clang API Documentation
00001 // SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*- 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file defines SimpleSValBuilder, a basic implementation of SValBuilder. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" 00015 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h" 00016 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 00017 00018 using namespace clang; 00019 using namespace ento; 00020 00021 namespace { 00022 class SimpleSValBuilder : public SValBuilder { 00023 protected: 00024 SVal dispatchCast(SVal val, QualType castTy) override; 00025 SVal evalCastFromNonLoc(NonLoc val, QualType castTy) override; 00026 SVal evalCastFromLoc(Loc val, QualType castTy) override; 00027 00028 public: 00029 SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context, 00030 ProgramStateManager &stateMgr) 00031 : SValBuilder(alloc, context, stateMgr) {} 00032 virtual ~SimpleSValBuilder() {} 00033 00034 SVal evalMinus(NonLoc val) override; 00035 SVal evalComplement(NonLoc val) override; 00036 SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op, 00037 NonLoc lhs, NonLoc rhs, QualType resultTy) override; 00038 SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op, 00039 Loc lhs, Loc rhs, QualType resultTy) override; 00040 SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op, 00041 Loc lhs, NonLoc rhs, QualType resultTy) override; 00042 00043 /// getKnownValue - evaluates a given SVal. If the SVal has only one possible 00044 /// (integer) value, that value is returned. Otherwise, returns NULL. 00045 const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V) override; 00046 00047 SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op, 00048 const llvm::APSInt &RHS, QualType resultTy); 00049 }; 00050 } // end anonymous namespace 00051 00052 SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc, 00053 ASTContext &context, 00054 ProgramStateManager &stateMgr) { 00055 return new SimpleSValBuilder(alloc, context, stateMgr); 00056 } 00057 00058 //===----------------------------------------------------------------------===// 00059 // Transfer function for Casts. 00060 //===----------------------------------------------------------------------===// 00061 00062 SVal SimpleSValBuilder::dispatchCast(SVal Val, QualType CastTy) { 00063 assert(Val.getAs<Loc>() || Val.getAs<NonLoc>()); 00064 return Val.getAs<Loc>() ? evalCastFromLoc(Val.castAs<Loc>(), CastTy) 00065 : evalCastFromNonLoc(Val.castAs<NonLoc>(), CastTy); 00066 } 00067 00068 SVal SimpleSValBuilder::evalCastFromNonLoc(NonLoc val, QualType castTy) { 00069 00070 bool isLocType = Loc::isLocType(castTy); 00071 00072 if (Optional<nonloc::LocAsInteger> LI = val.getAs<nonloc::LocAsInteger>()) { 00073 if (isLocType) 00074 return LI->getLoc(); 00075 00076 // FIXME: Correctly support promotions/truncations. 00077 unsigned castSize = Context.getTypeSize(castTy); 00078 if (castSize == LI->getNumBits()) 00079 return val; 00080 return makeLocAsInteger(LI->getLoc(), castSize); 00081 } 00082 00083 if (const SymExpr *se = val.getAsSymbolicExpression()) { 00084 QualType T = Context.getCanonicalType(se->getType()); 00085 // If types are the same or both are integers, ignore the cast. 00086 // FIXME: Remove this hack when we support symbolic truncation/extension. 00087 // HACK: If both castTy and T are integers, ignore the cast. This is 00088 // not a permanent solution. Eventually we want to precisely handle 00089 // extension/truncation of symbolic integers. This prevents us from losing 00090 // precision when we assign 'x = y' and 'y' is symbolic and x and y are 00091 // different integer types. 00092 if (haveSameType(T, castTy)) 00093 return val; 00094 00095 if (!isLocType) 00096 return makeNonLoc(se, T, castTy); 00097 return UnknownVal(); 00098 } 00099 00100 // If value is a non-integer constant, produce unknown. 00101 if (!val.getAs<nonloc::ConcreteInt>()) 00102 return UnknownVal(); 00103 00104 // Handle casts to a boolean type. 00105 if (castTy->isBooleanType()) { 00106 bool b = val.castAs<nonloc::ConcreteInt>().getValue().getBoolValue(); 00107 return makeTruthVal(b, castTy); 00108 } 00109 00110 // Only handle casts from integers to integers - if val is an integer constant 00111 // being cast to a non-integer type, produce unknown. 