if (Res.isInvalid()) 02640 return ExprError(); 02641 From = Res.get(); 02642 } 02643 02644 ExprResult CastArg 02645 = BuildCXXCastArgument(*this, 02646 From->getLocStart(), 02647 ToType.getNonReferenceType(), 02648 CastKind, cast<CXXMethodDecl>(FD), 02649 ICS.UserDefined.FoundConversionFunction, 02650 ICS.UserDefined.HadMultipleCandidates, 02651 From); 02652 02653 if (CastArg.isInvalid()) 02654 return ExprError(); 02655 02656 From = CastArg.get(); 02657 02658 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After, 02659 AA_Converting, CCK); 02660 } 02661 02662 case ImplicitConversionSequence::AmbiguousConversion: 02663 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(), 02664 PDiag(diag::err_typecheck_ambiguous_condition) 02665 << From->getSourceRange()); 02666 return ExprError(); 02667 02668 case ImplicitConversionSequence::EllipsisConversion: 02669 llvm_unreachable("Cannot perform an ellipsis conversion"); 02670 02671 case ImplicitConversionSequence::BadConversion: 02672 return ExprError(); 02673 } 02674 02675 // Everything went well. 02676 return From; 02677 } 02678 02679 /// PerformImplicitConversion - Perform an implicit conversion of the 02680 /// expression From to the type ToType by following the standard 02681 /// conversion sequence SCS. Returns the converted 02682 /// expression. Flavor is the context in which we're performing this 02683 /// conversion, for use in error messages. 02684 ExprResult 02685 Sema::PerformImplicitConversion(Expr *From, QualType ToType, 02686 const StandardConversionSequence& SCS, 02687 AssignmentAction Action, 02688 CheckedConversionKind CCK) { 02689 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast); 02690 02691 // Overall FIXME: we are recomputing too many types here and doing far too 02692 // much extra work. What this means is that we need to keep track of more 02693 // information that is computed when we try the implicit conversion initially, 02694 // so that we don't need to recompute anything here. 02695 QualType FromType = From->getType(); 02696 02697 if (SCS.CopyConstructor) { 02698 // FIXME: When can ToType be a reference type? 02699 assert(!ToType->isReferenceType()); 02700 if (SCS.Second == ICK_Derived_To_Base) { 02701 SmallVector<Expr*, 8> ConstructorArgs; 02702 if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor), 02703 From, /*FIXME:ConstructLoc*/SourceLocation(), 02704 ConstructorArgs)) 02705 return ExprError(); 02706 return BuildCXXConstructExpr( 02707 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, SCS.CopyConstructor, 02708 ConstructorArgs, /*HadMultipleCandidates*/ false, 02709 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 02710 CXXConstructExpr::CK_Complete, SourceRange()); 02711 } 02712 return BuildCXXConstructExpr( 02713 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, SCS.CopyConstructor, 02714 From, /*HadMultipleCandidates*/ false, 02715 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 02716 CXXConstructExpr::CK_Complete, SourceRange()); 02717 } 02718 02719 // Resolve overloaded function references. 02720 if (Context.hasSameType(FromType, Context.OverloadTy)) { 02721 DeclAccessPair Found; 02722 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, 02723 true, Found); 02724 if (!Fn) 02725 return ExprError(); 02726 02727 if (DiagnoseUseOfDecl(Fn, From->getLocStart())) 02728 return ExprError(); 02729 02730 From = FixOverloadedFunctionReference(From, Found, Fn); 02731 FromType = From->getType(); 02732 } 02733 02734 // If we're converting to an atomic type, first convert to the corresponding 02735 // non-atomic type. 02736 QualType ToAtomicType; 02737 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) { 02738 ToAtomicType = ToType; 02739 ToType = ToAtomic->getValueType(); 02740 } 02741 02742 // Perform the first implicit conversion. 02743 switch (SCS.First) { 02744 case ICK_Identity: 02745 // Nothing to do. 02746 break; 02747 02748 case ICK_Lvalue_To_Rvalue: { 02749 assert(From->getObjectKind() != OK_ObjCProperty); 02750 FromType = FromType.getUnqualifiedType(); 02751 ExprResult FromRes = DefaultLvalueConversion(From); 02752 assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!"); 02753 From = FromRes.get(); 02754 break; 02755 } 02756 02757 case ICK_Array_To_Pointer: 02758 FromType = Context.getArrayDecayedType(FromType); 02759 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, 02760 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 02761 break; 02762 02763 case ICK_Function_To_Pointer: 02764 FromType = Context.getPointerType(FromType); 02765 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay, 02766 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 02767 break; 02768 02769 default: 02770 llvm_unreachable("Improper first standard conversion"); 02771 } 02772 02773 // Perform the second implicit conversion 02774 switch (SCS.Second) { 02775 case ICK_Identity: 02776 // If both sides are functions (or pointers/references to them), there could 02777 // be incompatible exception declarations. 02778 if (CheckExceptionSpecCompatibility(From, ToType)) 02779 return ExprError(); 02780 // Nothing else to do. 02781 break; 02782 02783 case ICK_NoReturn_Adjustment: 02784 // If both sides are functions (or pointers/references to them), there could 02785 // be incompatible exception declarations. 02786 if (CheckExceptionSpecCompatibility(From, ToType)) 02787 return ExprError(); 02788 02789 From = ImpCastExprToType(From, ToType, CK_NoOp, 02790 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 02791 break; 02792 02793 case ICK_Integral_Promotion: 02794 case ICK_Integral_Conversion: 02795 if (ToType->isBooleanType()) { 02796 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() && 02797 SCS.Second == ICK_Integral_Promotion && 02798 "only enums with fixed underlying type can promote to bool"); 02799 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, 02800 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 02801 } else { 02802 From = ImpCastExprToType(From, ToType, CK_IntegralCast, 02803 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 02804 } 02805 break; 02806 02807 case ICK_Floating_Promotion: 02808 case ICK_Floating_Conversion: 02809 From = ImpCastExprToType(From, ToType, CK_FloatingCast, 02810 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 02811 break; 02812 02813 case ICK_Complex_Promotion: 02814 case ICK_Complex_Conversion: { 02815 QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType(); 02816 QualType ToEl = ToType->getAs<ComplexType>()->getElementType(); 02817 CastKind CK; 02818 if (FromEl->isRealFloatingType()) { 02819 if (ToEl->isRealFloatingType()) 02820 CK = CK_FloatingComplexCast; 02821 else 02822 CK = CK_FloatingComplexToIntegralComplex; 02823 } else if (ToEl->isRealFloatingType()) { 02824 CK = CK_IntegralComplexToFloatingComplex; 02825 } else { 02826 CK = CK_IntegralComplexCast; 02827 } 02828 From = ImpCastExprToType(From, ToType, CK, 02829 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 02830 break; 02831 } 02832 02833 case ICK_Floating_Integral: 02834 if (ToType->isRealFloatingType()) 02835 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, 02836 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 02837 else 02838 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, 02839 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 02840 break; 02841 02842 case ICK_Compatible_Conversion: 02843 From = ImpCastExprToType(From, ToType, CK_NoOp, 02844 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 02845 break; 02846 02847 case ICK_Writeback_Conversion: 02848 case ICK_Pointer_Conversion: { 02849 if (SCS.IncompatibleObjC && Action != AA_Casting) { 02850 // Diagnose incompatible Objective-C conversions 02851 if (Action == AA_Initializing || Action == AA_Assigning) 02852 Diag(From->getLocStart(), 02853 diag::ext_typecheck_convert_incompatible_pointer) 02854 << ToType << From->getType() << Action 02855 << From->getSourceRange() << 0; 02856 else 02857 Diag(From->getLocStart(), 02858 diag::ext_typecheck_convert_incompatible_pointer) 02859 << From->getType() << ToType << Action 02860 << From->getSourceRange() << 0; 02861 02862 if (From->getType()->isObjCObjectPointerType() && 02863 ToType->isObjCObjectPointerType()) 02864 EmitRelatedResultTypeNote(From); 02865 } 02866 else if (getLangOpts().ObjCAutoRefCount && 02867 !CheckObjCARCUnavailableWeakConversion(ToType, 02868 From->getType())) { 02869 if (Action == AA_Initializing) 02870 Diag(From->getLocStart(), 02871 diag::err_arc_weak_unavailable_assign); 02872 else 02873 Diag(From->getLocStart(), 02874 diag::err_arc_convesion_of_weak_unavailable) 02875 << (Action == AA_Casting) << From->getType() << ToType 02876 << From->getSourceRange(); 02877 } 02878 02879 CastKind Kind = CK_Invalid; 02880 CXXCastPath BasePath; 02881 if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle)) 02882 return ExprError(); 02883 02884 // Make sure we extend blocks if necessary. 02885 // FIXME: doing this here is really ugly. 02886 if (Kind == CK_BlockPointerToObjCPointerCast) { 02887 ExprResult E = From; 02888 (void) PrepareCastToObjCObjectPointer(E); 02889 From = E.get(); 02890 } 02891 if (getLangOpts().ObjCAutoRefCount) 02892 CheckObjCARCConversion(SourceRange(), ToType, From, CCK); 02893 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK) 02894 .get(); 02895 break; 02896 } 02897 02898 case ICK_Pointer_Member: { 02899 CastKind Kind = CK_Invalid; 02900 CXXCastPath BasePath; 02901 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle)) 02902 return ExprError(); 02903 if (CheckExceptionSpecCompatibility(From, ToType)) 02904 return ExprError(); 02905 02906 // We may not have been able to figure out what this member pointer resolved 02907 // to up until this exact point. Attempt to lock-in it's inheritance model. 02908 QualType FromType = From->getType(); 02909 if (FromType->isMemberPointerType()) 02910 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) 02911 RequireCompleteType(From->getExprLoc(), FromType, 0); 02912 02913 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK) 02914 .get(); 02915 break; 02916 } 02917 02918 case ICK_Boolean_Conversion: 02919 // Perform half-to-boolean conversion via float. 02920 if (From->getType()->isHalfType()) { 02921 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get(); 02922 FromType = Context.FloatTy; 02923 } 02924 02925 From = ImpCastExprToType(From, Context.BoolTy, 02926 ScalarTypeToBooleanCastKind(FromType), 02927 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 02928 break; 02929 02930 case ICK_Derived_To_Base: { 02931 CXXCastPath BasePath; 02932 if (CheckDerivedToBaseConversion(From->getType(), 02933 ToType.getNonReferenceType(), 02934 From->getLocStart(), 02935 From->getSourceRange(), 02936 &BasePath, 02937 CStyle)) 02938 return ExprError(); 02939 02940 From = ImpCastExprToType(From, ToType.getNonReferenceType(), 02941 CK_DerivedToBase, From->getValueKind(), 02942 &BasePath, CCK).get(); 02943 break; 02944 } 02945 02946 case ICK_Vector_Conversion: 02947 From = ImpCastExprToType(From, ToType, CK_BitCast, 02948 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 02949 break; 02950 02951 case ICK_Vector_Splat: 02952 From = ImpCastExprToType(From, ToType, CK_VectorSplat, 02953 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 02954 break; 02955 02956 case ICK_Complex_Real: 02957 // Case 1. x -> _Complex y 02958 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) { 02959 QualType ElType = ToComplex->getElementType(); 02960 bool isFloatingComplex = ElType->isRealFloatingType(); 02961 02962 // x -> y 02963 if (Context.hasSameUnqualifiedType(ElType, From->getType())) { 02964 // do nothing 02965 } else if (From->getType()->isRealFloatingType()) { 02966 From = ImpCastExprToType(From, ElType, 02967 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get(); 02968 } else { 02969 assert(From->getType()->isIntegerType()); 02970 From = ImpCastExprToType(From, ElType, 02971 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get(); 02972 } 02973 // y -> _Complex y 02974 From = ImpCastExprToType(From, ToType, 02975 isFloatingComplex ? CK_FloatingRealToComplex 02976 : CK_IntegralRealToComplex).get(); 02977 02978 // Case 2. _Complex x -> y 02979 } else { 02980 const ComplexType *FromComplex = From->getType()->getAs<ComplexType>(); 02981 assert(FromComplex); 02982 02983 QualType ElType = FromComplex->getElementType(); 02984 bool isFloatingComplex = ElType->isRealFloatingType(); 02985 02986 // _Complex x -> x 02987 From = ImpCastExprToType(From, ElType, 02988 isFloatingComplex ? CK_FloatingComplexToReal 02989 : CK_IntegralComplexToReal, 02990 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 02991 02992 // x -> y 02993 if (Context.hasSameUnqualifiedType(ElType, ToType)) { 02994 // do nothing 02995 } else if (ToType->isRealFloatingType()) { 02996 From = ImpCastExprToType(From, ToType, 02997 isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating, 02998 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 02999 } else { 03000 assert(ToType->isIntegerType()); 03001 From = ImpCastExprToType(From, ToType, 03002 isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast, 03003 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 03004 } 03005 } 03006 break; 03007 03008 case ICK_Block_Pointer_Conversion: { 03009 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast, 03010 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 03011 break; 03012 } 03013 03014 case ICK_TransparentUnionConversion: { 03015 ExprResult FromRes = From; 03016 Sema::AssignConvertType ConvTy = 03017 CheckTransparentUnionArgumentConstraints(ToType, FromRes); 03018 if (FromRes.isInvalid()) 03019 return ExprError(); 03020 From = FromRes.get(); 03021 assert ((ConvTy == Sema::Compatible) && 03022 "Improper transparent union conversion"); 03023 (void)ConvTy; 03024 break; 03025 } 03026 03027 case ICK_Zero_Event_Conversion: 03028 From = ImpCastExprToType(From, ToType, 03029 CK_ZeroToOCLEvent, 03030 From->getValueKind()).get(); 03031 break; 03032 03033 case ICK_Lvalue_To_Rvalue: 03034 case ICK_Array_To_Pointer: 03035 case ICK_Function_To_Pointer: 03036 case ICK_Qualification: 03037 case ICK_Num_Conversion_Kinds: 03038 llvm_unreachable("Improper second standard conversion"); 03039 } 03040 03041 switch (SCS.Third) { 03042 case ICK_Identity: 03043 // Nothing to do. 03044 break; 03045 03046 case ICK_Qualification: { 03047 // The qualification keeps the category of the inner expression, unless the 03048 // target type isn't a reference. 03049 ExprValueKind VK = ToType->isReferenceType() ? 03050 From->getValueKind() : VK_RValue; 03051 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), 03052 CK_NoOp, VK, /*BasePath=*/nullptr, CCK).get(); 03053 03054 if (SCS.DeprecatedStringLiteralToCharPtr && 03055 !getLangOpts().WritableStrings) { 03056 Diag(From->getLocStart(), getLangOpts().CPlusPlus11 03057 ? diag::ext_deprecated_string_literal_conversion 03058 : diag::warn_deprecated_string_literal_conversion) 03059 << ToType.getNonReferenceType(); 03060 } 03061 03062 break; 03063 } 03064 03065 default: 03066 llvm_unreachable("Improper third standard conversion"); 03067 } 03068 03069 // If this conversion sequence involved a scalar -> atomic conversion, perform 03070 // that conversion now. 03071 if (!ToAtomicType.isNull()) { 03072 assert(Context.hasSameType( 03073 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())); 03074 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic, 03075 VK_RValue, nullptr, CCK).get(); 03076 } 03077 03078 return From; 03079 } 03080 03081 /// \brief Check the completeness of a type in a unary type trait. 03082 /// 03083 /// If the particular type trait requires a complete type, tries to complete 03084 /// it. If completing the type fails, a diagnostic is emitted and false 03085 /// returned. If completing the type succeeds or no completion was required, 03086 /// returns true. 03087 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT, 03088 SourceLocation Loc, 03089 QualType ArgTy) { 03090 // C++0x [meta.unary.prop]p3: 03091 // For all of the class templates X declared in this Clause, instantiating 03092 // that template with a template argument that is a class template 03093 // specialization may result in the implicit instantiation of the template 03094 // argument if and only if the semantics of X require that the argument 03095 // must be a complete type. 03096 // We apply this rule to all the type trait expressions used to implement 03097 // these class templates. We also try to follow any GCC documented behavior 03098 // in these expressions to ensure portability of standard libraries. 03099 switch (UTT) { 03100 default: llvm_unreachable("not a UTT"); 03101 // is_complete_type somewhat obviously cannot require a complete type. 03102 case UTT_IsCompleteType: 03103 // Fall-through 03104 03105 // These traits are modeled on the type predicates in C++0x 03106 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as 03107 // requiring a complete type, as whether or not they return true cannot be 03108 // impacted by the completeness of the type. 03109 case UTT_IsVoid: 03110 case UTT_IsIntegral: 03111 case UTT_IsFloatingPoint: 03112 case UTT_IsArray: 03113 case UTT_IsPointer: 03114 case UTT_IsLvalueReference: 03115 case UTT_IsRvalueReference: 03116 case UTT_IsMemberFunctionPointer: 03117 case UTT_IsMemberObjectPointer: 03118 case UTT_IsEnum: 03119 case UTT_IsUnion: 03120 case UTT_IsClass: 03121 case UTT_IsFunction: 03122 case UTT_IsReference: 03123 case UTT_IsArithmetic: 03124 case UTT_IsFundamental: 03125 case UTT_IsObject: 03126 case UTT_IsScalar: 03127 case UTT_IsCompound: 03128 case UTT_IsMemberPointer: 03129 // Fall-through 03130 03131 // These traits are modeled on type predicates in C++0x [meta.unary.prop] 03132 // which requires some of its traits to have the complete type. However, 03133 // the completeness of the type cannot impact these traits' semantics, and 03134 // so they don't require it. This matches the comments on these traits in 03135 // Table 49. 