Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ablkcipher.c
Go to the documentation of this file.
1 /*
2  * Asynchronous block chaining cipher operations.
3  *
4  * This is the asynchronous version of blkcipher.c indicating completion
5  * via a callback.
6  *
7  * Copyright (c) 2006 Herbert Xu <[email protected]>
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the Free
11  * Software Foundation; either version 2 of the License, or (at your option)
12  * any later version.
13  *
14  */
15 
17 #include <linux/cpumask.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/rtnetlink.h>
23 #include <linux/sched.h>
24 #include <linux/slab.h>
25 #include <linux/seq_file.h>
26 #include <linux/cryptouser.h>
27 #include <net/netlink.h>
28 
29 #include <crypto/scatterwalk.h>
30 
31 #include "internal.h"
32 
33 static const char *skcipher_default_geniv __read_mostly;
34 
36  struct list_head entry;
37  struct scatter_walk dst;
38  unsigned int len;
39  void *data;
40 };
41 
42 enum {
44 };
45 
46 static inline void ablkcipher_buffer_write(struct ablkcipher_buffer *p)
47 {
48  scatterwalk_copychunks(p->data, &p->dst, p->len, 1);
49 }
50 
52 {
53  struct ablkcipher_buffer *p, *tmp;
54 
55  list_for_each_entry_safe(p, tmp, &walk->buffers, entry) {
56  ablkcipher_buffer_write(p);
57  list_del(&p->entry);
58  kfree(p);
59  }
60 }
62 
63 static inline void ablkcipher_queue_write(struct ablkcipher_walk *walk,
64  struct ablkcipher_buffer *p)
65 {
66  p->dst = walk->out;
67  list_add_tail(&p->entry, &walk->buffers);
68 }
69 
70 /* Get a spot of the specified length that does not straddle a page.
71  * The caller needs to ensure that there is enough space for this operation.
72  */
73 static inline u8 *ablkcipher_get_spot(u8 *start, unsigned int len)
74 {
75  u8 *end_page = (u8 *)(((unsigned long)(start + len - 1)) & PAGE_MASK);
76  return max(start, end_page);
77 }
78 
79 static inline unsigned int ablkcipher_done_slow(struct ablkcipher_walk *walk,
80  unsigned int bsize)
81 {
82  unsigned int n = bsize;
83 
84  for (;;) {
85  unsigned int len_this_page = scatterwalk_pagelen(&walk->out);
86 
87  if (len_this_page > n)
88  len_this_page = n;
89  scatterwalk_advance(&walk->out, n);
90  if (n == len_this_page)
91  break;
92  n -= len_this_page;
93  scatterwalk_start(&walk->out, scatterwalk_sg_next(walk->out.sg));
94  }
95 
96  return bsize;
97 }
98 
99 static inline unsigned int ablkcipher_done_fast(struct ablkcipher_walk *walk,
100  unsigned int n)
101 {
102  scatterwalk_advance(&walk->in, n);
103  scatterwalk_advance(&walk->out, n);
104 
105  return n;
106 }
107 
108 static int ablkcipher_walk_next(struct ablkcipher_request *req,
109  struct ablkcipher_walk *walk);
110 
112  struct ablkcipher_walk *walk, int err)
113 {
114  struct crypto_tfm *tfm = req->base.tfm;
115  unsigned int nbytes = 0;
116 
117  if (likely(err >= 0)) {
118  unsigned int n = walk->nbytes - err;
119 
120  if (likely(!(walk->flags & ABLKCIPHER_WALK_SLOW)))
121  n = ablkcipher_done_fast(walk, n);