00112 if (!isLocType && !castTy->isIntegralOrEnumerationType()) 00113 return UnknownVal(); 00114 00115 llvm::APSInt i = val.castAs<nonloc::ConcreteInt>().getValue(); 00116 BasicVals.getAPSIntType(castTy).apply(i); 00117 00118 if (isLocType) 00119 return makeIntLocVal(i); 00120 else 00121 return makeIntVal(i); 00122 } 00123 00124 SVal SimpleSValBuilder::evalCastFromLoc(Loc val, QualType castTy) { 00125 00126 // Casts from pointers -> pointers, just return the lval. 00127 // 00128 // Casts from pointers -> references, just return the lval. These 00129 // can be introduced by the frontend for corner cases, e.g 00130 // casting from va_list* to __builtin_va_list&. 00131 // 00132 if (Loc::isLocType(castTy) || castTy->isReferenceType()) 00133 return val; 00134 00135 // FIXME: Handle transparent unions where a value can be "transparently" 00136 // lifted into a union type. 00137 if (castTy->isUnionType()) 00138 return UnknownVal(); 00139 00140 // Casting a Loc to a bool will almost always be true, 00141 // unless this is a weak function or a symbolic region. 00142 if (castTy->isBooleanType()) { 00143 switch (val.getSubKind()) { 00144 case loc::MemRegionKind: { 00145 const MemRegion *R = val.castAs<loc::MemRegionVal>().getRegion(); 00146 if (const FunctionTextRegion *FTR = dyn_cast<FunctionTextRegion>(R)) 00147 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FTR->getDecl())) 00148 if (FD->isWeak()) 00149 // FIXME: Currently we are using an extent symbol here, 00150 // because there are no generic region address metadata 00151 // symbols to use, only content metadata. 00152 return nonloc::SymbolVal(SymMgr.getExtentSymbol(FTR)); 00153 00154 if (const SymbolicRegion *SymR = R->getSymbolicBase()) 00155 return nonloc::SymbolVal(SymR->getSymbol()); 00156 00157 // FALL-THROUGH 00158 } 00159 00160 case loc::GotoLabelKind: 00161 // Labels and non-symbolic memory regions are always true. 00162 return makeTruthVal(true, castTy); 00163 } 00164 } 00165 00166 if (castTy->isIntegralOrEnumerationType()) { 00167 unsigned BitWidth = Context.getTypeSize(castTy); 00168 00169 if (!val.getAs<loc::ConcreteInt>()) 00170 return makeLocAsInteger(val, BitWidth); 00171 00172 llvm::APSInt i = val.castAs<loc::ConcreteInt>().getValue(); 00173 BasicVals.getAPSIntType(castTy).apply(i); 00174 return makeIntVal(i); 00175 } 00176 00177 // All other cases: return 'UnknownVal'. This includes casting pointers 00178 // to floats, which is probably badness it itself, but this is a good 00179 // intermediate solution until we do something better. 00180 return UnknownVal(); 00181 } 00182 00183 //===----------------------------------------------------------------------===// 00184 // Transfer function for unary operators. 00185 //===----------------------------------------------------------------------===// 00186 00187 SVal SimpleSValBuilder::evalMinus(NonLoc val) { 00188 switch (val.getSubKind()) { 00189 case nonloc::ConcreteIntKind: 00190 return val.castAs<nonloc::ConcreteInt>().evalMinus(*this); 00191 default: 00192 return UnknownVal(); 00193 } 00194 } 00195 00196 SVal SimpleSValBuilder::evalComplement(NonLoc X) { 00197 switch (X.getSubKind()) { 00198 case nonloc::ConcreteIntKind: 00199 return X.castAs<nonloc::ConcreteInt>().evalComplement(*this); 00200 default: 00201 return UnknownVal(); 00202 } 00203 } 00204 00205 //===----------------------------------------------------------------------===// 00206 // Transfer function for binary operators. 00207 //===----------------------------------------------------------------------===// 00208 00209 SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS, 00210 BinaryOperator::Opcode op, 00211 const llvm::APSInt &RHS, 00212 QualType resultTy) { 00213 bool isIdempotent = false; 00214 00215 // Check for a few special cases with known reductions first. 00216 switch (op) { 00217 default: 00218 // We can't reduce this case; just treat it normally. 00219 break; 00220 case BO_Mul: 00221 // a*0 and a*1 00222 if (RHS == 0) 00223 return makeIntVal(0, resultTy); 00224 else if (RHS == 1) 00225 isIdempotent = true; 00226 break; 00227 case BO_Div: 00228 // a/0 and a/1 00229 if (RHS == 0) 00230 // This is also handled elsewhere. 00231 return UndefinedVal(); 00232 else if (RHS == 1) 00233 isIdempotent = true; 00234 break; 00235 case BO_Rem: 00236 // a%0 and a%1 00237 if (RHS == 0) 00238 // This is also handled elsewhere. 