03136 case UTT_IsConst: 03137 case UTT_IsVolatile: 03138 case UTT_IsSigned: 03139 case UTT_IsUnsigned: 03140 return true; 03141 03142 // C++0x [meta.unary.prop] Table 49 requires the following traits to be 03143 // applied to a complete type. 03144 case UTT_IsTrivial: 03145 case UTT_IsTriviallyCopyable: 03146 case UTT_IsStandardLayout: 03147 case UTT_IsPOD: 03148 case UTT_IsLiteral: 03149 case UTT_IsEmpty: 03150 case UTT_IsPolymorphic: 03151 case UTT_IsAbstract: 03152 case UTT_IsInterfaceClass: 03153 case UTT_IsDestructible: 03154 case UTT_IsNothrowDestructible: 03155 // Fall-through 03156 03157 // These traits require a complete type. 03158 case UTT_IsFinal: 03159 case UTT_IsSealed: 03160 03161 // These trait expressions are designed to help implement predicates in 03162 // [meta.unary.prop] despite not being named the same. They are specified 03163 // by both GCC and the Embarcadero C++ compiler, and require the complete 03164 // type due to the overarching C++0x type predicates being implemented 03165 // requiring the complete type. 03166 case UTT_HasNothrowAssign: 03167 case UTT_HasNothrowMoveAssign: 03168 case UTT_HasNothrowConstructor: 03169 case UTT_HasNothrowCopy: 03170 case UTT_HasTrivialAssign: 03171 case UTT_HasTrivialMoveAssign: 03172 case UTT_HasTrivialDefaultConstructor: 03173 case UTT_HasTrivialMoveConstructor: 03174 case UTT_HasTrivialCopy: 03175 case UTT_HasTrivialDestructor: 03176 case UTT_HasVirtualDestructor: 03177 // Arrays of unknown bound are expressly allowed. 03178 QualType ElTy = ArgTy; 03179 if (ArgTy->isIncompleteArrayType()) 03180 ElTy = S.Context.getAsArrayType(ArgTy)->getElementType(); 03181 03182 // The void type is expressly allowed. 03183 if (ElTy->isVoidType()) 03184 return true; 03185 03186 return !S.RequireCompleteType( 03187 Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr); 03188 } 03189 } 03190 03191 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op, 03192 Sema &Self, SourceLocation KeyLoc, ASTContext &C, 03193 bool (CXXRecordDecl::*HasTrivial)() const, 03194 bool (CXXRecordDecl::*HasNonTrivial)() const, 03195 bool (CXXMethodDecl::*IsDesiredOp)() const) 03196 { 03197 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 03198 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)()) 03199 return true; 03200 03201 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op); 03202 DeclarationNameInfo NameInfo(Name, KeyLoc); 03203 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName); 03204 if (Self.LookupQualifiedName(Res, RD)) { 03205 bool FoundOperator = false; 03206 Res.suppressDiagnostics(); 03207 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end(); 03208 Op != OpEnd; ++Op) { 03209 if (isa<FunctionTemplateDecl>(*Op)) 03210 continue; 03211 03212 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op); 03213 if((Operator->*IsDesiredOp)()) { 03214 FoundOperator = true; 03215 const FunctionProtoType *CPT = 03216 Operator->getType()->getAs<FunctionProtoType>(); 03217 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 03218 if (!CPT || !CPT->isNothrow(C)) 03219 return false; 03220 } 03221 } 03222 return FoundOperator; 03223 } 03224 return false; 03225 } 03226 03227 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT, 03228 SourceLocation KeyLoc, QualType T) { 03229 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); 03230 03231 ASTContext &C = Self.Context; 03232 switch(UTT) { 03233 default: llvm_unreachable("not a UTT"); 03234 // Type trait expressions corresponding to the primary type category 03235 // predicates in C++0x [meta.unary.cat]. 03236 case UTT_IsVoid: 03237 return T->isVoidType(); 03238 case UTT_IsIntegral: 03239 return T->isIntegralType(C); 03240 case UTT_IsFloatingPoint: 03241 return T->isFloatingType(); 03242 case UTT_IsArray: 03243 return T->isArrayType(); 03244 case UTT_IsPointer: 03245 return T->isPointerType(); 03246 case UTT_IsLvalueReference: 03247 return T->isLValueReferenceType(); 03248 case UTT_IsRvalueReference: 03249 return T->isRValueReferenceType(); 03250 case UTT_IsMemberFunctionPointer: 03251 return T->isMemberFunctionPointerType(); 03252 case UTT_IsMemberObjectPointer: 03253 return T->isMemberDataPointerType(); 03254 case UTT_IsEnum: 03255 return T->isEnumeralType(); 03256 case UTT_IsUnion: 03257 return T->isUnionType(); 03258 case UTT_IsClass: 03259 return T->isClassType() || T->isStructureType() || T->isInterfaceType(); 03260 case UTT_IsFunction: 03261 return T->isFunctionType(); 03262 03263 // Type trait expressions which correspond to the convenient composition 03264 // predicates in C++0x [meta.unary.comp]. 03265 case UTT_IsReference: 03266 return T->isReferenceType(); 03267 case UTT_IsArithmetic: 03268 return T->isArithmeticType() && !T->isEnumeralType(); 03269 case UTT_IsFundamental: 03270 return T->isFundamentalType(); 03271 case UTT_IsObject: 03272 return T->isObjectType(); 03273 case UTT_IsScalar: 03274 // Note: semantic analysis depends on Objective-C lifetime types to be 03275 // considered scalar types. However, such types do not actually behave 03276 // like scalar types at run time (since they may require retain/release 03277 // operations), so we report them as non-scalar. 03278 if (T->isObjCLifetimeType()) { 03279 switch (T.getObjCLifetime()) { 03280 case Qualifiers::OCL_None: 03281 case Qualifiers::OCL_ExplicitNone: 03282 return true; 03283 03284 case Qualifiers::OCL_Strong: 03285 case Qualifiers::OCL_Weak: 03286 case Qualifiers::OCL_Autoreleasing: 03287 return false; 03288 } 03289 } 03290 03291 return T->isScalarType(); 03292 case UTT_IsCompound: 03293 return T->isCompoundType(); 03294 case UTT_IsMemberPointer: 03295 return T->isMemberPointerType(); 03296 03297 // Type trait expressions which correspond to the type property predicates 03298 // in C++0x [meta.unary.prop]. 03299 case UTT_IsConst: 03300 return T.isConstQualified(); 03301 case UTT_IsVolatile: 03302 return T.isVolatileQualified(); 03303 case UTT_IsTrivial: 03304 return T.isTrivialType(Self.Context); 03305 case UTT_IsTriviallyCopyable: 03306 return T.isTriviallyCopyableType(Self.Context); 03307 case UTT_IsStandardLayout: 03308 return T->isStandardLayoutType(); 03309 case UTT_IsPOD: 03310 return T.isPODType(Self.Context); 03311 case UTT_IsLiteral: 03312 return T->isLiteralType(Self.Context); 03313 case UTT_IsEmpty: 03314 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 03315 return !RD->isUnion() && RD->isEmpty(); 03316 return false; 03317 case UTT_IsPolymorphic: 03318 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 03319 return RD->isPolymorphic(); 03320 return false; 03321 case UTT_IsAbstract: 03322 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 03323 return RD->isAbstract(); 03324 return false; 03325 case UTT_IsInterfaceClass: 03326 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 03327 return RD->isInterface(); 03328 return false; 03329 case UTT_IsFinal: 03330 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 03331 return RD->hasAttr<FinalAttr>(); 03332 return false; 03333 case UTT_IsSealed: 03334 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 03335 if (FinalAttr *FA = RD->getAttr<FinalAttr>()) 03336 return FA->isSpelledAsSealed(); 03337 return false; 03338 case UTT_IsSigned: 03339 return T->isSignedIntegerType(); 03340 case UTT_IsUnsigned: 03341 return T->isUnsignedIntegerType(); 03342 03343 // Type trait expressions which query classes regarding their construction, 03344 // destruction, and copying. Rather than being based directly on the 03345 // related type predicates in the standard, they are specified by both 03346 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those 03347 // specifications. 03348 // 03349 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html 03350 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 03351 // 03352 // Note that these builtins do not behave as documented in g++: if a class 03353 // has both a trivial and a non-trivial special member of a particular kind, 03354 // they return false! For now, we emulate this behavior. 03355 // FIXME: This appears to be a g++ bug: more complex cases reveal that it 03356 // does not correctly compute triviality in the presence of multiple special 03357 // members of the same kind. Revisit this once the g++ bug is fixed. 03358 case UTT_HasTrivialDefaultConstructor: 03359 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 03360 // If __is_pod (type) is true then the trait is true, else if type is 03361 // a cv class or union type (or array thereof) with a trivial default 03362 // constructor ([class.ctor]) then the trait is true, else it is false. 03363 if (T.isPODType(Self.Context)) 03364 return true; 03365 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 03366 return RD->hasTrivialDefaultConstructor() && 03367 !RD->hasNonTrivialDefaultConstructor(); 03368 return false; 03369 case UTT_HasTrivialMoveConstructor: 03370 // This trait is implemented by MSVC 2012 and needed to parse the 03371 // standard library headers. Specifically this is used as the logic 03372 // behind std::is_trivially_move_constructible (20.9.4.3). 03373 if (T.isPODType(Self.Context)) 03374 return true; 03375 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 03376 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor(); 03377 return false; 03378 case UTT_HasTrivialCopy: 03379 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 03380 // If __is_pod (type) is true or type is a reference type then 03381 // the trait is true, else if type is a cv class or union type 03382 // with a trivial copy constructor ([class.copy]) then the trait 03383 // is true, else it is false. 03384 if (T.isPODType(Self.Context) || T->isReferenceType()) 03385 return true; 03386 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 03387 return RD->hasTrivialCopyConstructor() && 03388 !RD->hasNonTrivialCopyConstructor(); 03389 return false; 03390 case UTT_HasTrivialMoveAssign: 03391 // This trait is implemented by MSVC 2012 and needed to parse the 03392 // standard library headers. Specifically it is used as the logic 03393 // behind std::is_trivially_move_assignable (20.9.4.3) 03394 if (T.isPODType(Self.Context)) 03395 return true; 03396 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 03397 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment(); 03398 return false; 03399 case UTT_HasTrivialAssign: 03400 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 03401 // If type is const qualified or is a reference type then the 03402 // trait is false. Otherwise if __is_pod (type) is true then the 03403 // trait is true, else if type is a cv class or union type with 03404 // a trivial copy assignment ([class.copy]) then the trait is 03405 // true, else it is false. 03406 // Note: the const and reference restrictions are interesting, 03407 // given that const and reference members don't prevent a class 03408 // from having a trivial copy assignment operator (but do cause 03409 // errors if the copy assignment operator is actually used, q.v. 03410 // [class.copy]p12). 03411 03412 if (T.isConstQualified()) 03413 return false; 03414 if (T.isPODType(Self.Context)) 03415 return true; 03416 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 03417 return RD->hasTrivialCopyAssignment() && 03418 !RD->hasNonTrivialCopyAssignment(); 03419 return false; 03420 case UTT_IsDestructible: 03421 case UTT_IsNothrowDestructible: 03422 // FIXME: Implement UTT_IsDestructible and UTT_IsNothrowDestructible. 03423 // For now, let's fall through. 03424 case UTT_HasTrivialDestructor: 03425 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 03426 // If __is_pod (type) is true or type is a reference type 03427 // then the trait is true, else if type is a cv class or union 03428 // type (or array thereof) with a trivial destructor 03429 // ([class.dtor]) then the trait is true, else it is 03430 // false. 03431 if (T.isPODType(Self.Context) || T->isReferenceType()) 03432 return true; 03433 03434 // Objective-C++ ARC: autorelease types don't require destruction. 03435 if (T->isObjCLifetimeType() && 03436 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 03437 return true; 03438 03439 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 03440 return RD->hasTrivialDestructor(); 03441 return false; 03442 // TODO: Propagate nothrowness for implicitly declared special members. 03443 case UTT_HasNothrowAssign: 03444 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 03445 // If type is const qualified or is a reference type then the 03446 // trait is false. Otherwise if __has_trivial_assign (type) 03447 // is true then the trait is true, else if type is a cv class 03448 // or union type with copy assignment operators that are known 03449 // not to throw an exception then the trait is true, else it is 03450 // false. 03451 if (C.getBaseElementType(T).isConstQualified()) 03452 return false; 03453 if (T->isReferenceType()) 03454 return false; 03455 if (T.isPODType(Self.Context) || T->isObjCLifetimeType()) 03456 return true; 03457 03458 if (const RecordType *RT = T->getAs<RecordType>()) 03459 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 03460 &CXXRecordDecl::hasTrivialCopyAssignment, 03461 &CXXRecordDecl::hasNonTrivialCopyAssignment, 03462 &CXXMethodDecl::isCopyAssignmentOperator); 03463 return false; 03464 case UTT_HasNothrowMoveAssign: 03465 // This trait is implemented by MSVC 2012 and needed to parse the 03466 // standard library headers. Specifically this is used as the logic 03467 // behind std::is_nothrow_move_assignable (20.9.4.3). 03468 if (T.isPODType(Self.Context)) 03469 return true; 03470 03471 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) 03472 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 03473 &CXXRecordDecl::hasTrivialMoveAssignment, 03474 &CXXRecordDecl::hasNonTrivialMoveAssignment, 03475 &CXXMethodDecl::isMoveAssignmentOperator); 03476 return false; 03477 case UTT_HasNothrowCopy: 03478 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 03479 // If __has_trivial_copy (type) is true then the trait is true, else 03480 // if type is a cv class or union type with copy constructors that are 03481 // known not to throw an exception then the trait is true, else it is 03482 // false. 03483 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType()) 03484 return true; 03485 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { 03486 if (RD->hasTrivialCopyConstructor() && 03487 !RD->hasNonTrivialCopyConstructor()) 03488 return true; 03489 03490 bool FoundConstructor = false; 03491 unsigned FoundTQs; 03492 DeclContext::lookup_const_result R = Self.LookupConstructors(RD); 03493 for (DeclContext::lookup_const_iterator Con = R.begin(), 03494 ConEnd = R.end(); Con != ConEnd; ++Con) { 03495 // A template constructor is never a copy constructor. 03496 // FIXME: However, it may actually be selected at the actual overload 03497 // resolution point. 03498 if (isa<FunctionTemplateDecl>(*Con)) 03499 continue; 03500 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con); 03501 if (Constructor->isCopyConstructor(FoundTQs)) { 03502 FoundConstructor = true; 03503 const FunctionProtoType *CPT 03504 = Constructor->getType()->getAs<FunctionProtoType>(); 03505 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 03506 if (!CPT) 03507 return false; 03508 // TODO: check whether evaluating default arguments can throw. 03509 // For now, we'll be conservative and assume that they can throw. 03510 if (!CPT->isNothrow(Self.Context) || CPT->getNumParams() > 1) 03511 return false; 03512 } 03513 } 03514 03515 return FoundConstructor; 03516 } 03517 return false; 03518 case UTT_HasNothrowConstructor: 03519 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 03520 // If __has_trivial_constructor (type) is true then the trait is 03521 // true, else if type is a cv class or union type (or array 03522 // thereof) with a default constructor that is known not to 03523 // throw an exception then the trait is true, else it is false. 03524 if (T.isPODType(C) || T->isObjCLifetimeType()) 03525 return true; 03526 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 03527 if (RD->hasTrivialDefaultConstructor() && 03528 !RD->hasNonTrivialDefaultConstructor()) 03529 return true; 03530 03531 bool FoundConstructor = false; 03532 DeclContext::lookup_const_result R = Self.LookupConstructors(RD); 03533 for (DeclContext::lookup_const_iterator Con = R.begin(), 03534 ConEnd = R.end(); Con != ConEnd; ++Con) { 03535 // FIXME: In C++0x, a constructor template can be a default constructor. 03536 if (isa<FunctionTemplateDecl>(*Con)) 03537 continue; 03538 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con); 03539 if (Constructor->isDefaultConstructor()) { 03540 FoundConstructor = true; 03541 const FunctionProtoType *CPT 03542 = Constructor->getType()->getAs<FunctionProtoType>(); 03543 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 03544 if (!CPT) 03545 return false; 03546 // FIXME: check whether evaluating default arguments can throw. 03547 // For now, we'll be conservative and assume that they can throw. 