122  else if (WARN_ON(err)) {
123  err = -EINVAL;
124  goto err;
125  } else
126  n = ablkcipher_done_slow(walk, n);
127 
128  nbytes = walk->total - n;
129  err = 0;
130  }
131 
132  scatterwalk_done(&walk->in, 0, nbytes);
133  scatterwalk_done(&walk->out, 1, nbytes);
134 
135 err:
136  walk->total = nbytes;
137  walk->nbytes = nbytes;
138 
139  if (nbytes) {
140  crypto_yield(req->base.flags);
141  return ablkcipher_walk_next(req, walk);
142  }
143 
144  if (walk->iv != req->info)
145  memcpy(req->info, walk->iv, tfm->crt_ablkcipher.ivsize);
146  kfree(walk->iv_buffer);
147 
148  return err;
149 }
151 
152 static inline int ablkcipher_next_slow(struct ablkcipher_request *req,
153  struct ablkcipher_walk *walk,
154  unsigned int bsize,
155  unsigned int alignmask,
156  void **src_p, void **dst_p)
157 {
158  unsigned aligned_bsize = ALIGN(bsize, alignmask + 1);
159  struct ablkcipher_buffer *p;
160  void *src, *dst, *base;
161  unsigned int n;
162 
163  n = ALIGN(sizeof(struct ablkcipher_buffer), alignmask + 1);
164  n += (aligned_bsize * 3 - (alignmask + 1) +
165  (alignmask & ~(crypto_tfm_ctx_alignment() - 1)));
166 
167  p = kmalloc(n, GFP_ATOMIC);
168  if (!p)
169  return ablkcipher_walk_done(req, walk, -ENOMEM);
170 
171  base = p + 1;
172 
173  dst = (u8 *)ALIGN((unsigned long)base, alignmask + 1);
174  src = dst = ablkcipher_get_spot(dst, bsize);
175 
176  p->len = bsize;
177  p->data = dst;
178 
179  scatterwalk_copychunks(src, &walk->in, bsize, 0);
180 
181  ablkcipher_queue_write(walk, p);
182 
183  walk->nbytes = bsize;
184  walk->flags |= ABLKCIPHER_WALK_SLOW;
185 
186  *src_p = src;
187  *dst_p = dst;
188 
189  return 0;
190 }
191 
192 static inline int ablkcipher_copy_iv(struct ablkcipher_walk *walk,
193  struct crypto_tfm *tfm,
194  unsigned int alignmask)
195 {
196  unsigned bs = walk->blocksize;
197  unsigned int ivsize = tfm->crt_ablkcipher.ivsize;
198  unsigned aligned_bs = ALIGN(bs, alignmask + 1);
199  unsigned int size = aligned_bs * 2 + ivsize + max(aligned_bs, ivsize) -
200  (alignmask + 1);
201  u8 *iv;
202 
203  size += alignmask & ~(crypto_tfm_ctx_alignment() - 1);
204  walk->iv_buffer = kmalloc(size, GFP_ATOMIC);
205  if (!walk->iv_buffer)
206  return -ENOMEM;
207 
208  iv = (u8 *)ALIGN((unsigned long)walk->iv_buffer, alignmask + 1);
209  iv = ablkcipher_get_spot(iv, bs) + aligned_bs;
210  iv = ablkcipher_get_spot(iv, bs) + aligned_bs;
211  iv = ablkcipher_get_spot(iv, ivsize);
212 
213  walk->iv = memcpy(iv, walk->iv, ivsize);
214  return 0;
215 }
216 
217 static inline int ablkcipher_next_fast(struct ablkcipher_request *req,
218  struct ablkcipher_walk *walk)
219 {
220  walk->src.page = scatterwalk_page(&walk->in);
221  walk->src.offset = offset_in_page(walk->in.offset);
222  walk->dst.page = scatterwalk_page(&walk->out);
223  walk->dst.offset = offset_in_page(walk->out.offset);
224 
225  return 0;
226 }
227 
228 static int ablkcipher_walk_next(struct ablkcipher_request *req,
229  struct ablkcipher_walk *walk)
230 {