00239 return UndefinedVal(); 00240 else if (RHS == 1) 00241 return makeIntVal(0, resultTy); 00242 break; 00243 case BO_Add: 00244 case BO_Sub: 00245 case BO_Shl: 00246 case BO_Shr: 00247 case BO_Xor: 00248 // a+0, a-0, a<<0, a>>0, a^0 00249 if (RHS == 0) 00250 isIdempotent = true; 00251 break; 00252 case BO_And: 00253 // a&0 and a&(~0) 00254 if (RHS == 0) 00255 return makeIntVal(0, resultTy); 00256 else if (RHS.isAllOnesValue()) 00257 isIdempotent = true; 00258 break; 00259 case BO_Or: 00260 // a|0 and a|(~0) 00261 if (RHS == 0) 00262 isIdempotent = true; 00263 else if (RHS.isAllOnesValue()) { 00264 const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS); 00265 return nonloc::ConcreteInt(Result); 00266 } 00267 break; 00268 } 00269 00270 // Idempotent ops (like a*1) can still change the type of an expression. 00271 // Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the 00272 // dirty work. 00273 if (isIdempotent) 00274 return evalCastFromNonLoc(nonloc::SymbolVal(LHS), resultTy); 00275 00276 // If we reach this point, the expression cannot be simplified. 00277 // Make a SymbolVal for the entire expression, after converting the RHS. 00278 const llvm::APSInt *ConvertedRHS = &RHS; 00279 if (BinaryOperator::isComparisonOp(op)) { 00280 // We're looking for a type big enough to compare the symbolic value 00281 // with the given constant. 00282 // FIXME: This is an approximation of Sema::UsualArithmeticConversions. 00283 ASTContext &Ctx = getContext(); 00284 QualType SymbolType = LHS->getType(); 00285 uint64_t ValWidth = RHS.getBitWidth(); 00286 uint64_t TypeWidth = Ctx.getTypeSize(SymbolType); 00287 00288 if (ValWidth < TypeWidth) { 00289 // If the value is too small, extend it. 00290 ConvertedRHS = &BasicVals.Convert(SymbolType, RHS); 00291 } else if (ValWidth == TypeWidth) { 00292 // If the value is signed but the symbol is unsigned, do the comparison 00293 // in unsigned space. [C99 6.3.1.8] 00294 // (For the opposite case, the value is already unsigned.) 00295 if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType()) 00296 ConvertedRHS = &BasicVals.Convert(SymbolType, RHS); 00297 } 00298 } else 00299 ConvertedRHS = &BasicVals.Convert(resultTy, RHS); 00300 00301 return makeNonLoc(LHS, op, *ConvertedRHS, resultTy); 00302 } 00303 00304 SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state, 00305 BinaryOperator::Opcode op, 00306 NonLoc lhs, NonLoc rhs, 00307 QualType resultTy) { 00308 NonLoc InputLHS = lhs; 00309 NonLoc InputRHS = rhs; 00310 00311 // Handle trivial case where left-side and right-side are the same. 00312 if (lhs == rhs) 00313 switch (op) { 00314 default: 00315 break; 00316 case BO_EQ: 00317 case BO_LE: 00318 case BO_GE: 00319 return makeTruthVal(true, resultTy); 00320 case BO_LT: 00321 case BO_GT: 00322 case BO_NE: 00323 return makeTruthVal(false, resultTy); 00324 case BO_Xor: 00325 case BO_Sub: 00326 if (resultTy->isIntegralOrEnumerationType()) 00327 return makeIntVal(0, resultTy); 00328 return evalCastFromNonLoc(makeIntVal(0, /*Unsigned=*/false), resultTy); 00329 case BO_Or: 00330 case BO_And: 00331 return evalCastFromNonLoc(lhs, resultTy); 00332 } 00333 00334 while (1) { 00335 switch (lhs.getSubKind()) { 00336 default: 00337 return makeSymExprValNN(state, op, lhs, rhs, resultTy); 00338 case nonloc::LocAsIntegerKind: { 00339 Loc lhsL = lhs.castAs<nonloc::LocAsInteger>().getLoc(); 00340 switch (rhs.getSubKind()) { 00341 case nonloc::LocAsIntegerKind: 00342 return evalBinOpLL(state, op, lhsL, 00343 rhs.castAs<nonloc::LocAsInteger>().getLoc(), 00344 resultTy); 00345 case nonloc::ConcreteIntKind: { 00346 // Transform the integer into a location and compare. 00347 llvm::APSInt i = rhs.castAs<nonloc::ConcreteInt>().getValue(); 00348 BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i); 00349 return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy); 00350 } 00351 default: 00352 switch (op) { 00353 case BO_EQ: 00354 return makeTruthVal(false, resultTy); 00355 case BO_NE: 00356 return makeTruthVal(true, resultTy); 00357 default: 00358 // This case also handles pointer arithmetic. 00359 return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy); 00360 } 00361 } 00362 } 00363 case nonloc::ConcreteIntKind: { 00364 llvm::APSInt LHSValue = lhs.castAs<nonloc::ConcreteInt>().getValue(); 00365 00366 // If we're dealing with two known constants, just perform the operation. 