03548 if (!CPT->isNothrow(Self.Context) || CPT->getNumParams() > 0) 03549 return false; 03550 } 03551 } 03552 return FoundConstructor; 03553 } 03554 return false; 03555 case UTT_HasVirtualDestructor: 03556 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 03557 // If type is a class type with a virtual destructor ([class.dtor]) 03558 // then the trait is true, else it is false. 03559 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 03560 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD)) 03561 return Destructor->isVirtual(); 03562 return false; 03563 03564 // These type trait expressions are modeled on the specifications for the 03565 // Embarcadero C++0x type trait functions: 03566 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 03567 case UTT_IsCompleteType: 03568 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_): 03569 // Returns True if and only if T is a complete type at the point of the 03570 // function call. 03571 return !T->isIncompleteType(); 03572 } 03573 } 03574 03575 /// \brief Determine whether T has a non-trivial Objective-C lifetime in 03576 /// ARC mode. 03577 static bool hasNontrivialObjCLifetime(QualType T) { 03578 switch (T.getObjCLifetime()) { 03579 case Qualifiers::OCL_ExplicitNone: 03580 return false; 03581 03582 case Qualifiers::OCL_Strong: 03583 case Qualifiers::OCL_Weak: 03584 case Qualifiers::OCL_Autoreleasing: 03585 return true; 03586 03587 case Qualifiers::OCL_None: 03588 return T->isObjCLifetimeType(); 03589 } 03590 03591 llvm_unreachable("Unknown ObjC lifetime qualifier"); 03592 } 03593 03594 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 03595 QualType RhsT, SourceLocation KeyLoc); 03596 03597 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc, 03598 ArrayRef<TypeSourceInfo *> Args, 03599 SourceLocation RParenLoc) { 03600 if (Kind <= UTT_Last) 03601 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType()); 03602 03603 if (Kind <= BTT_Last) 03604 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(), 03605 Args[1]->getType(), RParenLoc); 03606 03607 switch (Kind) { 03608 case clang::TT_IsConstructible: 03609 case clang::TT_IsNothrowConstructible: 03610 case clang::TT_IsTriviallyConstructible: { 03611 // C++11 [meta.unary.prop]: 03612 // is_trivially_constructible is defined as: 03613 // 03614 // is_constructible<T, Args...>::value is true and the variable 03615 // definition for is_constructible, as defined below, is known to call 03616 // no operation that is not trivial. 03617 // 03618 // The predicate condition for a template specialization 03619 // is_constructible<T, Args...> shall be satisfied if and only if the 03620 // following variable definition would be well-formed for some invented 03621 // variable t: 03622 // 03623 // T t(create<Args>()...); 03624 assert(!Args.empty()); 03625 03626 // Precondition: T and all types in the parameter pack Args shall be 03627 // complete types, (possibly cv-qualified) void, or arrays of 03628 // unknown bound. 03629 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 03630 QualType ArgTy = Args[I]->getType(); 03631 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType()) 03632 continue; 03633 03634 if (S.RequireCompleteType(KWLoc, ArgTy, 03635 diag::err_incomplete_type_used_in_type_trait_expr)) 03636 return false; 03637 } 03638 03639 // Make sure the first argument is a complete type. 03640 if (Args[0]->getType()->isIncompleteType()) 03641 return false; 03642 03643 // Make sure the first argument is not an abstract type. 03644 CXXRecordDecl *RD = Args[0]->getType()->getAsCXXRecordDecl(); 03645 if (RD && RD->isAbstract()) 03646 return false; 03647 03648 SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs; 03649 SmallVector<Expr *, 2> ArgExprs; 03650 ArgExprs.reserve(Args.size() - 1); 03651 for (unsigned I = 1, N = Args.size(); I != N; ++I) { 03652 QualType T = Args[I]->getType(); 03653 if (T->isObjectType() || T->isFunctionType()) 03654 T = S.Context.getRValueReferenceType(T); 03655 OpaqueArgExprs.push_back( 03656 OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(), 03657 T.getNonLValueExprType(S.Context), 03658 Expr::getValueKindForType(T))); 03659 } 03660 for (Expr &E : OpaqueArgExprs) 03661 ArgExprs.push_back(&E); 03662 03663 // Perform the initialization in an unevaluated context within a SFINAE 03664 // trap at translation unit scope. 03665 EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated); 03666 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true); 03667 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); 03668 InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0])); 03669 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc, 03670 RParenLoc)); 03671 InitializationSequence Init(S, To, InitKind, ArgExprs); 03672 if (Init.Failed()) 03673 return false; 03674 03675 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs); 03676 if (Result.isInvalid() || SFINAE.hasErrorOccurred()) 03677 return false; 03678 03679 if (Kind == clang::TT_IsConstructible) 03680 return true; 03681 03682 if (Kind == clang::TT_IsNothrowConstructible) 03683 return S.canThrow(Result.get()) == CT_Cannot; 03684 03685 if (Kind == clang::TT_IsTriviallyConstructible) { 03686 // Under Objective-C ARC, if the destination has non-trivial Objective-C 03687 // lifetime, this is a non-trivial construction. 03688 if (S.getLangOpts().ObjCAutoRefCount && 03689 hasNontrivialObjCLifetime(Args[0]->getType().getNonReferenceType())) 03690 return false; 03691 03692 // The initialization succeeded; now make sure there are no non-trivial 03693 // calls. 03694 return !Result.get()->hasNonTrivialCall(S.Context); 03695 } 03696 03697 llvm_unreachable("unhandled type trait"); 03698 return false; 03699 } 03700 default: llvm_unreachable("not a TT"); 03701 } 03702 03703 return false; 03704 } 03705 03706 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 03707 ArrayRef<TypeSourceInfo *> Args, 03708 SourceLocation RParenLoc) { 03709 QualType ResultType = Context.getLogicalOperationType(); 03710 03711 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness( 03712 *this, Kind, KWLoc, Args[0]->getType())) 03713 return ExprError(); 03714 03715 bool Dependent = false; 03716 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 03717 if (Args[I]->getType()->isDependentType()) { 03718 Dependent = true; 03719 break; 03720 } 03721 } 03722 03723 bool Result = false; 03724 if (!Dependent) 03725 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc); 03726 03727 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args, 03728 RParenLoc, Result); 03729 } 03730 03731 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 03732 ArrayRef<ParsedType> Args, 03733 SourceLocation RParenLoc) { 03734 SmallVector<TypeSourceInfo *, 4> ConvertedArgs; 03735 ConvertedArgs.reserve(Args.size()); 03736 03737 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 03738 TypeSourceInfo *TInfo; 03739 QualType T = GetTypeFromParser(Args[I], &TInfo); 03740 if (!TInfo) 03741 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc); 03742 03743 ConvertedArgs.push_back(TInfo); 03744 } 03745 03746 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc); 03747 } 03748 03749 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 03750 QualType RhsT, SourceLocation KeyLoc) { 03751 assert(!LhsT->isDependentType() && !RhsT->isDependentType() && 03752 "Cannot evaluate traits of dependent types"); 03753 03754 switch(BTT) { 03755 case BTT_IsBaseOf: { 03756 // C++0x [meta.rel]p2 03757 // Base is a base class of Derived without regard to cv-qualifiers or 03758 // Base and Derived are not unions and name the same class type without 03759 // regard to cv-qualifiers. 03760 03761 const RecordType *lhsRecord = LhsT->getAs<RecordType>(); 03762 if (!lhsRecord) return false; 03763 03764 const RecordType *rhsRecord = RhsT->getAs<RecordType>(); 03765 if (!rhsRecord) return false; 03766 03767 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT) 03768 == (lhsRecord == rhsRecord)); 03769 03770 if (lhsRecord == rhsRecord) 03771 return !lhsRecord->getDecl()->isUnion(); 03772 03773 // C++0x [meta.rel]p2: 03774 // If Base and Derived are class types and are different types 03775 // (ignoring possible cv-qualifiers) then Derived shall be a 03776 // complete type. 03777 if (Self.RequireCompleteType(KeyLoc, RhsT, 03778 diag::err_incomplete_type_used_in_type_trait_expr)) 03779 return false; 03780 03781 return cast<CXXRecordDecl>(rhsRecord->getDecl()) 03782 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl())); 03783 } 03784 case BTT_IsSame: 03785 return Self.Context.hasSameType(LhsT, RhsT); 03786 case BTT_TypeCompatible: 03787 return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(), 03788 RhsT.getUnqualifiedType()); 03789 case BTT_IsConvertible: 03790 case BTT_IsConvertibleTo: { 03791 // C++0x [meta.rel]p4: 03792 // Given the following function prototype: 03793 // 03794 // template <class T> 03795 // typename add_rvalue_reference<T>::type create(); 03796 // 03797 // the predicate condition for a template specialization 03798 // is_convertible<From, To> shall be satisfied if and only if 03799 // the return expression in the following code would be 03800 // well-formed, including any implicit conversions to the return 03801 // type of the function: 03802 // 03803 // To test() { 03804 // return create<From>(); 03805 // } 03806 // 03807 // Access checking is performed as if in a context unrelated to To and 03808 // From. Only the validity of the immediate context of the expression 03809 // of the return-statement (including conversions to the return type) 03810 // is considered. 03811 // 03812 // We model the initialization as a copy-initialization of a temporary 03813 // of the appropriate type, which for this expression is identical to the 03814 // return statement (since NRVO doesn't apply). 03815 03816 // Functions aren't allowed to return function or array types. 03817 if (RhsT->isFunctionType() || RhsT->isArrayType()) 03818 return false; 03819 03820 // A return statement in a void function must have void type. 03821 if (RhsT->isVoidType()) 03822 return LhsT->isVoidType(); 03823 03824 // A function definition requires a complete, non-abstract return type. 03825 if (Self.RequireCompleteType(KeyLoc, RhsT, 0) || 03826 Self.RequireNonAbstractType(KeyLoc, RhsT, 0)) 03827 return false; 03828 03829 // Compute the result of add_rvalue_reference. 03830 if (LhsT->isObjectType() || LhsT->isFunctionType()) 03831 LhsT = Self.Context.getRValueReferenceType(LhsT); 03832 03833 // Build a fake source and destination for initialization. 03834 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT)); 03835 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 03836 Expr::getValueKindForType(LhsT)); 03837 Expr *FromPtr = &From; 03838 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc, 03839 SourceLocation())); 03840 03841 // Perform the initialization in an unevaluated context within a SFINAE 03842 // trap at translation unit scope. 03843 EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated); 03844 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 03845 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 03846 InitializationSequence Init(Self, To, Kind, FromPtr); 03847 if (Init.Failed()) 03848 return false; 03849 03850 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr); 03851 return !Result.isInvalid() && !SFINAE.hasErrorOccurred(); 03852 } 03853 03854 case BTT_IsNothrowAssignable: 03855 case BTT_IsTriviallyAssignable: { 03856 // C++11 [meta.unary.prop]p3: 03857 // is_trivially_assignable is defined as: 03858 // is_assignable<T, U>::value is true and the assignment, as defined by 03859 // is_assignable, is known to call no operation that is not trivial 03860 // 03861 // is_assignable is defined as: 03862 // The expression declval<T>() = declval<U>() is well-formed when 03863 // treated as an unevaluated operand (Clause 5). 03864 // 03865 // For both, T and U shall be complete types, (possibly cv-qualified) 03866 // void, or arrays of unknown bound. 03867 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() && 03868 Self.RequireCompleteType(KeyLoc, LhsT, 03869 diag::err_incomplete_type_used_in_type_trait_expr)) 03870 return false; 03871 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() && 03872 Self.RequireCompleteType(KeyLoc, RhsT, 03873 diag::err_incomplete_type_used_in_type_trait_expr)) 03874 return false; 03875 03876 // cv void is never assignable. 03877 if (LhsT->isVoidType() || RhsT->isVoidType()) 03878 return false; 03879 03880 // Build expressions that emulate the effect of declval<T>() and 03881 // declval<U>(). 03882 if (LhsT->isObjectType() || LhsT->isFunctionType()) 03883 LhsT = Self.Context.getRValueReferenceType(LhsT); 03884 if (RhsT->isObjectType() || RhsT->isFunctionType()) 03885 RhsT = Self.Context.getRValueReferenceType(RhsT); 03886 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 03887 Expr::getValueKindForType(LhsT)); 03888 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context), 03889 Expr::getValueKindForType(RhsT)); 03890 03891 // Attempt the assignment in an unevaluated context within a SFINAE 03892 // trap at translation unit scope. 03893 EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated); 03894 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 03895 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 03896 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs, 03897 &Rhs); 03898 if (Result.isInvalid() || SFINAE.hasErrorOccurred()) 03899 return false; 03900 03901 if (BTT == BTT_IsNothrowAssignable) 03902 return Self.canThrow(Result.get()) == CT_Cannot; 03903 03904 if (BTT == BTT_IsTriviallyAssignable) { 03905 // Under Objective-C ARC, if the destination has non-trivial Objective-C 03906 // lifetime, this is a non-trivial assignment. 03907 if (Self.getLangOpts().ObjCAutoRefCount && 03908 hasNontrivialObjCLifetime(LhsT.getNonReferenceType())) 03909 return false; 03910 03911 return !Result.get()->hasNonTrivialCall(Self.Context); 03912 } 03913 03914 llvm_unreachable("unhandled type trait"); 03915 return false; 03916 } 03917 default: llvm_unreachable("not a BTT"); 03918 } 03919 llvm_unreachable("Unknown type trait or not implemented"); 03920 } 03921 03922 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT, 03923 SourceLocation KWLoc, 03924 ParsedType Ty, 03925 Expr* DimExpr, 03926 SourceLocation RParen) { 03927 TypeSourceInfo *TSInfo; 03928 QualType T = GetTypeFromParser(Ty, &TSInfo); 03929 if (!TSInfo) 03930 TSInfo = Context.getTrivialTypeSourceInfo(T); 03931 03932 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen); 03933 } 03934 03935 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT, 03936 QualType T, Expr *DimExpr, 03937 SourceLocation KeyLoc) { 03938 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); 03939 03940 switch(ATT) { 03941 case ATT_ArrayRank: 03942 if (T->isArrayType()) { 03943 unsigned Dim = 0; 03944 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 03945 ++Dim; 03946 T = AT->getElementType(); 03947 } 03948 return Dim; 03949 } 03950 return 0; 03951 03952 case ATT_ArrayExtent: { 03953 llvm::APSInt Value; 03954 uint64_t Dim; 03955 if (Self.VerifyIntegerConstantExpression(DimExpr, &Value, 03956 diag::err_dimension_expr_not_constant_integer, 03957 false).isInvalid()) 03958 return 0; 03959 if (Value.isSigned() && Value.isNegative()) { 03960 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) 03961 << DimExpr->getSourceRange(); 03962 return 0; 03963 } 03964 Dim = Value.getLimitedValue(); 03965 03966 if (T->isArrayType()) { 03967 unsigned D = 0; 03968 bool Matched = false; 03969 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 03970 if (Dim == D) { 03971 Matched = true; 03972 break; 03973 } 03974 ++D; 03975 T = AT->getElementType(); 03976 } 03977 03978 if (Matched && T->isArrayType()) { 03979 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T)) 03980 return CAT->getSize().getLimitedValue(); 03981 } 03982 } 03983 return 0; 03984 } 03985 } 03986 llvm_unreachable("Unknown type trait or not implemented"); 03987 } 03988 03989 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT, 03990 SourceLocation KWLoc, 03991 TypeSourceInfo *TSInfo, 03992 Expr* DimExpr, 03993 SourceLocation RParen) { 03994 QualType T = TSInfo->getType(); 03995 03996 // FIXME: This should likely be tracked as an APInt to remove any host 03997 // assumptions about the width of size_t on the target. 03998 uint64_t Value = 0; 03999 if (!T->isDependentType()) 04000 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc); 04001 04002 // While the specification for these traits from the Embarcadero C++ 04003 // compiler's documentation says the return type is 'unsigned int', Clang 04004 // returns 'size_t'. On Windows, the primary platform for the Embarcadero 04005 // compiler, there is no difference. On several other platforms this is an 04006 // important distinction. 04007 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr, 04008 RParen, Context.getSizeType()); 04009 } 04010 04011 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET, 04012 SourceLocation KWLoc, 04013 Expr *Queried, 04014 SourceLocation RParen) { 04015 // If error parsing the expression, ignore. 04016 if (!Queried) 04017 return ExprError(); 04018 04019 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen); 04020 04021 return Result; 04022 } 04023 04024 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) { 04025 switch (ET) { 04026 case ET_IsLValueExpr: return E->isLValue(); 04027 case ET_IsRValueExpr: return E->isRValue(); 04028 } 04029 llvm_unreachable("Expression trait not covered by switch"); 04030 } 04031 04032 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET, 04033 SourceLocation KWLoc, 04034 Expr *Queried, 04035 SourceLocation RParen) { 04036 if (Queried->isTypeDependent()) { 04037 // Delay type-checking for type-dependent expressions. 