LAPACK  3.7.0
LAPACK: Linear Algebra PACKage
chesv_aa.f
Go to the documentation of this file.
1 *> \brief <b> CHESV_AA computes the solution to system of linear equations A * X = B for HE matrices</b>
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download CHESV_AA + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chesv_aa.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chesv_aa.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chesv_aa.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE CHESV_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK,
22 * LWORK, INFO )
23 *
24 * .. Scalar Arguments ..
25 * CHARACTER UPLO
26 * INTEGER INFO, LDA, LDB, LWORK, N, NRHS
27 * ..
28 * .. Array Arguments ..
29 * INTEGER IPIV( * )
30 * COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
31 * ..
32 *
33 *
34 *> \par Purpose:
35 * =============
36 *>
37 *> \verbatim
38 *>
39 *> CHESV_AA computes the solution to a complex system of linear equations
40 *> A * X = B,
41 *> where A is an N-by-N Hermitian matrix and X and B are N-by-NRHS
42 *> matrices.
43 *>
44 *> Aasen's algorithm is used to factor A as
45 *> A = U * T * U**H, if UPLO = 'U', or
46 *> A = L * T * L**H, if UPLO = 'L',
47 *> where U (or L) is a product of permutation and unit upper (lower)
48 *> triangular matrices, and T is Hermitian and tridiagonal. The factored form
49 *> of A is then used to solve the system of equations A * X = B.
50 *> \endverbatim
51 *
52 * Arguments:
53 * ==========
54 *
55 *> \param[in] UPLO
56 *> \verbatim
57 *> UPLO is CHARACTER*1
58 *> = 'U': Upper triangle of A is stored;
59 *> = 'L': Lower triangle of A is stored.
60 *> \endverbatim
61 *>
62 *> \param[in] N
63 *> \verbatim
64 *> N is INTEGER
65 *> The number of linear equations, i.e., the order of the
66 *> matrix A. N >= 0.
67 *> \endverbatim
68 *>
69 *> \param[in] NRHS
70 *> \verbatim
71 *> NRHS is INTEGER
72 *> The number of right hand sides, i.e., the number of columns
73 *> of the matrix B. NRHS >= 0.
74 *> \endverbatim
75 *>
76 *> \param[in,out] A
77 *> \verbatim
78 *> A is COMPLEX array, dimension (LDA,N)
79 *> On entry, the Hermitian matrix A. If UPLO = 'U', the leading
80 *> N-by-N upper triangular part of A contains the upper
81 *> triangular part of the matrix A, and the strictly lower
82 *> triangular part of A is not referenced. If UPLO = 'L', the
83 *> leading N-by-N lower triangular part of A contains the lower
84 *> triangular part of the matrix A, and the strictly upper
85 *> triangular part of A is not referenced.
86 *>
87 *> On exit, if INFO = 0, the tridiagonal matrix T and the
88 *> multipliers used to obtain the factor U or L from the
89 *> factorization A = U*T*U**H or A = L*T*L**H as computed by
90 *> CHETRF_AA.
91 *> \endverbatim
92 *>
93 *> \param[in] LDA
94 *> \verbatim
95 *> LDA is INTEGER
96 *> The leading dimension of the array A. LDA >= max(1,N).
97 *> \endverbatim
98 *>
99 *> \param[out] IPIV
100 *> \verbatim
101 *> IPIV is INTEGER array, dimension (N)
102 *> On exit, it contains the details of the interchanges, i.e.,
103 *> the row and column k of A were interchanged with the
104 *> row and column IPIV(k).
105 *> \endverbatim
106 *>
107 *> \param[in,out] B
108 *> \verbatim
109 *> B is COMPLEX array, dimension (LDB,NRHS)
110 *> On entry, the N-by-NRHS right hand side matrix B.
111 *> On exit, if INFO = 0, the N-by-NRHS solution matrix X.
112 *> \endverbatim
113 *>
114 *> \param[in] LDB
115 *> \verbatim
116 *> LDB is INTEGER
117 *> The leading dimension of the array B. LDB >= max(1,N).
118 *> \endverbatim
119 *>
120 *> \param[out] WORK
121 *> \verbatim
122 *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
123 *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
124 *> \endverbatim
125 *>
126 *> \param[in] LWORK
127 *> \verbatim
128 *> LWORK is INTEGER
129 *> The length of WORK. LWORK >= MAX(1,2*N,3*N-2), and for best
130 *> performance LWORK >= MAX(1,N*NB), where NB is the optimal
131 *> blocksize for CHETRF.
132 *> for LWORK < N, TRS will be done with Level BLAS 2
133 *> for LWORK >= N, TRS will be done with Level BLAS 3
134 *>
135 *> If LWORK = -1, then a workspace query is assumed; the routine
136 *> only calculates the optimal size of the WORK array, returns
137 *> this value as the first entry of the WORK array, and no error
138 *> message related to LWORK is issued by XERBLA.