00367 if (const llvm::APSInt *KnownRHSValue = getKnownValue(state, rhs)) { 00368 llvm::APSInt RHSValue = *KnownRHSValue; 00369 if (BinaryOperator::isComparisonOp(op)) { 00370 // We're looking for a type big enough to compare the two values. 00371 // FIXME: This is not correct. char + short will result in a promotion 00372 // to int. Unfortunately we have lost types by this point. 00373 APSIntType CompareType = std::max(APSIntType(LHSValue), 00374 APSIntType(RHSValue)); 00375 CompareType.apply(LHSValue); 00376 CompareType.apply(RHSValue); 00377 } else if (!BinaryOperator::isShiftOp(op)) { 00378 APSIntType IntType = BasicVals.getAPSIntType(resultTy); 00379 IntType.apply(LHSValue); 00380 IntType.apply(RHSValue); 00381 } 00382 00383 const llvm::APSInt *Result = 00384 BasicVals.evalAPSInt(op, LHSValue, RHSValue); 00385 if (!Result) 00386 return UndefinedVal(); 00387 00388 return nonloc::ConcreteInt(*Result); 00389 } 00390 00391 // Swap the left and right sides and flip the operator if doing so 00392 // allows us to better reason about the expression (this is a form 00393 // of expression canonicalization). 00394 // While we're at it, catch some special cases for non-commutative ops. 00395 switch (op) { 00396 case BO_LT: 00397 case BO_GT: 00398 case BO_LE: 00399 case BO_GE: 00400 op = BinaryOperator::reverseComparisonOp(op); 00401 // FALL-THROUGH 00402 case BO_EQ: 00403 case BO_NE: 00404 case BO_Add: 00405 case BO_Mul: 00406 case BO_And: 00407 case BO_Xor: 00408 case BO_Or: 00409 std::swap(lhs, rhs); 00410 continue; 00411 case BO_Shr: 00412 // (~0)>>a 00413 if (LHSValue.isAllOnesValue() && LHSValue.isSigned()) 00414 return evalCastFromNonLoc(lhs, resultTy); 00415 // FALL-THROUGH 00416 case BO_Shl: 00417 // 0<<a and 0>>a 00418 if (LHSValue == 0) 00419 return evalCastFromNonLoc(lhs, resultTy); 00420 return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy); 00421 default: 00422 return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy); 00423 } 00424 } 00425 case nonloc::SymbolValKind: { 00426 // We only handle LHS as simple symbols or SymIntExprs. 00427 SymbolRef Sym = lhs.castAs<nonloc::SymbolVal>().getSymbol(); 00428 00429 // LHS is a symbolic expression. 00430 if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) { 00431 00432 // Is this a logical not? (!x is represented as x == 0.) 00433 if (op == BO_EQ && rhs.isZeroConstant()) { 00434 // We know how to negate certain expressions. Simplify them here. 00435 00436 BinaryOperator::Opcode opc = symIntExpr->getOpcode(); 00437 switch (opc) { 00438 default: 00439 // We don't know how to negate this operation. 00440 // Just handle it as if it were a normal comparison to 0. 00441 break; 00442 case BO_LAnd: 00443 case BO_LOr: 00444 llvm_unreachable("Logical operators handled by branching logic."); 00445 case BO_Assign: 00446 case BO_MulAssign: 00447 case BO_DivAssign: 00448 case BO_RemAssign: 00449 case BO_AddAssign: 00450 case BO_SubAssign: 00451 case BO_ShlAssign: 00452 case BO_ShrAssign: 00453 case BO_AndAssign: 00454 case BO_XorAssign: 00455 case BO_OrAssign: 00456 case BO_Comma: 00457 llvm_unreachable("'=' and ',' operators handled by ExprEngine."); 00458 case BO_PtrMemD: 00459 case BO_PtrMemI: 00460 llvm_unreachable("Pointer arithmetic not handled here."); 00461 case BO_LT: 00462 case BO_GT: 00463 case BO_LE: 00464 case BO_GE: 00465 case BO_EQ: 00466 case BO_NE: 00467 assert(resultTy->isBooleanType() || 00468 resultTy == getConditionType()); 00469 assert(symIntExpr->getType()->isBooleanType() || 00470 getContext().hasSameUnqualifiedType(symIntExpr->getType(), 00471 getConditionType())); 00472 // Negate the comparison and make a value. 00473 opc = BinaryOperator::negateComparisonOp(opc); 00474 return makeNonLoc(symIntExpr->getLHS(), opc, 00475 symIntExpr->getRHS(), resultTy); 00476 } 00477 } 00478 00479 // For now, only handle expressions whose RHS is a constant. 00480 if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) { 00481 // If both the LHS and the current expression are additive, 00482 // fold their constants and try again. 