04038 } else if (Queried->getType()->isPlaceholderType()) { 04039 ExprResult PE = CheckPlaceholderExpr(Queried); 04040 if (PE.isInvalid()) return ExprError(); 04041 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen); 04042 } 04043 04044 bool Value = EvaluateExpressionTrait(ET, Queried); 04045 04046 return new (Context) 04047 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy); 04048 } 04049 04050 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS, 04051 ExprValueKind &VK, 04052 SourceLocation Loc, 04053 bool isIndirect) { 04054 assert(!LHS.get()->getType()->isPlaceholderType() && 04055 !RHS.get()->getType()->isPlaceholderType() && 04056 "placeholders should have been weeded out by now"); 04057 04058 // The LHS undergoes lvalue conversions if this is ->*. 04059 if (isIndirect) { 04060 LHS = DefaultLvalueConversion(LHS.get()); 04061 if (LHS.isInvalid()) return QualType(); 04062 } 04063 04064 // The RHS always undergoes lvalue conversions. 04065 RHS = DefaultLvalueConversion(RHS.get()); 04066 if (RHS.isInvalid()) return QualType(); 04067 04068 const char *OpSpelling = isIndirect ? "->*" : ".*"; 04069 // C++ 5.5p2 04070 // The binary operator .* [p3: ->*] binds its second operand, which shall 04071 // be of type "pointer to member of T" (where T is a completely-defined 04072 // class type) [...] 04073 QualType RHSType = RHS.get()->getType(); 04074 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>(); 04075 if (!MemPtr) { 04076 Diag(Loc, diag::err_bad_memptr_rhs) 04077 << OpSpelling << RHSType << RHS.get()->getSourceRange(); 04078 return QualType(); 04079 } 04080 04081 QualType Class(MemPtr->getClass(), 0); 04082 04083 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the 04084 // member pointer points must be completely-defined. However, there is no 04085 // reason for this semantic distinction, and the rule is not enforced by 04086 // other compilers. Therefore, we do not check this property, as it is 04087 // likely to be considered a defect. 04088 04089 // C++ 5.5p2 04090 // [...] to its first operand, which shall be of class T or of a class of 04091 // which T is an unambiguous and accessible base class. [p3: a pointer to 04092 // such a class] 04093 QualType LHSType = LHS.get()->getType(); 04094 if (isIndirect) { 04095 if (const PointerType *Ptr = LHSType->getAs<PointerType>()) 04096 LHSType = Ptr->getPointeeType(); 04097 else { 04098 Diag(Loc, diag::err_bad_memptr_lhs) 04099 << OpSpelling << 1 << LHSType 04100 << FixItHint::CreateReplacement(SourceRange(Loc), ".*"); 04101 return QualType(); 04102 } 04103 } 04104 04105 if (!Context.hasSameUnqualifiedType(Class, LHSType)) { 04106 // If we want to check the hierarchy, we need a complete type. 04107 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs, 04108 OpSpelling, (int)isIndirect)) { 04109 return QualType(); 04110 } 04111 04112 if (!IsDerivedFrom(LHSType, Class)) { 04113 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling 04114 << (int)isIndirect << LHS.get()->getType(); 04115 return QualType(); 04116 } 04117 04118 CXXCastPath BasePath; 04119 if (CheckDerivedToBaseConversion(LHSType, Class, Loc, 04120 SourceRange(LHS.get()->getLocStart(), 04121 RHS.get()->getLocEnd()), 04122 &BasePath)) 04123 return QualType(); 04124 04125 // Cast LHS to type of use. 04126 QualType UseType = isIndirect ? Context.getPointerType(Class) : Class; 04127 ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind(); 04128 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK, 04129 &BasePath); 04130 } 04131 04132 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) { 04133 // Diagnose use of pointer-to-member type which when used as 04134 // the functional cast in a pointer-to-member expression. 04135 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect; 04136 return QualType(); 04137 } 04138 04139 // C++ 5.5p2 04140 // The result is an object or a function of the type specified by the 04141 // second operand. 04142 // The cv qualifiers are the union of those in the pointer and the left side, 04143 // in accordance with 5.5p5 and 5.2.5. 04144 QualType Result = MemPtr->getPointeeType(); 04145 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers()); 04146 04147 // C++0x [expr.mptr.oper]p6: 04148 // In a .* expression whose object expression is an rvalue, the program is 04149 // ill-formed if the second operand is a pointer to member function with 04150 // ref-qualifier &. In a ->* expression or in a .* expression whose object 04151 // expression is an lvalue, the program is ill-formed if the second operand 04152 // is a pointer to member function with ref-qualifier &&. 04153 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) { 04154 switch (Proto->getRefQualifier()) { 04155 case RQ_None: 04156 // Do nothing 04157 break; 04158 04159 case RQ_LValue: 04160 if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) 04161 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 04162 << RHSType << 1 << LHS.get()->getSourceRange(); 04163 break; 04164 04165 case RQ_RValue: 04166 if (isIndirect || !LHS.get()->Classify(Context).isRValue()) 04167 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 04168 << RHSType << 0 << LHS.get()->getSourceRange(); 04169 break; 04170 } 04171 } 04172 04173 // C++ [expr.mptr.oper]p6: 04174 // The result of a .* expression whose second operand is a pointer 04175 // to a data member is of the same value category as its 04176 // first operand. The result of a .* expression whose second 04177 // operand is a pointer to a member function is a prvalue. The 04178 // result of an ->* expression is an lvalue if its second operand 04179 // is a pointer to data member and a prvalue otherwise. 04180 if (Result->isFunctionType()) { 04181 VK = VK_RValue; 04182 return Context.BoundMemberTy; 04183 } else if (isIndirect) { 04184 VK = VK_LValue; 04185 } else { 04186 VK = LHS.get()->getValueKind(); 04187 } 04188 04189 return Result; 04190 } 04191 04192 /// \brief Try to convert a type to another according to C++0x 5.16p3. 04193 /// 04194 /// This is part of the parameter validation for the ? operator. If either 04195 /// value operand is a class type, the two operands are attempted to be 04196 /// converted to each other. This function does the conversion in one direction. 04197 /// It returns true if the program is ill-formed and has already been diagnosed 04198 /// as such. 04199 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To, 04200 SourceLocation QuestionLoc, 04201 bool &HaveConversion, 04202 QualType &ToType) { 04203 HaveConversion = false; 04204 ToType = To->getType(); 04205 04206 InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(), 04207 SourceLocation()); 04208 // C++0x 5.16p3 04209 // The process for determining whether an operand expression E1 of type T1 04210 // can be converted to match an operand expression E2 of type T2 is defined 04211 // as follows: 04212 // -- If E2 is an lvalue: 04213 bool ToIsLvalue = To->isLValue(); 04214 if (ToIsLvalue) { 04215 // E1 can be converted to match E2 if E1 can be implicitly converted to 04216 // type "lvalue reference to T2", subject to the constraint that in the 04217 // conversion the reference must bind directly to E1. 04218 QualType T = Self.Context.getLValueReferenceType(ToType); 04219 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 04220 04221 InitializationSequence InitSeq(Self, Entity, Kind, From); 04222 if (InitSeq.isDirectReferenceBinding()) { 04223 ToType = T; 04224 HaveConversion = true; 04225 return false; 04226 } 04227 04228 if (InitSeq.isAmbiguous()) 04229 return InitSeq.Diagnose(Self, Entity, Kind, From); 04230 } 04231 04232 // -- If E2 is an rvalue, or if the conversion above cannot be done: 04233 // -- if E1 and E2 have class type, and the underlying class types are 04234 // the same or one is a base class of the other: 04235 QualType FTy = From->getType(); 04236 QualType TTy = To->getType(); 04237 const RecordType *FRec = FTy->getAs<RecordType>(); 04238 const RecordType *TRec = TTy->getAs<RecordType>(); 04239 bool FDerivedFromT = FRec && TRec && FRec != TRec && 04240 Self.IsDerivedFrom(FTy, TTy); 04241 if (FRec && TRec && 04242 (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) { 04243 // E1 can be converted to match E2 if the class of T2 is the 04244 // same type as, or a base class of, the class of T1, and 04245 // [cv2 > cv1]. 04246 if (FRec == TRec || FDerivedFromT) { 04247 if (TTy.isAtLeastAsQualifiedAs(FTy)) { 04248 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 04249 InitializationSequence InitSeq(Self, Entity, Kind, From); 04250 if (InitSeq) { 04251 HaveConversion = true; 04252 return false; 04253 } 04254 04255 if (InitSeq.isAmbiguous()) 04256 return InitSeq.Diagnose(Self, Entity, Kind, From); 04257 } 04258 } 04259 04260 return false; 04261 } 04262 04263 // -- Otherwise: E1 can be converted to match E2 if E1 can be 04264 // implicitly converted to the type that expression E2 would have 04265 // if E2 were converted to an rvalue (or the type it has, if E2 is 04266 // an rvalue). 04267 // 04268 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not 04269 // to the array-to-pointer or function-to-pointer conversions. 04270 if (!TTy->getAs<TagType>()) 04271 TTy = TTy.getUnqualifiedType(); 04272 04273 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 04274 InitializationSequence InitSeq(Self, Entity, Kind, From); 04275 HaveConversion = !InitSeq.Failed(); 04276 ToType = TTy; 04277 if (InitSeq.isAmbiguous()) 04278 return InitSeq.Diagnose(Self, Entity, Kind, From); 04279 04280 return false; 04281 } 04282 04283 /// \brief Try to find a common type for two according to C++0x 5.16p5. 04284 /// 04285 /// This is part of the parameter validation for the ? operator. If either 04286 /// value operand is a class type, overload resolution is used to find a 04287 /// conversion to a common type. 04288 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS, 04289 SourceLocation QuestionLoc) { 04290 Expr *Args[2] = { LHS.get(), RHS.get() }; 04291 OverloadCandidateSet CandidateSet(QuestionLoc, 04292 OverloadCandidateSet::CSK_Operator); 04293 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 04294 CandidateSet); 04295 04296 OverloadCandidateSet::iterator Best; 04297 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) { 04298 case OR_Success: { 04299 // We found a match. Perform the conversions on the arguments and move on. 04300 ExprResult LHSRes = 04301 Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0], 04302 Best->Conversions[0], Sema::AA_Converting); 04303 if (LHSRes.isInvalid()) 04304 break; 04305 LHS = LHSRes; 04306 04307 ExprResult RHSRes = 04308 Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1], 04309 Best->Conversions[1], Sema::AA_Converting); 04310 if (RHSRes.isInvalid()) 04311 break; 04312 RHS = RHSRes; 04313 if (Best->Function) 04314 Self.MarkFunctionReferenced(QuestionLoc, Best->Function); 04315 return false; 04316 } 04317 04318 case OR_No_Viable_Function: 04319 04320 // Emit a better diagnostic if one of the expressions is a null pointer 04321 // constant and the other is a pointer type. In this case, the user most 04322 // likely forgot to take the address of the other expression. 04323 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 04324 return true; 04325 04326 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 04327 << LHS.get()->getType() << RHS.get()->getType() 04328 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 04329 return true; 04330 04331 case OR_Ambiguous: 04332 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl) 04333 << LHS.get()->getType() << RHS.get()->getType() 04334 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 04335 // FIXME: Print the possible common types by printing the return types of 04336 // the viable candidates. 04337 break; 04338 04339 case OR_Deleted: 04340 llvm_unreachable("Conditional operator has only built-in overloads"); 04341 } 04342 return true; 04343 } 04344 04345 /// \brief Perform an "extended" implicit conversion as returned by 04346 /// TryClassUnification. 04347 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) { 04348 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 04349 InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(), 04350 SourceLocation()); 04351 Expr *Arg = E.get(); 04352 InitializationSequence InitSeq(Self, Entity, Kind, Arg); 04353 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg); 04354 if (Result.isInvalid()) 04355 return true; 04356 04357 E = Result; 04358 return false; 04359 } 04360 04361 /// \brief Check the operands of ?: under C++ semantics. 04362 /// 04363 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y 04364 /// extension. In this case, LHS == Cond. (But they're not aliases.) 04365 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, 04366 ExprResult &RHS, ExprValueKind &VK, 04367 ExprObjectKind &OK, 04368 SourceLocation QuestionLoc) { 04369 // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++ 04370 // interface pointers. 04371 04372 // C++11 [expr.cond]p1 04373 // The first expression is contextually converted to bool. 04374 if (!Cond.get()->isTypeDependent()) { 04375 ExprResult CondRes = CheckCXXBooleanCondition(Cond.get()); 04376 if (CondRes.isInvalid()) 04377 return QualType(); 04378 Cond = CondRes; 04379 } 04380 04381 // Assume r-value. 04382 VK = VK_RValue; 04383 OK = OK_Ordinary; 04384 04385 // Either of the arguments dependent? 04386 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent()) 04387 return Context.DependentTy; 04388 04389 // C++11 [expr.cond]p2 04390 // If either the second or the third operand has type (cv) void, ... 04391 QualType LTy = LHS.get()->getType(); 04392 QualType RTy = RHS.get()->getType(); 04393 bool LVoid = LTy->isVoidType(); 04394 bool RVoid = RTy->isVoidType(); 04395 if (LVoid || RVoid) { 04396 // ... one of the following shall hold: 04397 // -- The second or the third operand (but not both) is a (possibly 04398 // parenthesized) throw-expression; the result is of the type 04399 // and value category of the other. 04400 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts()); 04401 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts()); 04402 if (LThrow != RThrow) { 04403 Expr *NonThrow = LThrow ? RHS.get() : LHS.get(); 04404 VK = NonThrow->getValueKind(); 04405 // DR (no number yet): the result is a bit-field if the 04406 // non-throw-expression operand is a bit-field. 04407 OK = NonThrow->getObjectKind(); 04408 return NonThrow->getType(); 04409 } 04410 04411 // -- Both the second and third operands have type void; the result is of 04412 // type void and is a prvalue. 04413 if (LVoid && RVoid) 04414 return Context.VoidTy; 04415 04416 // Neither holds, error. 04417 Diag(QuestionLoc, diag::err_conditional_void_nonvoid) 04418 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1) 04419 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 04420 return QualType(); 04421 } 04422 04423 // Neither is void. 04424 04425 // C++11 [expr.cond]p3 04426 // Otherwise, if the second and third operand have different types, and 04427 // either has (cv) class type [...] an attempt is made to convert each of 04428 // those operands to the type of the other. 04429 if (!Context.hasSameType(LTy, RTy) && 04430 (LTy->isRecordType() || RTy->isRecordType())) { 04431 // These return true if a single direction is already ambiguous. 04432 QualType L2RType, R2LType; 04433 bool HaveL2R, HaveR2L; 04434 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType)) 04435 return QualType(); 04436 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType)) 04437 return QualType(); 04438 04439 // If both can be converted, [...] the program is ill-formed. 04440 if (HaveL2R && HaveR2L) { 04441 Diag(QuestionLoc, diag::err_conditional_ambiguous) 04442 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 04443 return QualType(); 04444 } 04445 04446 // If exactly one conversion is possible, that conversion is applied to 04447 // the chosen operand and the converted operands are used in place of the 04448 // original operands for the remainder of this section. 04449 if (HaveL2R) { 04450 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid()) 04451 return QualType(); 04452 LTy = LHS.get()->getType(); 04453 } else if (HaveR2L) { 04454 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid()) 04455 return QualType(); 04456 RTy = RHS.get()->getType(); 04457 } 04458 } 04459 04460 // C++11 [expr.cond]p3 04461 // if both are glvalues of the same value category and the same type except 04462 // for cv-qualification, an attempt is made to convert each of those 04463 // operands to the type of the other. 04464 ExprValueKind LVK = LHS.get()->getValueKind(); 04465 ExprValueKind RVK = RHS.get()->getValueKind(); 04466 if (!Context.hasSameType(LTy, RTy) && 04467 Context.hasSameUnqualifiedType(LTy, RTy) && 04468 LVK == RVK && LVK != VK_RValue) { 04469 // Since the unqualified types are reference-related and we require the 04470 // result to be as if a reference bound directly, the only conversion 04471 // we can perform is to add cv-qualifiers. 