231  struct crypto_tfm *tfm = req->base.tfm;
232  unsigned int alignmask, bsize, n;
233  void *src, *dst;
234  int err;
235 
236  alignmask = crypto_tfm_alg_alignmask(tfm);
237  n = walk->total;
238  if (unlikely(n < crypto_tfm_alg_blocksize(tfm))) {
239  req->base.flags |= CRYPTO_TFM_RES_BAD_BLOCK_LEN;
240  return ablkcipher_walk_done(req, walk, -EINVAL);
241  }
242 
243  walk->flags &= ~ABLKCIPHER_WALK_SLOW;
244  src = dst = NULL;
245 
246  bsize = min(walk->blocksize, n);
247  n = scatterwalk_clamp(&walk->in, n);
248  n = scatterwalk_clamp(&walk->out, n);
249 
250  if (n < bsize ||
251  !scatterwalk_aligned(&walk->in, alignmask) ||
252  !scatterwalk_aligned(&walk->out, alignmask)) {
253  err = ablkcipher_next_slow(req, walk, bsize, alignmask,
254  &src, &dst);
255  goto set_phys_lowmem;
256  }
257 
258  walk->nbytes = n;
259 
260  return ablkcipher_next_fast(req, walk);
261 
262 set_phys_lowmem:
263  if (err >= 0) {
264  walk->src.page = virt_to_page(src);
265  walk->dst.page = virt_to_page(dst);
266  walk->src.offset = ((unsigned long)src & (PAGE_SIZE - 1));
267  walk->dst.offset = ((unsigned long)dst & (PAGE_SIZE - 1));
268  }
269 
270  return err;
271 }
272 
273 static int ablkcipher_walk_first(struct ablkcipher_request *req,
274  struct ablkcipher_walk *walk)
275 {
276  struct crypto_tfm *tfm = req->base.tfm;
277  unsigned int alignmask;
278 
279  alignmask = crypto_tfm_alg_alignmask(tfm);
280  if (WARN_ON_ONCE(in_irq()))
281  return -EDEADLK;
282 
283  walk->nbytes = walk->total;
284  if (unlikely(!walk->total))
285  return 0;
286 
287  walk->iv_buffer = NULL;
288  walk->iv = req->info;
289  if (unlikely(((unsigned long)walk->iv & alignmask))) {
290  int err = ablkcipher_copy_iv(walk, tfm, alignmask);
291  if (err)
292  return err;
293  }
294 
295  scatterwalk_start(&walk->in, walk->in.sg);
296  scatterwalk_start(&walk->out, walk->out.sg);
297 
298  return ablkcipher_walk_next(req, walk);
299 }
300 
302  struct ablkcipher_walk *walk)
303 {
304  walk->blocksize = crypto_tfm_alg_blocksize(req->base.tfm);
305  return ablkcipher_walk_first(req, walk);
306 }
308 
309 static int setkey_unaligned(struct crypto_ablkcipher *tfm, const u8 *key,
310  unsigned int keylen)
311 {
312  struct ablkcipher_alg *cipher = crypto_ablkcipher_alg(tfm);
313  unsigned long alignmask = crypto_ablkcipher_alignmask(tfm);
314  int ret;
315  u8 *buffer, *alignbuffer;
316  unsigned long absize;
317 
318  absize = keylen + alignmask;
319  buffer = kmalloc(absize, GFP_ATOMIC);
320  if (!buffer)
321  return -ENOMEM;
322 
323  alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
324  memcpy(alignbuffer, key, keylen);
325  ret = cipher->setkey(tfm, alignbuffer, keylen);
326  memset(alignbuffer, 0, keylen);
327  kfree(buffer);
328  return ret;
329 }
330 
331 static int setkey(struct crypto_ablkcipher *tfm, const u8 *key,
332  unsigned int keylen)
333 {
334  struct ablkcipher_alg *cipher = crypto_ablkcipher_alg(tfm);
335  unsigned long alignmask = crypto_ablkcipher_alignmask(tfm);
336 