00483 if (BinaryOperator::isAdditiveOp(op)) { 00484 BinaryOperator::Opcode lop = symIntExpr->getOpcode(); 00485 if (BinaryOperator::isAdditiveOp(lop)) { 00486 // Convert the two constants to a common type, then combine them. 00487 00488 // resultTy may not be the best type to convert to, but it's 00489 // probably the best choice in expressions with mixed type 00490 // (such as x+1U+2LL). The rules for implicit conversions should 00491 // choose a reasonable type to preserve the expression, and will 00492 // at least match how the value is going to be used. 00493 APSIntType IntType = BasicVals.getAPSIntType(resultTy); 00494 const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS()); 00495 const llvm::APSInt &second = IntType.convert(*RHSValue); 00496 00497 const llvm::APSInt *newRHS; 00498 if (lop == op) 00499 newRHS = BasicVals.evalAPSInt(BO_Add, first, second); 00500 else 00501 newRHS = BasicVals.evalAPSInt(BO_Sub, first, second); 00502 00503 assert(newRHS && "Invalid operation despite common type!"); 00504 rhs = nonloc::ConcreteInt(*newRHS); 00505 lhs = nonloc::SymbolVal(symIntExpr->getLHS()); 00506 op = lop; 00507 continue; 00508 } 00509 } 00510 00511 // Otherwise, make a SymIntExpr out of the expression. 00512 return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy); 00513 } 00514 } 00515 00516 // Does the symbolic expression simplify to a constant? 00517 // If so, "fold" the constant by setting 'lhs' to a ConcreteInt 00518 // and try again. 00519 ConstraintManager &CMgr = state->getConstraintManager(); 00520 if (const llvm::APSInt *Constant = CMgr.getSymVal(state, Sym)) { 00521 lhs = nonloc::ConcreteInt(*Constant); 00522 continue; 00523 } 00524 00525 // Is the RHS a constant? 00526 if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) 00527 return MakeSymIntVal(Sym, op, *RHSValue, resultTy); 00528 00529 // Give up -- this is not a symbolic expression we can handle. 00530 return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy); 00531 } 00532 } 00533 } 00534 } 00535 00536 static SVal evalBinOpFieldRegionFieldRegion(const FieldRegion *LeftFR, 00537 const FieldRegion *RightFR, 00538 BinaryOperator::Opcode op, 00539 QualType resultTy, 00540 SimpleSValBuilder &SVB) { 00541 // Only comparisons are meaningful here! 00542 if (!BinaryOperator::isComparisonOp(op)) 00543 return UnknownVal(); 00544 00545 // Next, see if the two FRs have the same super-region. 00546 // FIXME: This doesn't handle casts yet, and simply stripping the casts 00547 // doesn't help. 00548 if (LeftFR->getSuperRegion() != RightFR->getSuperRegion()) 00549 return UnknownVal(); 00550 00551 const FieldDecl *LeftFD = LeftFR->getDecl(); 00552 const FieldDecl *RightFD = RightFR->getDecl(); 00553 const RecordDecl *RD = LeftFD->getParent(); 00554 00555 // Make sure the two FRs are from the same kind of record. Just in case! 00556 // FIXME: This is probably where inheritance would be a problem. 00557 if (RD != RightFD->getParent()) 00558 return UnknownVal(); 00559 00560 // We know for sure that the two fields are not the same, since that 00561 // would have given us the same SVal. 00562 if (op == BO_EQ) 00563 return SVB.makeTruthVal(false, resultTy); 00564 if (op == BO_NE) 00565 return SVB.makeTruthVal(true, resultTy); 00566 00567 // Iterate through the fields and see which one comes first. 00568 // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field 00569 // members and the units in which bit-fields reside have addresses that 00570 // increase in the order in which they are declared." 00571 bool leftFirst = (op == BO_LT || op == BO_LE); 00572 for (const auto *I : RD->fields()) { 00573 if (I == LeftFD) 00574 return SVB.makeTruthVal(leftFirst, resultTy); 00575 if (I == RightFD) 00576 return SVB.makeTruthVal(!leftFirst, resultTy); 00577 } 00578 00579 llvm_unreachable("Fields not found in parent record's definition"); 00580 } 00581 00582 // FIXME: all this logic will change if/when we have MemRegion::getLocation(). 00583 SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state, 00584 BinaryOperator::Opcode op, 00585 Loc lhs, Loc rhs, 00586 QualType resultTy) { 00587 // Only comparisons and subtractions are valid operations on two pointers. 00588 // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15]. 00589 // However, if a pointer is casted to an integer, evalBinOpNN may end up 00590 // calling this function with another operation (PR7527). We don't attempt to 00591 // model this for now, but it could be useful, particularly when the 00592 // "location" is actually an integer value that's been passed through a void*. 