04472 Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers()); 04473 Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers()); 04474 if (RCVR.isStrictSupersetOf(LCVR)) { 04475 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK); 04476 LTy = LHS.get()->getType(); 04477 } 04478 else if (LCVR.isStrictSupersetOf(RCVR)) { 04479 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK); 04480 RTy = RHS.get()->getType(); 04481 } 04482 } 04483 04484 // C++11 [expr.cond]p4 04485 // If the second and third operands are glvalues of the same value 04486 // category and have the same type, the result is of that type and 04487 // value category and it is a bit-field if the second or the third 04488 // operand is a bit-field, or if both are bit-fields. 04489 // We only extend this to bitfields, not to the crazy other kinds of 04490 // l-values. 04491 bool Same = Context.hasSameType(LTy, RTy); 04492 if (Same && LVK == RVK && LVK != VK_RValue && 04493 LHS.get()->isOrdinaryOrBitFieldObject() && 04494 RHS.get()->isOrdinaryOrBitFieldObject()) { 04495 VK = LHS.get()->getValueKind(); 04496 if (LHS.get()->getObjectKind() == OK_BitField || 04497 RHS.get()->getObjectKind() == OK_BitField) 04498 OK = OK_BitField; 04499 return LTy; 04500 } 04501 04502 // C++11 [expr.cond]p5 04503 // Otherwise, the result is a prvalue. If the second and third operands 04504 // do not have the same type, and either has (cv) class type, ... 04505 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) { 04506 // ... overload resolution is used to determine the conversions (if any) 04507 // to be applied to the operands. If the overload resolution fails, the 04508 // program is ill-formed. 04509 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc)) 04510 return QualType(); 04511 } 04512 04513 // C++11 [expr.cond]p6 04514 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard 04515 // conversions are performed on the second and third operands. 04516 LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); 04517 RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); 04518 if (LHS.isInvalid() || RHS.isInvalid()) 04519 return QualType(); 04520 LTy = LHS.get()->getType(); 04521 RTy = RHS.get()->getType(); 04522 04523 // After those conversions, one of the following shall hold: 04524 // -- The second and third operands have the same type; the result 04525 // is of that type. If the operands have class type, the result 04526 // is a prvalue temporary of the result type, which is 04527 // copy-initialized from either the second operand or the third 04528 // operand depending on the value of the first operand. 04529 if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) { 04530 if (LTy->isRecordType()) { 04531 // The operands have class type. Make a temporary copy. 04532 if (RequireNonAbstractType(QuestionLoc, LTy, 04533 diag::err_allocation_of_abstract_type)) 04534 return QualType(); 04535 InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy); 04536 04537 ExprResult LHSCopy = PerformCopyInitialization(Entity, 04538 SourceLocation(), 04539 LHS); 04540 if (LHSCopy.isInvalid()) 04541 return QualType(); 04542 04543 ExprResult RHSCopy = PerformCopyInitialization(Entity, 04544 SourceLocation(), 04545 RHS); 04546 if (RHSCopy.isInvalid()) 04547 return QualType(); 04548 04549 LHS = LHSCopy; 04550 RHS = RHSCopy; 04551 } 04552 04553 return LTy; 04554 } 04555 04556 // Extension: conditional operator involving vector types. 04557 if (LTy->isVectorType() || RTy->isVectorType()) 04558 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false); 04559 04560 // -- The second and third operands have arithmetic or enumeration type; 04561 // the usual arithmetic conversions are performed to bring them to a 04562 // common type, and the result is of that type. 04563 if (LTy->isArithmeticType() && RTy->isArithmeticType()) { 04564 QualType ResTy = UsualArithmeticConversions(LHS, RHS); 04565 if (LHS.isInvalid() || RHS.isInvalid()) 04566 return QualType(); 04567 04568 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy)); 04569 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy)); 04570 04571 return ResTy; 04572 } 04573 04574 // -- The second and third operands have pointer type, or one has pointer 04575 // type and the other is a null pointer constant, or both are null 04576 // pointer constants, at least one of which is non-integral; pointer 04577 // conversions and qualification conversions are performed to bring them 04578 // to their composite pointer type. The result is of the composite 04579 // pointer type. 04580 // -- The second and third operands have pointer to member type, or one has 04581 // pointer to member type and the other is a null pointer constant; 04582 // pointer to member conversions and qualification conversions are 04583 // performed to bring them to a common type, whose cv-qualification 04584 // shall match the cv-qualification of either the second or the third 04585 // operand. The result is of the common type. 04586 bool NonStandardCompositeType = false; 04587 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS, 04588 isSFINAEContext() ? nullptr 04589 : &NonStandardCompositeType); 04590 if (!Composite.isNull()) { 04591 if (NonStandardCompositeType) 04592 Diag(QuestionLoc, 04593 diag::ext_typecheck_cond_incompatible_operands_nonstandard) 04594 << LTy << RTy << Composite 04595 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 04596 04597 return Composite; 04598 } 04599 04600 // Similarly, attempt to find composite type of two objective-c pointers. 04601 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc); 04602 if (!Composite.isNull()) 04603 return Composite; 04604 04605 // Check if we are using a null with a non-pointer type. 04606 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 04607 return QualType(); 04608 04609 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 04610 << LHS.get()->getType() << RHS.get()->getType() 04611 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 04612 return QualType(); 04613 } 04614 04615 /// \brief Find a merged pointer type and convert the two expressions to it. 04616 /// 04617 /// This finds the composite pointer type (or member pointer type) for @p E1 04618 /// and @p E2 according to C++11 5.9p2. It converts both expressions to this 04619 /// type and returns it. 04620 /// It does not emit diagnostics. 04621 /// 04622 /// \param Loc The location of the operator requiring these two expressions to 04623 /// be converted to the composite pointer type. 04624 /// 04625 /// If \p NonStandardCompositeType is non-NULL, then we are permitted to find 04626 /// a non-standard (but still sane) composite type to which both expressions 04627 /// can be converted. When such a type is chosen, \c *NonStandardCompositeType 04628 /// will be set true. 04629 QualType Sema::FindCompositePointerType(SourceLocation Loc, 04630 Expr *&E1, Expr *&E2, 04631 bool *NonStandardCompositeType) { 04632 if (NonStandardCompositeType) 04633 *NonStandardCompositeType = false; 04634 04635 assert(getLangOpts().CPlusPlus && "This function assumes C++"); 04636 QualType T1 = E1->getType(), T2 = E2->getType(); 04637 04638 // C++11 5.9p2 04639 // Pointer conversions and qualification conversions are performed on 04640 // pointer operands to bring them to their composite pointer type. If 04641 // one operand is a null pointer constant, the composite pointer type is 04642 // std::nullptr_t if the other operand is also a null pointer constant or, 04643 // if the other operand is a pointer, the type of the other operand. 04644 if (!T1->isAnyPointerType() && !T1->isMemberPointerType() && 04645 !T2->isAnyPointerType() && !T2->isMemberPointerType()) { 04646 if (T1->isNullPtrType() && 04647 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 04648 E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get(); 04649 return T1; 04650 } 04651 if (T2->isNullPtrType() && 04652 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 04653 E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get(); 04654 return T2; 04655 } 04656 return QualType(); 04657 } 04658 04659 if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 04660 if (T2->isMemberPointerType()) 04661 E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).get(); 04662 else 04663 E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get(); 04664 return T2; 04665 } 04666 if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 04667 if (T1->isMemberPointerType()) 04668 E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).get(); 04669 else 04670 E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get(); 04671 return T1; 04672 } 04673 04674 // Now both have to be pointers or member pointers. 04675 if ((!T1->isPointerType() && !T1->isMemberPointerType()) || 04676 (!T2->isPointerType() && !T2->isMemberPointerType())) 04677 return QualType(); 04678 04679 // Otherwise, of one of the operands has type "pointer to cv1 void," then 04680 // the other has type "pointer to cv2 T" and the composite pointer type is 04681 // "pointer to cv12 void," where cv12 is the union of cv1 and cv2. 04682 // Otherwise, the composite pointer type is a pointer type similar to the 04683 // type of one of the operands, with a cv-qualification signature that is 04684 // the union of the cv-qualification signatures of the operand types. 04685 // In practice, the first part here is redundant; it's subsumed by the second. 04686 // What we do here is, we build the two possible composite types, and try the 04687 // conversions in both directions. If only one works, or if the two composite 04688 // types are the same, we have succeeded. 04689 // FIXME: extended qualifiers? 04690 typedef SmallVector<unsigned, 4> QualifierVector; 04691 QualifierVector QualifierUnion; 04692 typedef SmallVector<std::pair<const Type *, const Type *>, 4> 04693 ContainingClassVector; 04694 ContainingClassVector MemberOfClass; 04695 QualType Composite1 = Context.getCanonicalType(T1), 04696 Composite2 = Context.getCanonicalType(T2); 04697 unsigned NeedConstBefore = 0; 04698 do { 04699 const PointerType *Ptr1, *Ptr2; 04700 if ((Ptr1 = Composite1->getAs<PointerType>()) && 04701 (Ptr2 = Composite2->getAs<PointerType>())) { 04702 Composite1 = Ptr1->getPointeeType(); 04703 Composite2 = Ptr2->getPointeeType(); 04704 04705 // If we're allowed to create a non-standard composite type, keep track 04706 // of where we need to fill in additional 'const' qualifiers. 04707 if (NonStandardCompositeType && 04708 Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers()) 04709 NeedConstBefore = QualifierUnion.size(); 04710 04711 QualifierUnion.push_back( 04712 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers()); 04713 MemberOfClass.push_back(std::make_pair(nullptr, nullptr)); 04714 continue; 04715 } 04716 04717 const MemberPointerType *MemPtr1, *MemPtr2; 04718 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) && 04719 (MemPtr2 = Composite2->getAs<MemberPointerType>())) { 04720 Composite1 = MemPtr1->getPointeeType(); 04721 Composite2 = MemPtr2->getPointeeType(); 04722 04723 // If we're allowed to create a non-standard composite type, keep track 04724 // of where we need to fill in additional 'const' qualifiers. 04725 if (NonStandardCompositeType && 04726 Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers()) 04727 NeedConstBefore = QualifierUnion.size(); 04728 04729 QualifierUnion.push_back( 04730 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers()); 04731 MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(), 04732 MemPtr2->getClass())); 04733 continue; 04734 } 04735 04736 // FIXME: block pointer types? 04737 04738 // Cannot unwrap any more types. 04739 break; 04740 } while (true); 04741 04742 if (NeedConstBefore && NonStandardCompositeType) { 04743 // Extension: Add 'const' to qualifiers that come before the first qualifier 04744 // mismatch, so that our (non-standard!) composite type meets the 04745 // requirements of C++ [conv.qual]p4 bullet 3. 04746 for (unsigned I = 0; I != NeedConstBefore; ++I) { 04747 if ((QualifierUnion[I] & Qualifiers::Const) == 0) { 04748 QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const; 04749 *NonStandardCompositeType = true; 04750 } 04751 } 04752 } 04753 04754 // Rewrap the composites as pointers or member pointers with the union CVRs. 04755 ContainingClassVector::reverse_iterator MOC 04756 = MemberOfClass.rbegin(); 04757 for (QualifierVector::reverse_iterator 04758 I = QualifierUnion.rbegin(), 04759 E = QualifierUnion.rend(); 04760 I != E; (void)++I, ++MOC) { 04761 Qualifiers Quals = Qualifiers::fromCVRMask(*I); 04762 if (MOC->first && MOC->second) { 04763 // Rebuild member pointer type 04764 Composite1 = Context.getMemberPointerType( 04765 Context.getQualifiedType(Composite1, Quals), 04766 MOC->first); 04767 Composite2 = Context.getMemberPointerType( 04768 Context.getQualifiedType(Composite2, Quals), 04769 MOC->second); 04770 } else { 04771 // Rebuild pointer type 04772 Composite1 04773 = Context.getPointerType(Context.getQualifiedType(Composite1, Quals)); 04774 Composite2 04775 = Context.getPointerType(Context.getQualifiedType(Composite2, Quals)); 04776 } 04777 } 04778 04779 // Try to convert to the first composite pointer type. 04780 InitializedEntity Entity1 04781 = InitializedEntity::InitializeTemporary(Composite1); 04782 InitializationKind Kind 04783 = InitializationKind::CreateCopy(Loc, SourceLocation()); 04784 InitializationSequence E1ToC1(*this, Entity1, Kind, E1); 04785 InitializationSequence E2ToC1(*this, Entity1, Kind, E2); 04786 04787 if (E1ToC1 && E2ToC1) { 04788 // Conversion to Composite1 is viable. 04789 if (!Context.hasSameType(Composite1, Composite2)) { 04790 // Composite2 is a different type from Composite1. Check whether 04791 // Composite2 is also viable. 04792 InitializedEntity Entity2 04793 = InitializedEntity::InitializeTemporary(Composite2); 04794 InitializationSequence E1ToC2(*this, Entity2, Kind, E1); 04795 InitializationSequence E2ToC2(*this, Entity2, Kind, E2); 04796 if (E1ToC2 && E2ToC2) { 04797 // Both Composite1 and Composite2 are viable and are different; 04798 // this is an ambiguity. 04799 return QualType(); 04800 } 04801 } 04802 04803 // Convert E1 to Composite1 04804 ExprResult E1Result 04805 = E1ToC1.Perform(*this, Entity1, Kind, E1); 04806 if (E1Result.isInvalid()) 04807 return QualType(); 04808 E1 = E1Result.getAs<Expr>(); 04809 04810 // Convert E2 to Composite1 04811 ExprResult E2Result 04812 = E2ToC1.Perform(*this, Entity1, Kind, E2); 04813 if (E2Result.isInvalid()) 04814 return QualType(); 04815 E2 = E2Result.getAs<Expr>(); 04816 04817 return Composite1; 04818 } 04819 04820 // Check whether Composite2 is viable. 04821 InitializedEntity Entity2 04822 = InitializedEntity::InitializeTemporary(Composite2); 04823 InitializationSequence E1ToC2(*this, Entity2, Kind, E1); 04824 InitializationSequence E2ToC2(*this, Entity2, Kind, E2); 04825 if (!E1ToC2 || !E2ToC2) 04826 return QualType(); 04827 04828 // Convert E1 to Composite2 04829 ExprResult E1Result 04830 = E1ToC2.Perform(*this, Entity2, Kind, E1); 04831 if (E1Result.isInvalid()) 04832 return QualType(); 04833 E1 = E1Result.getAs<Expr>(); 04834 04835 // Convert E2 to Composite2 04836 ExprResult E2Result 04837 = E2ToC2.Perform(*this, Entity2, Kind, E2); 04838 if (E2Result.isInvalid()) 04839 return QualType(); 04840 E2 = E2Result.getAs<Expr>(); 04841 04842 return Composite2; 04843 } 04844 04845 ExprResult Sema::MaybeBindToTemporary(Expr *E) { 04846 if (!E) 04847 return ExprError(); 04848 04849 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?"); 04850 04851 // If the result is a glvalue, we shouldn't bind it. 04852 if (!E->isRValue()) 04853 return E; 04854 04855 // In ARC, calls that return a retainable type can return retained, 04856 // in which case we have to insert a consuming cast. 04857 if (getLangOpts().ObjCAutoRefCount && 04858 E->getType()->isObjCRetainableType()) { 04859 04860 bool ReturnsRetained; 04861 04862 // For actual calls, we compute this by examining the type of the 04863 // called value. 04864 if (CallExpr *Call = dyn_cast<CallExpr>(E)) { 04865 Expr *Callee = Call->getCallee()->IgnoreParens(); 04866 QualType T = Callee->getType(); 04867 04868 if (T == Context.BoundMemberTy) { 04869 // Handle pointer-to-members. 04870 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee)) 04871 T = BinOp->getRHS()->getType(); 04872 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee)) 04873 T = Mem->getMemberDecl()->getType(); 04874 } 04875 04876 if (const PointerType *Ptr = T->getAs<PointerType>()) 04877 T = Ptr->getPointeeType(); 04878 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>()) 04879 T = Ptr->getPointeeType(); 04880 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>()) 04881 T = MemPtr->getPointeeType(); 04882 04883 const FunctionType *FTy = T->getAs<FunctionType>(); 04884 assert(FTy && "call to value not of function type?"); 04885 ReturnsRetained = FTy->getExtInfo().getProducesResult(); 04886 04887 // ActOnStmtExpr arranges things so that StmtExprs of retainable 04888 // type always produce a +1 object. 04889 } else if (isa<StmtExpr>(E)) { 04890 ReturnsRetained = true; 04891 04892 // We hit this case with the lambda conversion-to-block optimization; 04893 // we don't want any extra casts here. 04894 } else if (isa<CastExpr>(E) && 04895 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) { 04896 return E; 04897 04898 // For message sends and property references, we try to find an 04899 // actual method. FIXME: we should infer retention by selector in 04900 // cases where we don't have an actual method. 04901 } else { 04902 ObjCMethodDecl *D = nullptr; 04903 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) { 04904 D = Send->getMethodDecl(); 04905 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) { 04906 D = BoxedExpr->getBoxingMethod(); 04907 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) { 04908 D = ArrayLit->getArrayWithObjectsMethod(); 04909 } else if (ObjCDictionaryLiteral *DictLit 04910 = dyn_cast<ObjCDictionaryLiteral>(E)) { 04911 D = DictLit->getDictWithObjectsMethod(); 04912 } 04913 04914 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>()); 04915 04916 // Don't do reclaims on performSelector calls; despite their 04917 // return type, the invoked method doesn't necessarily actually 04918 // return an object. 