139 *> \endverbatim
140 *>
141 *> \param[out] INFO
142 *> \verbatim
143 *> INFO is INTEGER
144 *> = 0: successful exit
145 *> < 0: if INFO = -i, the i-th argument had an illegal value
146 *> > 0: if INFO = i, D(i,i) is exactly zero. The factorization
147 *> has been completed, but the block diagonal matrix D is
148 *> exactly singular, so the solution could not be computed.
149 *> \endverbatim
150 *
151 * Authors:
152 * ========
153 *
154 *> \author Univ. of Tennessee
155 *> \author Univ. of California Berkeley
156 *> \author Univ. of Colorado Denver
157 *> \author NAG Ltd.
158 *
159 *> \date December 2016
160 *
161 *> \ingroup complexHEsolve
162 *
163 * =====================================================================
164  SUBROUTINE chesv_aa( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK,
165  $ lwork, info )
166 *
167 * -- LAPACK driver routine (version 3.7.0) --
168 * -- LAPACK is a software package provided by Univ. of Tennessee, --
169 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
170 * December 2016
171 *
172 * .. Scalar Arguments ..
173  CHARACTER UPLO
174  INTEGER INFO, LDA, LDB, LWORK, N, NRHS
175 * ..
176 * .. Array Arguments ..
177  INTEGER IPIV( * )
178  COMPLEX A( lda, * ), B( ldb, * ), WORK( * )
179 * ..
180 *
181 * =====================================================================
182 *
183 * .. Local Scalars ..
184  LOGICAL LQUERY
185  INTEGER LWKOPT, LWKOPT_HETRF, LWKOPT_HETRS
186 * ..
187 * .. External Functions ..
188  LOGICAL LSAME
189  INTEGER ILAENV
190  EXTERNAL lsame, ilaenv
191 * ..
192 * .. External Subroutines ..
193  EXTERNAL xerbla, chetrf, chetrs, chetrs2
194 * ..
195 * .. Intrinsic Functions ..
196  INTRINSIC max
197 * ..
198 * .. Executable Statements ..
199 *
200 * Test the input parameters.
201 *
202  info = 0
203  lquery = ( lwork.EQ.-1 )
204  IF( .NOT.lsame( uplo, 'U' ) .AND. .NOT.lsame( uplo, 'L' ) ) THEN
205  info = -1
206  ELSE IF( n.LT.0 ) THEN
207  info = -2
208  ELSE IF( nrhs.LT.0 ) THEN
209  info = -3
210  ELSE IF( lda.LT.max( 1, n ) ) THEN
211  info = -5
212  ELSE IF( ldb.LT.max( 1, n ) ) THEN
213  info = -8
214  END IF
215 *
216  IF( info.EQ.0 ) THEN
217  CALL chetrf_aa( uplo, n, a, lda, ipiv, work, -1, info )
218  lwkopt_hetrf = int( work(1) )
219  CALL chetrs_aa( uplo, n, nrhs, a, lda, ipiv, b, ldb, work,
220  $ -1, info )
221  lwkopt_hetrs = int( work(1) )
222  lwkopt = max( lwkopt_hetrf, lwkopt_hetrs )
223  work( 1 ) = lwkopt
224  IF( lwork.LT.lwkopt .AND. .NOT.lquery ) THEN
225  info = -10
226  END IF
227  END IF
228 *
229  IF( info.NE.0 ) THEN
230  CALL xerbla( 'CHESV_AA ', -info )
231  RETURN
232  ELSE IF( lquery ) THEN
233  RETURN
234  END IF
235 *
236 * Compute the factorization A = U*T*U**H or A = L*T*L**H.
237 *
238  CALL chetrf_aa( uplo, n, a, lda, ipiv, work, lwork, info )
239  IF( info.EQ.0 ) THEN
240 *
241 * Solve the system A*X = B, overwriting B with X.
242 *
243  CALL chetrs_aa( uplo, n, nrhs, a, lda, ipiv, b, ldb, work,
244  $ lwork, info )
245 *
246  END IF
247 *
248  work( 1 ) = lwkopt
249 *
250  RETURN
251 *
252 * End of CHESV_AA
253 *
254  END
subroutine chetrs_aa(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK, INFO)
CHETRS_AA
Definition: chetrs_aa.f:131
subroutine chetrs2(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, INFO)
CHETRS2
Definition: chetrs2.f:129
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine chetrs(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
CHETRS
Definition: chetrs.f:122
subroutine chetrf_aa(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
CHETRF_AA
Definition: chetrf_aa.f:138
subroutine chesv_aa(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK, INFO)
CHESV_AA computes the solution to system of linear equations A * X = B for HE matrices ...
Definition: chesv_aa.f:166
subroutine chetrf(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
CHETRF
Definition: chetrf.f:179