00593 if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub)) 00594 return UnknownVal(); 00595 00596 // Special cases for when both sides are identical. 00597 if (lhs == rhs) { 00598 switch (op) { 00599 default: 00600 llvm_unreachable("Unimplemented operation for two identical values"); 00601 case BO_Sub: 00602 return makeZeroVal(resultTy); 00603 case BO_EQ: 00604 case BO_LE: 00605 case BO_GE: 00606 return makeTruthVal(true, resultTy); 00607 case BO_NE: 00608 case BO_LT: 00609 case BO_GT: 00610 return makeTruthVal(false, resultTy); 00611 } 00612 } 00613 00614 switch (lhs.getSubKind()) { 00615 default: 00616 llvm_unreachable("Ordering not implemented for this Loc."); 00617 00618 case loc::GotoLabelKind: 00619 // The only thing we know about labels is that they're non-null. 00620 if (rhs.isZeroConstant()) { 00621 switch (op) { 00622 default: 00623 break; 00624 case BO_Sub: 00625 return evalCastFromLoc(lhs, resultTy); 00626 case BO_EQ: 00627 case BO_LE: 00628 case BO_LT: 00629 return makeTruthVal(false, resultTy); 00630 case BO_NE: 00631 case BO_GT: 00632 case BO_GE: 00633 return makeTruthVal(true, resultTy); 00634 } 00635 } 00636 // There may be two labels for the same location, and a function region may 00637 // have the same address as a label at the start of the function (depending 00638 // on the ABI). 00639 // FIXME: we can probably do a comparison against other MemRegions, though. 00640 // FIXME: is there a way to tell if two labels refer to the same location? 00641 return UnknownVal(); 00642 00643 case loc::ConcreteIntKind: { 00644 // If one of the operands is a symbol and the other is a constant, 00645 // build an expression for use by the constraint manager. 00646 if (SymbolRef rSym = rhs.getAsLocSymbol()) { 00647 // We can only build expressions with symbols on the left, 00648 // so we need a reversible operator. 00649 if (!BinaryOperator::isComparisonOp(op)) 00650 return UnknownVal(); 00651 00652 const llvm::APSInt &lVal = lhs.castAs<loc::ConcreteInt>().getValue(); 00653 op = BinaryOperator::reverseComparisonOp(op); 00654 return makeNonLoc(rSym, op, lVal, resultTy); 00655 } 00656 00657 // If both operands are constants, just perform the operation. 00658 if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) { 00659 SVal ResultVal = 00660 lhs.castAs<loc::ConcreteInt>().evalBinOp(BasicVals, op, *rInt); 00661 if (Optional<NonLoc> Result = ResultVal.getAs<NonLoc>()) 00662 return evalCastFromNonLoc(*Result, resultTy); 00663 00664 assert(!ResultVal.getAs<Loc>() && "Loc-Loc ops should not produce Locs"); 00665 return UnknownVal(); 00666 } 00667 00668 // Special case comparisons against NULL. 00669 // This must come after the test if the RHS is a symbol, which is used to 00670 // build constraints. The address of any non-symbolic region is guaranteed 00671 // to be non-NULL, as is any label. 00672 assert(rhs.getAs<loc::MemRegionVal>() || rhs.getAs<loc::GotoLabel>()); 00673 if (lhs.isZeroConstant()) { 00674 switch (op) { 00675 default: 00676 break; 00677 case BO_EQ: 00678 case BO_GT: 00679 case BO_GE: 00680 return makeTruthVal(false, resultTy); 00681 case BO_NE: 00682 case BO_LT: 00683 case BO_LE: 00684 return makeTruthVal(true, resultTy); 00685 } 00686 } 00687 00688 // Comparing an arbitrary integer to a region or label address is 00689 // completely unknowable. 00690 return UnknownVal(); 00691 } 00692 case loc::MemRegionKind: { 00693 if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) { 00694 // If one of the operands is a symbol and the other is a constant, 00695 // build an expression for use by the constraint manager. 00696 if (SymbolRef lSym = lhs.getAsLocSymbol(true)) 00697 return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy); 00698 00699 // Special case comparisons to NULL. 00700 // This must come after the test if the LHS is a symbol, which is used to 00701 // build constraints. The address of any non-symbolic region is guaranteed 00702 // to be non-NULL. 00703 if (rInt->isZeroConstant()) { 00704 if (op == BO_Sub) 00705 return evalCastFromLoc(lhs, resultTy); 00706 00707 if (BinaryOperator::isComparisonOp(op)) { 00708 QualType boolType = getContext().BoolTy; 00709 NonLoc l = evalCastFromLoc(lhs, boolType).castAs<NonLoc>(); 00710 NonLoc r = makeTruthVal(false, boolType).castAs<NonLoc>(); 00711 return evalBinOpNN(state, op, l, r, resultTy); 00712 } 00713 } 00714 00715 // Comparing a region to an arbitrary integer is completely unknowable. 