04919 if (!ReturnsRetained && 04920 D && D->getMethodFamily() == OMF_performSelector) 04921 return E; 04922 } 04923 04924 // Don't reclaim an object of Class type. 04925 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType()) 04926 return E; 04927 04928 ExprNeedsCleanups = true; 04929 04930 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject 04931 : CK_ARCReclaimReturnedObject); 04932 return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr, 04933 VK_RValue); 04934 } 04935 04936 if (!getLangOpts().CPlusPlus) 04937 return E; 04938 04939 // Search for the base element type (cf. ASTContext::getBaseElementType) with 04940 // a fast path for the common case that the type is directly a RecordType. 04941 const Type *T = Context.getCanonicalType(E->getType().getTypePtr()); 04942 const RecordType *RT = nullptr; 04943 while (!RT) { 04944 switch (T->getTypeClass()) { 04945 case Type::Record: 04946 RT = cast<RecordType>(T); 04947 break; 04948 case Type::ConstantArray: 04949 case Type::IncompleteArray: 04950 case Type::VariableArray: 04951 case Type::DependentSizedArray: 04952 T = cast<ArrayType>(T)->getElementType().getTypePtr(); 04953 break; 04954 default: 04955 return E; 04956 } 04957 } 04958 04959 // That should be enough to guarantee that this type is complete, if we're 04960 // not processing a decltype expression. 04961 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 04962 if (RD->isInvalidDecl() || RD->isDependentContext()) 04963 return E; 04964 04965 bool IsDecltype = ExprEvalContexts.back().IsDecltype; 04966 CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD); 04967 04968 if (Destructor) { 04969 MarkFunctionReferenced(E->getExprLoc(), Destructor); 04970 CheckDestructorAccess(E->getExprLoc(), Destructor, 04971 PDiag(diag::err_access_dtor_temp) 04972 << E->getType()); 04973 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) 04974 return ExprError(); 04975 04976 // If destructor is trivial, we can avoid the extra copy. 04977 if (Destructor->isTrivial()) 04978 return E; 04979 04980 // We need a cleanup, but we don't need to remember the temporary. 04981 ExprNeedsCleanups = true; 04982 } 04983 04984 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor); 04985 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E); 04986 04987 if (IsDecltype) 04988 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind); 04989 04990 return Bind; 04991 } 04992 04993 ExprResult 04994 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) { 04995 if (SubExpr.isInvalid()) 04996 return ExprError(); 04997 04998 return MaybeCreateExprWithCleanups(SubExpr.get()); 04999 } 05000 05001 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) { 05002 assert(SubExpr && "subexpression can't be null!"); 05003 05004 CleanupVarDeclMarking(); 05005 05006 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects; 05007 assert(ExprCleanupObjects.size() >= FirstCleanup); 05008 assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup); 05009 if (!ExprNeedsCleanups) 05010 return SubExpr; 05011 05012 auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup, 05013 ExprCleanupObjects.size() - FirstCleanup); 05014 05015 Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups); 05016 DiscardCleanupsInEvaluationContext(); 05017 05018 return E; 05019 } 05020 05021 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) { 05022 assert(SubStmt && "sub-statement can't be null!"); 05023 05024 CleanupVarDeclMarking(); 05025 05026 if (!ExprNeedsCleanups) 05027 return SubStmt; 05028 05029 // FIXME: In order to attach the temporaries, wrap the statement into 05030 // a StmtExpr; currently this is only used for asm statements. 05031 // This is hacky, either create a new CXXStmtWithTemporaries statement or 05032 // a new AsmStmtWithTemporaries. 05033 CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, SubStmt, 05034 SourceLocation(), 05035 SourceLocation()); 05036 Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), 05037 SourceLocation()); 05038 return MaybeCreateExprWithCleanups(E); 05039 } 05040 05041 /// Process the expression contained within a decltype. For such expressions, 05042 /// certain semantic checks on temporaries are delayed until this point, and 05043 /// are omitted for the 'topmost' call in the decltype expression. If the 05044 /// topmost call bound a temporary, strip that temporary off the expression. 05045 ExprResult Sema::ActOnDecltypeExpression(Expr *E) { 05046 assert(ExprEvalContexts.back().IsDecltype && "not in a decltype expression"); 05047 05048 // C++11 [expr.call]p11: 05049 // If a function call is a prvalue of object type, 05050 // -- if the function call is either 05051 // -- the operand of a decltype-specifier, or 05052 // -- the right operand of a comma operator that is the operand of a 05053 // decltype-specifier, 05054 // a temporary object is not introduced for the prvalue. 05055 05056 // Recursively rebuild ParenExprs and comma expressions to strip out the 05057 // outermost CXXBindTemporaryExpr, if any. 05058 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 05059 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr()); 05060 if (SubExpr.isInvalid()) 05061 return ExprError(); 05062 if (SubExpr.get() == PE->getSubExpr()) 05063 return E; 05064 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get()); 05065 } 05066 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 05067 if (BO->getOpcode() == BO_Comma) { 05068 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS()); 05069 if (RHS.isInvalid()) 05070 return ExprError(); 05071 if (RHS.get() == BO->getRHS()) 05072 return E; 05073 return new (Context) BinaryOperator( 05074 BO->getLHS(), RHS.get(), BO_Comma, BO->getType(), BO->getValueKind(), 05075 BO->getObjectKind(), BO->getOperatorLoc(), BO->isFPContractable()); 05076 } 05077 } 05078 05079 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E); 05080 CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr()) 05081 : nullptr; 05082 if (TopCall) 05083 E = TopCall; 05084 else 05085 TopBind = nullptr; 05086 05087 // Disable the special decltype handling now. 05088 ExprEvalContexts.back().IsDecltype = false; 05089 05090 // In MS mode, don't perform any extra checking of call return types within a 05091 // decltype expression. 05092 if (getLangOpts().MSVCCompat) 05093 return E; 05094 05095 // Perform the semantic checks we delayed until this point. 05096 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size(); 05097 I != N; ++I) { 05098 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I]; 05099 if (Call == TopCall) 05100 continue; 05101 05102 if (CheckCallReturnType(Call->getCallReturnType(), 05103 Call->getLocStart(), 05104 Call, Call->getDirectCallee())) 05105 return ExprError(); 05106 } 05107 05108 // Now all relevant types are complete, check the destructors are accessible 05109 // and non-deleted, and annotate them on the temporaries. 05110 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size(); 05111 I != N; ++I) { 05112 CXXBindTemporaryExpr *Bind = 05113 ExprEvalContexts.back().DelayedDecltypeBinds[I]; 05114 if (Bind == TopBind) 05115 continue; 05116 05117 CXXTemporary *Temp = Bind->getTemporary(); 05118 05119 CXXRecordDecl *RD = 05120 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 05121 CXXDestructorDecl *Destructor = LookupDestructor(RD); 05122 Temp->setDestructor(Destructor); 05123 05124 MarkFunctionReferenced(Bind->getExprLoc(), Destructor); 05125 CheckDestructorAccess(Bind->getExprLoc(), Destructor, 05126 PDiag(diag::err_access_dtor_temp) 05127 << Bind->getType()); 05128 if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc())) 05129 return ExprError(); 05130 05131 // We need a cleanup, but we don't need to remember the temporary. 05132 ExprNeedsCleanups = true; 05133 } 05134 05135 // Possibly strip off the top CXXBindTemporaryExpr. 05136 return E; 05137 } 05138 05139 /// Note a set of 'operator->' functions that were used for a member access. 05140 static void noteOperatorArrows(Sema &S, 05141 ArrayRef<FunctionDecl *> OperatorArrows) { 05142 unsigned SkipStart = OperatorArrows.size(), SkipCount = 0; 05143 // FIXME: Make this configurable? 05144 unsigned Limit = 9; 05145 if (OperatorArrows.size() > Limit) { 05146 // Produce Limit-1 normal notes and one 'skipping' note. 05147 SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2; 05148 SkipCount = OperatorArrows.size() - (Limit - 1); 05149 } 05150 05151 for (unsigned I = 0; I < OperatorArrows.size(); /**/) { 05152 if (I == SkipStart) { 05153 S.Diag(OperatorArrows[I]->getLocation(), 05154 diag::note_operator_arrows_suppressed) 05155 << SkipCount; 05156 I += SkipCount; 05157 } else { 05158 S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here) 05159 << OperatorArrows[I]->getCallResultType(); 05160 ++I; 05161 } 05162 } 05163 } 05164 05165 ExprResult 05166 Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc, 05167 tok::TokenKind OpKind, ParsedType &ObjectType, 05168 bool &MayBePseudoDestructor) { 05169 // Since this might be a postfix expression, get rid of ParenListExprs. 05170 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); 05171 if (Result.isInvalid()) return ExprError(); 05172 Base = Result.get(); 05173 05174 Result = CheckPlaceholderExpr(Base); 05175 if (Result.isInvalid()) return ExprError(); 05176 Base = Result.get(); 05177 05178 QualType BaseType = Base->getType(); 05179 MayBePseudoDestructor = false; 05180 if (BaseType->isDependentType()) { 05181 // If we have a pointer to a dependent type and are using the -> operator, 05182 // the object type is the type that the pointer points to. We might still 05183 // have enough information about that type to do something useful. 05184 if (OpKind == tok::arrow) 05185 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) 05186 BaseType = Ptr->getPointeeType(); 05187 05188 ObjectType = ParsedType::make(BaseType); 05189 MayBePseudoDestructor = true; 05190 return Base; 05191 } 05192 05193 // C++ [over.match.oper]p8: 05194 // [...] When operator->returns, the operator-> is applied to the value 05195 // returned, with the original second operand. 05196 if (OpKind == tok::arrow) { 05197 QualType StartingType = BaseType; 05198 bool NoArrowOperatorFound = false; 05199 bool FirstIteration = true; 05200 FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext); 05201 // The set of types we've considered so far. 05202 llvm::SmallPtrSet<CanQualType,8> CTypes; 05203 SmallVector<FunctionDecl*, 8> OperatorArrows; 05204 CTypes.insert(Context.getCanonicalType(BaseType)); 05205 05206 while (BaseType->isRecordType()) { 05207 if (OperatorArrows.size() >= getLangOpts().ArrowDepth) { 05208 Diag(OpLoc, diag::err_operator_arrow_depth_exceeded) 05209 << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange(); 05210 noteOperatorArrows(*this, OperatorArrows); 05211 Diag(OpLoc, diag::note_operator_arrow_depth) 05212 << getLangOpts().ArrowDepth; 05213 return ExprError(); 05214 } 05215 05216 Result = BuildOverloadedArrowExpr( 05217 S, Base, OpLoc, 05218 // When in a template specialization and on the first loop iteration, 05219 // potentially give the default diagnostic (with the fixit in a 05220 // separate note) instead of having the error reported back to here 05221 // and giving a diagnostic with a fixit attached to the error itself. 05222 (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization()) 05223 ? nullptr 05224 : &NoArrowOperatorFound); 05225 if (Result.isInvalid()) { 05226 if (NoArrowOperatorFound) { 05227 if (FirstIteration) { 05228 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 05229 << BaseType << 1 << Base->getSourceRange() 05230 << FixItHint::CreateReplacement(OpLoc, "."); 05231 OpKind = tok::period; 05232 break; 05233 } 05234 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 05235 << BaseType << Base->getSourceRange(); 05236 CallExpr *CE = dyn_cast<CallExpr>(Base); 05237 if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) { 05238 Diag(CD->getLocStart(), 05239 diag::note_member_reference_arrow_from_operator_arrow); 05240 } 05241 } 05242 return ExprError(); 05243 } 05244 Base = Result.get(); 05245 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base)) 05246 OperatorArrows.push_back(OpCall->getDirectCallee()); 05247 BaseType = Base->getType(); 05248 CanQualType CBaseType = Context.getCanonicalType(BaseType); 05249 if (!CTypes.insert(CBaseType)) { 05250 Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType; 05251 noteOperatorArrows(*this, OperatorArrows); 05252 return ExprError(); 05253 } 05254 FirstIteration = false; 05255 } 05256 05257 if (OpKind == tok::arrow && 05258 (BaseType->isPointerType() || BaseType->isObjCObjectPointerType())) 05259 BaseType = BaseType->getPointeeType(); 05260 } 05261 05262 // Objective-C properties allow "." access on Objective-C pointer types, 05263 // so adjust the base type to the object type itself. 05264 if (BaseType->isObjCObjectPointerType()) 05265 BaseType = BaseType->getPointeeType(); 05266 05267 // C++ [basic.lookup.classref]p2: 05268 // [...] If the type of the object expression is of pointer to scalar 05269 // type, the unqualified-id is looked up in the context of the complete 05270 // postfix-expression. 05271 // 05272 // This also indicates that we could be parsing a pseudo-destructor-name. 05273 // Note that Objective-C class and object types can be pseudo-destructor 05274 // expressions or normal member (ivar or property) access expressions. 05275 if (BaseType->isObjCObjectOrInterfaceType()) { 05276 MayBePseudoDestructor = true; 05277 } else if (!BaseType->isRecordType()) { 05278 ObjectType = ParsedType(); 05279 MayBePseudoDestructor = true; 05280 return Base; 05281 } 05282 05283 // The object type must be complete (or dependent), or 05284 // C++11 [expr.prim.general]p3: 05285 // Unlike the object expression in other contexts, *this is not required to 05286 // be of complete type for purposes of class member access (5.2.5) outside 05287 // the member function body. 05288 if (!BaseType->isDependentType() && 05289 !isThisOutsideMemberFunctionBody(BaseType) && 05290 RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access)) 05291 return ExprError(); 05292 05293 // C++ [basic.lookup.classref]p2: 05294 // If the id-expression in a class member access (5.2.5) is an 05295 // unqualified-id, and the type of the object expression is of a class 05296 // type C (or of pointer to a class type C), the unqualified-id is looked 05297 // up in the scope of class C. [...] 05298 ObjectType = ParsedType::make(BaseType); 05299 return Base; 05300 } 05301 05302 ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc, 05303 Expr *MemExpr) { 05304 SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc); 05305 Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call) 05306 << isa<CXXPseudoDestructorExpr>(MemExpr) 05307 << FixItHint::CreateInsertion(ExpectedLParenLoc, "()"); 05308 05309 return ActOnCallExpr(/*Scope*/ nullptr, 05310 MemExpr, 05311 /*LPLoc*/ ExpectedLParenLoc, 05312 None, 05313 /*RPLoc*/ ExpectedLParenLoc); 05314 } 05315 05316 static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base, 05317 tok::TokenKind& OpKind, SourceLocation OpLoc) { 05318 if (Base->hasPlaceholderType()) { 05319 ExprResult result = S.CheckPlaceholderExpr(Base); 05320 if (result.isInvalid()) return true; 05321 Base = result.get(); 05322 } 05323 ObjectType = Base->getType(); 05324 05325 // C++ [expr.pseudo]p2: 05326 // The left-hand side of the dot operator shall be of scalar type. The 05327 // left-hand side of the arrow operator shall be of pointer to scalar type. 05328 // This scalar type is the object type. 05329 // Note that this is rather different from the normal handling for the 05330 // arrow operator. 