00716 return UnknownVal(); 00717 } 00718 00719 // Get both values as regions, if possible. 00720 const MemRegion *LeftMR = lhs.getAsRegion(); 00721 assert(LeftMR && "MemRegionKind SVal doesn't have a region!"); 00722 00723 const MemRegion *RightMR = rhs.getAsRegion(); 00724 if (!RightMR) 00725 // The RHS is probably a label, which in theory could address a region. 00726 // FIXME: we can probably make a more useful statement about non-code 00727 // regions, though. 00728 return UnknownVal(); 00729 00730 const MemRegion *LeftBase = LeftMR->getBaseRegion(); 00731 const MemRegion *RightBase = RightMR->getBaseRegion(); 00732 const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace(); 00733 const MemSpaceRegion *RightMS = RightBase->getMemorySpace(); 00734 const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion(); 00735 00736 // If the two regions are from different known memory spaces they cannot be 00737 // equal. Also, assume that no symbolic region (whose memory space is 00738 // unknown) is on the stack. 00739 if (LeftMS != RightMS && 00740 ((LeftMS != UnknownMS && RightMS != UnknownMS) || 00741 (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) { 00742 switch (op) { 00743 default: 00744 return UnknownVal(); 00745 case BO_EQ: 00746 return makeTruthVal(false, resultTy); 00747 case BO_NE: 00748 return makeTruthVal(true, resultTy); 00749 } 00750 } 00751 00752 // If both values wrap regions, see if they're from different base regions. 00753 // Note, heap base symbolic regions are assumed to not alias with 00754 // each other; for example, we assume that malloc returns different address 00755 // on each invocation. 00756 if (LeftBase != RightBase && 00757 ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) || 00758 (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){ 00759 switch (op) { 00760 default: 00761 return UnknownVal(); 00762 case BO_EQ: 00763 return makeTruthVal(false, resultTy); 00764 case BO_NE: 00765 return makeTruthVal(true, resultTy); 00766 } 00767 } 00768 00769 // Handle special cases for when both regions are element regions. 00770 const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR); 00771 const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR); 00772 if (RightER && LeftER) { 00773 // Next, see if the two ERs have the same super-region and matching types. 00774 // FIXME: This should do something useful even if the types don't match, 00775 // though if both indexes are constant the RegionRawOffset path will 00776 // give the correct answer. 00777 if (LeftER->getSuperRegion() == RightER->getSuperRegion() && 00778 LeftER->getElementType() == RightER->getElementType()) { 00779 // Get the left index and cast it to the correct type. 00780 // If the index is unknown or undefined, bail out here. 00781 SVal LeftIndexVal = LeftER->getIndex(); 00782 Optional<NonLoc> LeftIndex = LeftIndexVal.getAs<NonLoc>(); 00783 if (!LeftIndex) 00784 return UnknownVal(); 00785 LeftIndexVal = evalCastFromNonLoc(*LeftIndex, ArrayIndexTy); 00786 LeftIndex = LeftIndexVal.getAs<NonLoc>(); 00787 if (!LeftIndex) 00788 return UnknownVal(); 00789 00790 // Do the same for the right index. 00791 SVal RightIndexVal = RightER->getIndex(); 00792 Optional<NonLoc> RightIndex = RightIndexVal.getAs<NonLoc>(); 00793 if (!RightIndex) 00794 return UnknownVal(); 00795 RightIndexVal = evalCastFromNonLoc(*RightIndex, ArrayIndexTy); 00796 RightIndex = RightIndexVal.getAs<NonLoc>(); 00797 if (!RightIndex) 00798 return UnknownVal(); 00799 00800 // Actually perform the operation. 00801 // evalBinOpNN expects the two indexes to already be the right type. 00802 return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy); 00803 } 00804 } 00805 00806 // Special handling of the FieldRegions, even with symbolic offsets. 00807 const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR); 00808 const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR); 00809 if (RightFR && LeftFR) { 00810 SVal R = evalBinOpFieldRegionFieldRegion(LeftFR, RightFR, op, resultTy, 00811 *this); 00812 if (!R.isUnknown()) 00813 return R; 00814 } 00815 00816 // Compare the regions using the raw offsets. 00817 RegionOffset LeftOffset = LeftMR->getAsOffset(); 00818 RegionOffset RightOffset = RightMR->getAsOffset(); 00819 00820 if (LeftOffset.getRegion() != nullptr && 00821 LeftOffset.getRegion() == RightOffset.getRegion() && 00822 !LeftOffset.hasSymbolicOffset() && !RightOffset.hasSymbolicOffset()) { 00823 int64_t left = LeftOffset.getOffset(); 00824 int64_t right = RightOffset.getOffset(); 00825 00826 switch (op) { 00827 default: 00828 return UnknownVal(); 00829 case BO_LT: 00830 return makeTruthVal(left < right, resultTy); 00831 case BO_GT: 00832 return makeTruthVal(left > right, resultTy); 00833 case BO_LE: 00834 return makeTruthVal(left <= right, resultTy); 00835 case BO_GE: 00836 return makeTruthVal(left >= right, resultTy); 00837 case BO_EQ: 00838 return makeTruthVal(left == right, resultTy); 00839 case BO_NE: 00840 return makeTruthVal(left != right, resultTy); 00841 } 00842 } 00843 00844 // At this point we're not going to get a good answer, but we can try 00845 // conjuring an expression instead. 00846 SymbolRef LHSSym = lhs.getAsLocSymbol(); 00847 SymbolRef RHSSym = rhs.getAsLocSymbol(); 00848 if (LHSSym && RHSSym) 00849 return makeNonLoc(LHSSym, op, RHSSym, resultTy); 00850 00851 // If we get here, we have no way of comparing the regions. 00852 return UnknownVal(); 00853 } 00854 } 00855 } 00856 00857 SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state, 00858 BinaryOperator::Opcode op, 00859 Loc lhs, NonLoc rhs, QualType resultTy) { 00860 assert(!BinaryOperator::isComparisonOp(op) && 00861 "arguments to comparison ops must be of the same type"); 00862 00863 // Special case: rhs is a zero constant. 00864 if (rhs.isZeroConstant()) 00865 return lhs; 00866 00867 // We are dealing with pointer arithmetic. 00868 00869 // Handle pointer arithmetic on constant values. 00870 if (Optional<nonloc::ConcreteInt> rhsInt = rhs.getAs<nonloc::ConcreteInt>()) { 00871 if (Optional<loc::ConcreteInt> lhsInt = lhs.getAs<loc::ConcreteInt>()) { 00872 const llvm::APSInt &leftI = lhsInt->getValue(); 00873 assert(leftI.isUnsigned()); 00874 llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true); 00875 00876 // Convert the bitwidth of rightI. This should deal with overflow 00877 // since we are dealing with concrete values. 00878 rightI = rightI.extOrTrunc(leftI.getBitWidth()); 00879 00880 // Offset the increment by the pointer size. 00881 llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true); 00882 rightI *= Multiplicand; 00883 00884 // Compute the adjusted pointer. 00885 switch (op) { 00886 case BO_Add: 00887 rightI = leftI + rightI; 00888 break; 00889 case BO_Sub: 00890 rightI = leftI - rightI; 00891 break; 00892 default: 00893 llvm_unreachable("Invalid pointer arithmetic operation"); 00894 } 00895 return loc::ConcreteInt(getBasicValueFactory().getValue(rightI)); 00896 } 00897 } 00898 00899 // Handle cases where 'lhs' is a region. 00900 if (const MemRegion *region = lhs.getAsRegion()) { 00901 rhs = convertToArrayIndex(rhs).castAs<NonLoc>(); 00902 SVal index = UnknownVal(); 00903 const MemRegion *superR = nullptr; 00904 QualType elementType; 00905 00906 if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) { 00907 assert(op == BO_Add || op == BO_Sub); 00908 index = evalBinOpNN(state, op, elemReg->getIndex(), rhs, 00909 getArrayIndexType()); 00910 superR = elemReg->getSuperRegion(); 00911 elementType = elemReg->getElementType(); 00912 } 00913 else if (isa<SubRegion>(region)) { 00914 superR = region; 00915 index = rhs; 00916 if (resultTy->isAnyPointerType()) 00917 elementType = resultTy->getPointeeType(); 00918 } 00919 00920 if (Optional<NonLoc> indexV = index.getAs<NonLoc>()) { 00921 return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV, 00922 superR, getContext())); 00923 } 00924 } 00925 return UnknownVal(); 00926 } 00927 00928 const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state, 00929 SVal V) { 00930 if (V.isUnknownOrUndef()) 00931 return nullptr; 00932 00933 if (Optional<loc::ConcreteInt> X = V.getAs<loc::ConcreteInt>()) 00934 return &X->getValue(); 00935 00936 if (Optional<nonloc::ConcreteInt> X = V.getAs<nonloc::ConcreteInt>()) 00937 return &X->getValue(); 00938 00939 if (SymbolRef Sym = V.getAsSymbol()) 00940 return state->getConstraintManager().getSymVal(state, Sym); 00941 00942 // FIXME: Add support for SymExprs. 00943 return nullptr; 00944 }