05331 if (OpKind == tok::arrow) { 05332 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) { 05333 ObjectType = Ptr->getPointeeType(); 05334 } else if (!Base->isTypeDependent()) { 05335 // The user wrote "p->" when she probably meant "p."; fix it. 05336 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 05337 << ObjectType << true 05338 << FixItHint::CreateReplacement(OpLoc, "."); 05339 if (S.isSFINAEContext()) 05340 return true; 05341 05342 OpKind = tok::period; 05343 } 05344 } 05345 05346 return false; 05347 } 05348 05349 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base, 05350 SourceLocation OpLoc, 05351 tok::TokenKind OpKind, 05352 const CXXScopeSpec &SS, 05353 TypeSourceInfo *ScopeTypeInfo, 05354 SourceLocation CCLoc, 05355 SourceLocation TildeLoc, 05356 PseudoDestructorTypeStorage Destructed, 05357 bool HasTrailingLParen) { 05358 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo(); 05359 05360 QualType ObjectType; 05361 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 05362 return ExprError(); 05363 05364 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() && 05365 !ObjectType->isVectorType()) { 05366 if (getLangOpts().MSVCCompat && ObjectType->isVoidType()) 05367 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange(); 05368 else { 05369 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar) 05370 << ObjectType << Base->getSourceRange(); 05371 return ExprError(); 05372 } 05373 } 05374 05375 // C++ [expr.pseudo]p2: 05376 // [...] The cv-unqualified versions of the object type and of the type 05377 // designated by the pseudo-destructor-name shall be the same type. 05378 if (DestructedTypeInfo) { 05379 QualType DestructedType = DestructedTypeInfo->getType(); 05380 SourceLocation DestructedTypeStart 05381 = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(); 05382 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) { 05383 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) { 05384 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch) 05385 << ObjectType << DestructedType << Base->getSourceRange() 05386 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); 05387 05388 // Recover by setting the destructed type to the object type. 05389 DestructedType = ObjectType; 05390 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, 05391 DestructedTypeStart); 05392 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 05393 } else if (DestructedType.getObjCLifetime() != 05394 ObjectType.getObjCLifetime()) { 05395 05396 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) { 05397 // Okay: just pretend that the user provided the correctly-qualified 05398 // type. 05399 } else { 05400 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals) 05401 << ObjectType << DestructedType << Base->getSourceRange() 05402 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); 05403 } 05404 05405 // Recover by setting the destructed type to the object type. 05406 DestructedType = ObjectType; 05407 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, 05408 DestructedTypeStart); 05409 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 05410 } 05411 } 05412 } 05413 05414 // C++ [expr.pseudo]p2: 05415 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the 05416 // form 05417 // 05418 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name 05419 // 05420 // shall designate the same scalar type. 05421 if (ScopeTypeInfo) { 05422 QualType ScopeType = ScopeTypeInfo->getType(); 05423 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() && 05424 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) { 05425 05426 Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(), 05427 diag::err_pseudo_dtor_type_mismatch) 05428 << ObjectType << ScopeType << Base->getSourceRange() 05429 << ScopeTypeInfo->getTypeLoc().getLocalSourceRange(); 05430 05431 ScopeType = QualType(); 05432 ScopeTypeInfo = nullptr; 05433 } 05434 } 05435 05436 Expr *Result 05437 = new (Context) CXXPseudoDestructorExpr(Context, Base, 05438 OpKind == tok::arrow, OpLoc, 05439 SS.getWithLocInContext(Context), 05440 ScopeTypeInfo, 05441 CCLoc, 05442 TildeLoc, 05443 Destructed); 05444 05445 if (HasTrailingLParen) 05446 return Result; 05447 05448 return DiagnoseDtorReference(Destructed.getLocation(), Result); 05449 } 05450 05451 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 05452 SourceLocation OpLoc, 05453 tok::TokenKind OpKind, 05454 CXXScopeSpec &SS, 05455 UnqualifiedId &FirstTypeName, 05456 SourceLocation CCLoc, 05457 SourceLocation TildeLoc, 05458 UnqualifiedId &SecondTypeName, 05459 bool HasTrailingLParen) { 05460 assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId || 05461 FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) && 05462 "Invalid first type name in pseudo-destructor"); 05463 assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId || 05464 SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) && 05465 "Invalid second type name in pseudo-destructor"); 05466 05467 QualType ObjectType; 05468 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 05469 return ExprError(); 05470 05471 // Compute the object type that we should use for name lookup purposes. Only 05472 // record types and dependent types matter. 05473 ParsedType ObjectTypePtrForLookup; 05474 if (!SS.isSet()) { 05475 if (ObjectType->isRecordType()) 05476 ObjectTypePtrForLookup = ParsedType::make(ObjectType); 05477 else if (ObjectType->isDependentType()) 05478 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy); 05479 } 05480 05481 // Convert the name of the type being destructed (following the ~) into a 05482 // type (with source-location information). 05483 QualType DestructedType; 05484 TypeSourceInfo *DestructedTypeInfo = nullptr; 05485 PseudoDestructorTypeStorage Destructed; 05486 if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) { 05487 ParsedType T = getTypeName(*SecondTypeName.Identifier, 05488 SecondTypeName.StartLocation, 05489 S, &SS, true, false, ObjectTypePtrForLookup); 05490 if (!T && 05491 ((SS.isSet() && !computeDeclContext(SS, false)) || 05492 (!SS.isSet() && ObjectType->isDependentType()))) { 05493 // The name of the type being destroyed is a dependent name, and we 05494 // couldn't find anything useful in scope. Just store the identifier and 05495 // it's location, and we'll perform (qualified) name lookup again at 05496 // template instantiation time. 05497 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier, 05498 SecondTypeName.StartLocation); 05499 } else if (!T) { 05500 Diag(SecondTypeName.StartLocation, 05501 diag::err_pseudo_dtor_destructor_non_type) 05502 << SecondTypeName.Identifier << ObjectType; 05503 if (isSFINAEContext()) 05504 return ExprError(); 05505 05506 // Recover by assuming we had the right type all along. 05507 DestructedType = ObjectType; 05508 } else 05509 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo); 05510 } else { 05511 // Resolve the template-id to a type. 05512 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId; 05513 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 05514 TemplateId->NumArgs); 05515 TypeResult T = ActOnTemplateIdType(TemplateId->SS, 05516 TemplateId->TemplateKWLoc, 05517 TemplateId->Template, 05518 TemplateId->TemplateNameLoc, 05519 TemplateId->LAngleLoc, 05520 TemplateArgsPtr, 05521 TemplateId->RAngleLoc); 05522 if (T.isInvalid() || !T.get()) { 05523 // Recover by assuming we had the right type all along. 05524 DestructedType = ObjectType; 05525 } else 05526 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo); 05527 } 05528 05529 // If we've performed some kind of recovery, (re-)build the type source 05530 // information. 05531 if (!DestructedType.isNull()) { 05532 if (!DestructedTypeInfo) 05533 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType, 05534 SecondTypeName.StartLocation); 05535 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 05536 } 05537 05538 // Convert the name of the scope type (the type prior to '::') into a type. 05539 TypeSourceInfo *ScopeTypeInfo = nullptr; 05540 QualType ScopeType; 05541 if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId || 05542 FirstTypeName.Identifier) { 05543 if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) { 05544 ParsedType T = getTypeName(*FirstTypeName.Identifier, 05545 FirstTypeName.StartLocation, 05546 S, &SS, true, false, ObjectTypePtrForLookup); 05547 if (!T) { 05548 Diag(FirstTypeName.StartLocation, 05549 diag::err_pseudo_dtor_destructor_non_type) 05550 << FirstTypeName.Identifier << ObjectType; 05551 05552 if (isSFINAEContext()) 05553 return ExprError(); 05554 05555 // Just drop this type. It's unnecessary anyway. 05556 ScopeType = QualType(); 05557 } else 05558 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo); 05559 } else { 05560 // Resolve the template-id to a type. 05561 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId; 05562 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 05563 TemplateId->NumArgs); 05564 TypeResult T = ActOnTemplateIdType(TemplateId->SS, 05565 TemplateId->TemplateKWLoc, 05566 TemplateId->Template, 05567 TemplateId->TemplateNameLoc, 05568 TemplateId->LAngleLoc, 05569 TemplateArgsPtr, 05570 TemplateId->RAngleLoc); 05571 if (T.isInvalid() || !T.get()) { 05572 // Recover by dropping this type. 05573 ScopeType = QualType(); 05574 } else 05575 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo); 05576 } 05577 } 05578 05579 if (!ScopeType.isNull() && !ScopeTypeInfo) 05580 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType, 05581 FirstTypeName.StartLocation); 05582 05583 05584 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS, 05585 ScopeTypeInfo, CCLoc, TildeLoc, 05586 Destructed, HasTrailingLParen); 05587 } 05588 05589 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 05590 SourceLocation OpLoc, 05591 tok::TokenKind OpKind, 05592 SourceLocation TildeLoc, 05593 const DeclSpec& DS, 05594 bool HasTrailingLParen) { 05595 QualType ObjectType; 05596 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 05597 return ExprError(); 05598 05599 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc()); 05600 05601 TypeLocBuilder TLB; 05602 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T); 05603 DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc()); 05604 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T); 05605 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo); 05606 05607 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(), 05608 nullptr, SourceLocation(), TildeLoc, 05609 Destructed, HasTrailingLParen); 05610 } 05611 05612 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl, 05613 CXXConversionDecl *Method, 05614 bool HadMultipleCandidates) { 05615 if (Method->getParent()->isLambda() && 05616 Method->getConversionType()->isBlockPointerType()) { 05617 // This is a lambda coversion to block pointer; check if the argument 05618 // is a LambdaExpr. 05619 Expr *SubE = E; 05620 CastExpr *CE = dyn_cast<CastExpr>(SubE); 05621 if (CE && CE->getCastKind() == CK_NoOp) 05622 SubE = CE->getSubExpr(); 05623 SubE = SubE->IgnoreParens(); 05624 if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE)) 05625 SubE = BE->getSubExpr(); 05626 if (isa<LambdaExpr>(SubE)) { 05627 // For the conversion to block pointer on a lambda expression, we 05628 // construct a special BlockLiteral instead; this doesn't really make 05629 // a difference in ARC, but outside of ARC the resulting block literal 05630 // follows the normal lifetime rules for block literals instead of being 05631 // autoreleased. 05632 DiagnosticErrorTrap Trap(Diags); 05633 ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(), 05634 E->getExprLoc(), 05635 Method, E); 05636 if (Exp.isInvalid()) 05637 Diag(E->getExprLoc(), diag::note_lambda_to_block_conv); 05638 return Exp; 05639 } 05640 } 05641 05642 ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr, 05643 FoundDecl, Method); 05644 if (Exp.isInvalid()) 05645 return true; 05646 05647 MemberExpr *ME = 05648 new (Context) MemberExpr(Exp.get(), /*IsArrow=*/false, Method, 05649 SourceLocation(), Context.BoundMemberTy, 05650 VK_RValue, OK_Ordinary); 05651 if (HadMultipleCandidates) 05652 ME->setHadMultipleCandidates(true); 05653 MarkMemberReferenced(ME); 05654 05655 QualType ResultType = Method->getReturnType(); 05656 ExprValueKind VK = Expr::getValueKindForType(ResultType); 05657 ResultType = ResultType.getNonLValueExprType(Context); 05658 05659 CXXMemberCallExpr *CE = 05660 new (Context) CXXMemberCallExpr(Context, ME, None, ResultType, VK, 05661 Exp.get()->getLocEnd()); 05662 return CE; 05663 } 05664 05665 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand, 05666 SourceLocation RParen) { 05667 CanThrowResult CanThrow = canThrow(Operand); 05668 return new (Context) 05669 CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen); 05670 } 05671 05672 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation, 05673 Expr *Operand, SourceLocation RParen) { 05674 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen); 05675 } 05676 05677 static bool IsSpecialDiscardedValue(Expr *E) { 05678 // In C++11, discarded-value expressions of a certain form are special, 05679 // according to [expr]p10: 05680 // The lvalue-to-rvalue conversion (4.1) is applied only if the 05681 // expression is an lvalue of volatile-qualified type and it has 05682 // one of the following forms: 05683 E = E->IgnoreParens(); 05684 05685 // - id-expression (5.1.1), 05686 if (isa<DeclRefExpr>(E)) 05687 return true; 05688 05689 // - subscripting (5.2.1), 05690 if (isa<ArraySubscriptExpr>(E)) 05691 return true; 05692 05693 // - class member access (5.2.5), 05694 if (isa<MemberExpr>(E)) 05695 return true; 05696 05697 // - indirection (5.3.1), 05698 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) 05699 if (UO->getOpcode() == UO_Deref) 05700 return true; 05701 05702 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 05703 // - pointer-to-member operation (5.5), 05704 if (BO->isPtrMemOp()) 05705 return true; 05706 05707 // - comma expression (5.18) where the right operand is one of the above. 05708 if (BO->getOpcode() == BO_Comma) 05709 return IsSpecialDiscardedValue(BO->getRHS()); 05710 } 05711 05712 // - conditional expression (5.16) where both the second and the third 05713 // operands are one of the above, or 05714 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) 05715 return IsSpecialDiscardedValue(CO->getTrueExpr()) && 05716 IsSpecialDiscardedValue(CO->getFalseExpr()); 05717 // The related edge case of "*x ?: *x". 05718 if (BinaryConditionalOperator *BCO = 05719 dyn_cast<BinaryConditionalOperator>(E)) { 05720 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr())) 05721 return IsSpecialDiscardedValue(OVE->getSourceExpr()) && 05722 IsSpecialDiscardedValue(BCO->getFalseExpr()); 05723 } 05724 05725 // Objective-C++ extensions to the rule. 05726 if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E)) 05727 return true; 05728 05729 return false; 05730 } 05731 05732 /// Perform the conversions required for an expression used in a 05733 /// context that ignores the result. 05734 ExprResult Sema::IgnoredValueConversions(Expr *E) { 05735 if (E->hasPlaceholderType()) { 05736 ExprResult result = CheckPlaceholderExpr(E); 05737 if (result.isInvalid()) return E; 05738 E = result.get(); 05739 } 05740 05741 // C99 6.3.2.1: 05742 // [Except in specific positions,] an lvalue that does not have 05743 // array type is converted to the value stored in the 05744 // designated object (and is no longer an lvalue). 05745 if (E->isRValue()) { 05746 // In C, function designators (i.e. expressions of function type) 05747 // are r-values, but we still want to do function-to-pointer decay 05748 // on them. This is both technically correct and convenient for 05749 // some clients. 05750 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType()) 05751 return DefaultFunctionArrayConversion(E); 05752 05753 return E; 05754 } 05755 05756 if (getLangOpts().CPlusPlus) { 05757 // The C++11 standard defines the notion of a discarded-value expression; 05758 // normally, we don't need to do anything to handle it, but if it is a 05759 // volatile lvalue with a special form, we perform an lvalue-to-rvalue 05760 // conversion. 05761 if (getLangOpts().CPlusPlus11 && E->isGLValue() && 05762 E->getType().isVolatileQualified() && 05763 IsSpecialDiscardedValue(E)) { 05764 ExprResult Res = DefaultLvalueConversion(E); 05765 if (Res.isInvalid()) 05766 return E; 05767 E = Res.get(); 05768 } 05769 return E; 05770 } 05771 05772 // GCC seems to also exclude expressions of incomplete enum type. 05773 if (const EnumType *T = E->getType()->getAs<EnumType>()) { 05774 if (!T->getDecl()->isComplete()) { 05775 // FIXME: stupid workaround for a codegen bug! 05776 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get(); 05777 return E; 05778 } 05779 } 05780 05781 ExprResult Res = DefaultFunctionArrayLvalueConversion(E); 05782 if (Res.isInvalid()) 05783 return E; 05784 E = Res.get(); 05785 05786 if (!E->getType()->isVoidType()) 05787 RequireCompleteType(E->getExprLoc(), E->getType(), 05788 diag::err_incomplete_type); 05789 return E; 05790 } 05791 05792 // If we can unambiguously determine whether Var can never be used 05793 // in a constant expression, return true. 05794 // - if the variable and its initializer are non-dependent, then 05795 // we can unambiguously check if the variable is a constant expression. 05796 // - if the initializer is not value dependent - we can determine whether 05797 // it can be used to initialize a constant expression. If Init can not 05798 // be used to initialize a constant expression we conclude that Var can 05799 // never be a constant expression. 05800 // - FXIME: if the initializer is dependent, we can still do some analysis and 05801 // identify certain cases unambiguously as non-const by using a Visitor: 05802 // - such as those that involve odr-use of a ParmVarDecl, involve a new 05803 // delete, lambda-expr, dynamic-cast, reinterpret-cast etc... 05804 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var, 05805 ASTContext &Context) { 05806 if (isa<ParmVarDecl>(Var)) return true; 05807 const VarDecl *DefVD = nullptr; 05808 05809 // If there is no initializer - this can not be a constant expression. 05810 if (!Var->getAnyInitializer(DefVD)) return true; 05811 assert(DefVD); 05812 if (DefVD->isWeak()) return false; 05813 EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt(); 05814 05815 Expr *Init = cast<Expr>(Eval->Value); 05816 05817 if (Var->getType()->isDependentType() || Init->isValueDependent()) { 05818 // FIXME: Teach the constant evaluator to deal with the non-dependent parts 05819 // of value-dependent expressions, and use it here to determine whether the 05820 // initializer is a potential constant expression. 05821 return false; 05822 } 05823 05824 return !IsVariableAConstantExpression(Var, Context); 05825 } 05826 05827 /// \brief Check if the current lambda has any potential captures 05828 /// that must be captured by any of its enclosing lambdas that are ready to 05829 /// capture. If there is a lambda that can capture a nested 05830 /// potential-capture, go ahead and do so. Also, check to see if any 05831 /// variables are uncaptureable or do not involve an odr-use so do not 05832 /// need to be captured. 05833 05834 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures( 05835 Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) { 05836 05837 assert(!S.isUnevaluatedContext()); 05838 assert(S.CurContext->isDependentContext()); 05839 assert(CurrentLSI->CallOperator == S.CurContext && 05840 "The current call operator must be synchronized with Sema's CurContext"); 05841 05842 const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent(); 05843 05844 ArrayRef<const FunctionScopeInfo *> FunctionScopesArrayRef( 05845 S.FunctionScopes.data(), S.FunctionScopes.size()); 05846 05847 // All the potentially captureable variables in the current nested 05848 // lambda (within a generic outer lambda), must be captured by an 05849 // outer lambda that is enclosed within a non-dependent context. 05850 const unsigned NumPotentialCaptures = 05851 CurrentLSI->getNumPotentialVariableCaptures(); 05852 for (unsigned I = 0; I != NumPotentialCaptures; ++I) { 05853 Expr *VarExpr = nullptr; 05854 VarDecl *Var = nullptr; 05855 CurrentLSI->getPotentialVariableCapture(I, Var, VarExpr); 05856 // If the variable is clearly identified as non-odr-used and the full 05857 // expression is not instantiation dependent, only then do we not 05858 // need to check enclosing lambda's for speculative captures. 05859 // For e.g.: 05860 // Even though 'x' is not odr-used, it should be captured. 05861 // int test() { 05862 // const int x = 10; 05863 // auto L = [=](auto a) { 05864 // (void) +x + a; 05865 // }; 05866 // } 05867 if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) && 05868 !IsFullExprInstantiationDependent) 05869 continue; 05870 05871 // If we have a capture-capable lambda for the variable, go ahead and 05872 // capture the variable in that lambda (and all its enclosing lambdas). 05873 if (const Optional<unsigned> Index = 05874 getStackIndexOfNearestEnclosingCaptureCapableLambda( 05875 FunctionScopesArrayRef, Var, S)) { 05876 const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue(); 05877 MarkVarDeclODRUsed(Var, VarExpr->getExprLoc(), S, 05878 &FunctionScopeIndexOfCapturableLambda); 05879 } 05880 const bool IsVarNeverAConstantExpression = 05881 VariableCanNeverBeAConstantExpression(Var, S.Context); 05882 if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) { 05883 // This full expression is not instantiation dependent or the variable 05884 // can not be used in a constant expression - which means 05885 // this variable must be odr-used here, so diagnose a 05886 // capture violation early, if the variable is un-captureable. 05887 // This is purely for diagnosing errors early. Otherwise, this 05888 // error would get diagnosed when the lambda becomes capture ready. 05889 QualType CaptureType, DeclRefType; 05890 SourceLocation ExprLoc = VarExpr->getExprLoc(); 05891 if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 05892 /*EllipsisLoc*/ SourceLocation(), 05893 /*BuildAndDiagnose*/false, CaptureType, 05894 DeclRefType, nullptr)) { 05895 // We will never be able to capture this variable, and we need 05896 // to be able to in any and all instantiations, so diagnose it. 05897 S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 05898 /*EllipsisLoc*/ SourceLocation(), 05899 /*BuildAndDiagnose*/true, CaptureType, 05900 DeclRefType, nullptr); 05901 } 05902 } 05903 } 05904 05905 // Check if 'this' needs to be captured. 05906 if (CurrentLSI->hasPotentialThisCapture()) { 05907 // If we have a capture-capable lambda for 'this', go ahead and capture 05908 // 'this' in that lambda (and all its enclosing lambdas). 05909 if (const Optional<unsigned> Index = 05910 getStackIndexOfNearestEnclosingCaptureCapableLambda( 05911 FunctionScopesArrayRef, /*0 is 'this'*/ nullptr, S)) { 05912 const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue(); 05913 S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation, 05914 /*Explicit*/ false, /*BuildAndDiagnose*/ true, 05915 &FunctionScopeIndexOfCapturableLambda); 05916 } 05917 } 05918 05919 // Reset all the potential captures at the end of each full-expression. 05920 CurrentLSI->clearPotentialCaptures(); 05921 } 05922 05923 namespace { 05924 class TransformTypos : public TreeTransform<TransformTypos> { 05925 typedef TreeTransform<TransformTypos> BaseTransform; 05926 05927 llvm::function_ref<ExprResult(Expr *)> ExprFilter; 05928 llvm::SmallSetVector<TypoExpr *, 2> TypoExprs; 05929 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache; 05930 llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution; 05931 05932 /// \brief Emit diagnostics for all of the TypoExprs encountered. 05933 /// If the TypoExprs were successfully corrected, then the diagnostics should 05934 /// suggest the corrections. Otherwise the diagnostics will not suggest 05935 /// anything (having been passed an empty TypoCorrection). 05936 void EmitAllDiagnostics() { 05937 for (auto E : TypoExprs) { 05938 TypoExpr *TE = cast<TypoExpr>(E); 05939 auto &State = SemaRef.getTypoExprState(TE); 05940 if (State.DiagHandler) { 05941 TypoCorrection TC = State.Consumer->getCurrentCorrection(); 05942 ExprResult Replacement = TransformCache[TE]; 05943 05944 // Extract the NamedDecl from the transformed TypoExpr and add it to the 05945 // TypoCorrection, replacing the existing decls. This ensures the right 05946 // NamedDecl is used in diagnostics e.g. in the case where overload 05947 // resolution was used to select one from several possible decls that 05948 // had been stored in the TypoCorrection. 05949 if (auto *ND = getDeclFromExpr( 05950 Replacement.isInvalid() ? nullptr : Replacement.get())) 05951 TC.setCorrectionDecl(ND); 05952 05953 State.DiagHandler(TC); 05954 } 05955 SemaRef.clearDelayedTypo(TE); 05956 } 05957 } 05958 05959 /// \brief If corrections for the first TypoExpr have been exhausted for a 05960 /// given combination of the other TypoExprs, retry those corrections against 05961 /// the next combination of substitutions for the other TypoExprs by advancing 05962 /// to the next potential correction of the second TypoExpr. For the second 05963 /// and subsequent TypoExprs, if its stream of corrections has been exhausted, 05964 /// the stream is reset and the next TypoExpr's stream is advanced by one (a 05965 /// TypoExpr's correction stream is advanced by removing the TypoExpr from the 05966 /// TransformCache). Returns true if there is still any untried combinations 05967 /// of corrections. 05968 bool CheckAndAdvanceTypoExprCorrectionStreams() { 05969 for (auto TE : TypoExprs) { 05970 auto &State = SemaRef.getTypoExprState(TE); 05971 TransformCache.erase(TE); 05972 if (!State.Consumer->finished()) 05973 return true; 05974 State.Consumer->resetCorrectionStream(); 05975 } 05976 return false; 05977 } 05978 05979 NamedDecl *getDeclFromExpr(Expr *E) { 05980 if (auto *OE = dyn_cast_or_null<OverloadExpr>(E)) 05981 E = OverloadResolution[OE]; 05982 05983 if (!E) 05984 return nullptr; 05985 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 05986 return DRE->getDecl(); 05987 if (auto *ME = dyn_cast<MemberExpr>(E)) 05988 return ME->getMemberDecl(); 05989 // FIXME: Add any other expr types that could be be seen by the delayed typo 05990 // correction TreeTransform for which the corresponding TypoCorrection could 05991 // contain multple decls. 05992 return nullptr; 05993 } 05994 05995 public: 05996 TransformTypos(Sema &SemaRef, llvm::function_ref<ExprResult(Expr *)> Filter) 05997 : BaseTransform(SemaRef), ExprFilter(Filter) {} 05998 05999 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc, 06000 MultiExprArg Args, 06001 SourceLocation RParenLoc, 06002 Expr *ExecConfig = nullptr) { 06003 auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args, 06004 RParenLoc, ExecConfig); 06005 if (auto *OE = dyn_cast<OverloadExpr>(Callee)) { 06006 if (!Result.isInvalid() && Result.get()) 06007 OverloadResolution[OE] = cast<CallExpr>(Result.get())->getCallee(); 06008 } 06009 return Result; 06010 } 06011 06012 ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); } 06013 06014 ExprResult Transform(Expr *E) { 06015 ExprResult res; 06016 bool error = false; 06017 while (true) { 06018 Sema::SFINAETrap Trap(SemaRef); 06019 res = TransformExpr(E); 06020 error = Trap.hasErrorOccurred(); 06021 06022 if (!(error || res.isInvalid())) 06023 res = ExprFilter(res.get()); 06024 06025 // Exit if either the transform was valid or if there were no TypoExprs 06026 // to transform that still have any untried correction candidates.. 06027 if (!(error || res.isInvalid()) || 06028 !CheckAndAdvanceTypoExprCorrectionStreams()) 06029 break; 06030 } 06031 06032 EmitAllDiagnostics(); 06033 06034 return res; 06035 } 06036 06037 ExprResult TransformTypoExpr(TypoExpr *E) { 06038 // If the TypoExpr hasn't been seen before, record it. Otherwise, return the 06039 // cached transformation result if there is one and the TypoExpr isn't the 06040 // first one that was encountered. 06041 auto &CacheEntry = TransformCache[E]; 06042 if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) { 06043 return CacheEntry; 06044 } 06045 06046 auto &State = SemaRef.getTypoExprState(E); 06047 assert(State.Consumer && "Cannot transform a cleared TypoExpr"); 06048 06049 // For the first TypoExpr and an uncached TypoExpr, find the next likely 06050 // typo correction and return it. 06051 while (TypoCorrection TC = State.Consumer->getNextCorrection()) { 06052 ExprResult NE; 06053 if (State.RecoveryHandler) { 06054 NE = State.RecoveryHandler(SemaRef, E, TC); 06055 } else { 06056 LookupResult R(SemaRef, 06057 State.Consumer->getLookupResult().getLookupNameInfo(), 06058 State.Consumer->getLookupResult().getLookupKind()); 06059 if (!TC.isKeyword()) 06060 R.addDecl(TC.getCorrectionDecl()); 06061 NE = SemaRef.BuildDeclarationNameExpr(CXXScopeSpec(), R, false); 06062 } 06063 assert(!NE.isUnset() && 06064 "Typo was transformed into a valid-but-null ExprResult"); 06065 if (!NE.isInvalid()) 06066 return CacheEntry = NE; 06067 } 06068 return CacheEntry = ExprError(); 06069 } 06070 }; 06071 } 06072 06073 ExprResult Sema::CorrectDelayedTyposInExpr( 06074 Expr *E, llvm::function_ref<ExprResult(Expr *)> Filter) { 06075 // If the current evaluation context indicates there are uncorrected typos 06076 // and the current expression isn't guaranteed to not have typos, try to 06077 // resolve any TypoExpr nodes that might be in the expression. 06078 if (!ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos && 06079 (E->isTypeDependent() || E->isValueDependent() || 06080 E->isInstantiationDependent())) { 06081 auto TyposResolved = DelayedTypos.size(); 06082 auto Result = TransformTypos(*this, Filter).Transform(E); 06083 TyposResolved -= DelayedTypos.size(); 06084 if (TyposResolved) { 06085 ExprEvalContexts.back().NumTypos -= TyposResolved; 06086 return Result; 06087 } 06088 } 06089 return E; 06090 } 06091 06092 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC, 06093 bool DiscardedValue, 06094 bool IsConstexpr, 06095 bool IsLambdaInitCaptureInitializer) { 06096 ExprResult FullExpr = FE; 06097 06098 if (!FullExpr.get()) 06099 return ExprError(); 06100 06101 // If we are an init-expression in a lambdas init-capture, we should not 06102 // diagnose an unexpanded pack now (will be diagnosed once lambda-expr 06103 // containing full-expression is done). 06104 // template<class ... Ts> void test(Ts ... t) { 06105 // test([&a(t)]() { <-- (t) is an init-expr that shouldn't be diagnosed now. 06106 // return a; 06107 // }() ...); 06108 // } 06109 // FIXME: This is a hack. It would be better if we pushed the lambda scope 06110 // when we parse the lambda introducer, and teach capturing (but not 06111 // unexpanded pack detection) to walk over LambdaScopeInfos which don't have a 06112 // corresponding class yet (that is, have LambdaScopeInfo either represent a 06113 // lambda where we've entered the introducer but not the body, or represent a 06114 // lambda where we've entered the body, depending on where the 06115 // parser/instantiation has got to). 06116 if (!IsLambdaInitCaptureInitializer && 06117 DiagnoseUnexpandedParameterPack(FullExpr.get())) 06118 return ExprError(); 06119 06120 // Top-level expressions default to 'id' when we're in a debugger. 06121 if (DiscardedValue && getLangOpts().DebuggerCastResultToId && 06122 FullExpr.get()->getType() == Context.UnknownAnyTy) { 06123 FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType()); 06124 if (FullExpr.isInvalid()) 06125 return ExprError(); 06126 } 06127 06128 if (DiscardedValue) { 06129 FullExpr = CheckPlaceholderExpr(FullExpr.get()); 06130 if (FullExpr.isInvalid()) 06131 return ExprError(); 06132 06133 FullExpr = IgnoredValueConversions(FullExpr.get()); 06134 if (FullExpr.isInvalid()) 06135 return ExprError(); 06136 } 06137 06138 FullExpr = CorrectDelayedTyposInExpr(FullExpr.get()); 06139 if (FullExpr.isInvalid()) 06140 return ExprError(); 06141 06142 CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr); 06143 06144 // At the end of this full expression (which could be a deeply nested 06145 // lambda), if there is a potential capture within the nested lambda, 06146 // have the outer capture-able lambda try and capture it. 06147 // Consider the following code: 06148 // void f(int, int); 06149 // void f(const int&, double); 06150 // void foo() { 06151 // const int x = 10, y = 20; 06152 // auto L = [=](auto a) { 06153 // auto M = [=](auto b) { 06154 // f(x, b); <-- requires x to be captured by L and M 06155 // f(y, a); <-- requires y to be captured by L, but not all Ms 06156 // }; 06157 // }; 06158 // } 06159 06160 // FIXME: Also consider what happens for something like this that involves 06161 // the gnu-extension statement-expressions or even lambda-init-captures: 06162 // void f() { 06163 // const int n = 0; 06164 // auto L = [&](auto a) { 06165 // +n + ({ 0; a; }); 06166 // }; 06167 // } 06168 // 06169 // Here, we see +n, and then the full-expression 0; ends, so we don't 06170 // capture n (and instead remove it from our list of potential captures), 06171 // and then the full-expression +n + ({ 0; }); ends, but it's too late 06172 // for us to see that we need to capture n after all. 06173 06174 LambdaScopeInfo *const CurrentLSI = getCurLambda(); 06175 // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer 06176 // even if CurContext is not a lambda call operator. Refer to that Bug Report 06177 // for an example of the code that might cause this asynchrony. 06178 // By ensuring we are in the context of a lambda's call operator 06179 // we can fix the bug (we only need to check whether we need to capture 06180 // if we are within a lambda's body); but per the comments in that 06181 // PR, a proper fix would entail : 06182 // "Alternative suggestion: 06183 // - Add to Sema an integer holding the smallest (outermost) scope 06184 // index that we are *lexically* within, and save/restore/set to 06185 // FunctionScopes.size() in InstantiatingTemplate's 06186 // constructor/destructor. 06187 // - Teach the handful of places that iterate over FunctionScopes to 06188 // stop at the outermost enclosing lexical scope." 06189 const bool IsInLambdaDeclContext = isLambdaCallOperator(CurContext); 06190 if (IsInLambdaDeclContext && CurrentLSI && 06191 CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid()) 06192 CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI, 06193 *this); 06194 return MaybeCreateExprWithCleanups(FullExpr); 06195 } 06196 06197 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) { 06198 if (!FullStmt) return StmtError(); 06199 06200 return MaybeCreateStmtWithCleanups(FullStmt); 06201 } 06202 06203 Sema::IfExistsResult 06204 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, 06205 CXXScopeSpec &SS, 06206 const DeclarationNameInfo &TargetNameInfo) { 06207 DeclarationName TargetName = TargetNameInfo.getName(); 06208 if (!TargetName) 06209 return IER_DoesNotExist; 06210 06211 // If the name itself is dependent, then the result is dependent. 06212 if (TargetName.isDependentName()) 06213 return IER_Dependent; 06214 06215 // Do the redeclaration lookup in the current scope. 06216 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName, 06217 Sema::NotForRedeclaration); 06218 LookupParsedName(R, S, &SS); 06219 R.suppressDiagnostics(); 06220 06221 switch (R.getResultKind()) { 06222 case LookupResult::Found: 06223 case LookupResult::FoundOverloaded: 06224 case LookupResult::FoundUnresolvedValue: 06225 case LookupResult::Ambiguous: 06226 return IER_Exists; 06227 06228 case LookupResult::NotFound: 06229 return IER_DoesNotExist; 06230 06231 case LookupResult::NotFoundInCurrentInstantiation: 06232 return IER_Dependent; 06233 } 06234 06235 llvm_unreachable("Invalid LookupResult Kind!"); 06236 } 06237 06238 Sema::IfExistsResult 06239 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc, 06240 bool IsIfExists, CXXScopeSpec &SS, 06241 UnqualifiedId &Name) { 06242 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); 06243 06244 // Check for unexpanded parameter packs. 06245 SmallVector<UnexpandedParameterPack, 4> Unexpanded; 06246 collectUnexpandedParameterPacks(SS, Unexpanded); 06247 collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded); 06248 if (!Unexpanded.empty()) { 06249 DiagnoseUnexpandedParameterPacks(KeywordLoc, 06250 IsIfExists? UPPC_IfExists 06251 : UPPC_IfNotExists, 06252 Unexpanded); 06253 return IER_Error; 06254 } 06255 06256 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo); 06257 }