337  if (keylen < cipher->min_keysize || keylen > cipher->max_keysize) {
338  crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
339  return -EINVAL;
340  }
341 
342  if ((unsigned long)key & alignmask)
343  return setkey_unaligned(tfm, key, keylen);
344 
345  return cipher->setkey(tfm, key, keylen);
346 }
347 
348 static unsigned int crypto_ablkcipher_ctxsize(struct crypto_alg *alg, u32 type,
349  u32 mask)
350 {
351  return alg->cra_ctxsize;
352 }
353 
355 {
356  return crypto_ablkcipher_encrypt(&req->creq);
357 }
358 
360 {
361  return crypto_ablkcipher_decrypt(&req->creq);
362 }
363 
364 static int crypto_init_ablkcipher_ops(struct crypto_tfm *tfm, u32 type,
365  u32 mask)
366 {
367  struct ablkcipher_alg *alg = &tfm->__crt_alg->cra_ablkcipher;
368  struct ablkcipher_tfm *crt = &tfm->crt_ablkcipher;
369 
370  if (alg->ivsize > PAGE_SIZE / 8)
371  return -EINVAL;
372 
373  crt->setkey = setkey;
374  crt->encrypt = alg->encrypt;
375  crt->decrypt = alg->decrypt;
376  if (!alg->ivsize) {
379  }
380  crt->base = __crypto_ablkcipher_cast(tfm);
381  crt->ivsize = alg->ivsize;
382 
383  return 0;
384 }
385 
386 #ifdef CONFIG_NET
387 static int crypto_ablkcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
388 {
389  struct crypto_report_blkcipher rblkcipher;
390 
391  snprintf(rblkcipher.type, CRYPTO_MAX_ALG_NAME, "%s", "ablkcipher");
392  snprintf(rblkcipher.geniv, CRYPTO_MAX_ALG_NAME, "%s",
393  alg->cra_ablkcipher.geniv ?: "<default>");
394 
395  rblkcipher.blocksize = alg->cra_blocksize;
396  rblkcipher.min_keysize = alg->cra_ablkcipher.min_keysize;
397  rblkcipher.max_keysize = alg->cra_ablkcipher.max_keysize;
398  rblkcipher.ivsize = alg->cra_ablkcipher.ivsize;
399 
401  sizeof(struct crypto_report_blkcipher), &rblkcipher))
402  goto nla_put_failure;
403  return 0;
404 
405 nla_put_failure:
406  return -EMSGSIZE;
407 }
408 #else
409 static int crypto_ablkcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
410 {
411  return -ENOSYS;
412 }
413 #endif
414 
415 static void crypto_ablkcipher_show(struct seq_file *m, struct crypto_alg *alg)
416  __attribute__ ((unused));
417 static void crypto_ablkcipher_show(struct seq_file *m, struct crypto_alg *alg)
418 {
419  struct ablkcipher_alg *ablkcipher = &alg->cra_ablkcipher;
420 
421  seq_printf(m, "type : ablkcipher\n");
422  seq_printf(m, "async : %s\n", alg->cra_flags & CRYPTO_ALG_ASYNC ?
423  "yes" : "no");
424  seq_printf(m, "blocksize : %u\n", alg->cra_blocksize);
425  seq_printf(m, "min keysize : %u\n", ablkcipher->min_keysize);
426  seq_printf(m, "max keysize : %u\n", ablkcipher->max_keysize);
427  seq_printf(m, "ivsize : %u\n", ablkcipher->ivsize);
428  seq_printf(m, "geniv : %s\n", ablkcipher->geniv ?: "<default>");
429 }
430 
432  .ctxsize = crypto_ablkcipher_ctxsize,
433  .init = crypto_init_ablkcipher_ops,
434 #ifdef CONFIG_PROC_FS
435  .show = crypto_ablkcipher_show,
436 #endif
437  .report = crypto_ablkcipher_report,
438 };
439 EXPORT_SYMBOL_GPL(crypto_ablkcipher_type);
440 
441 static int no_givdecrypt(struct skcipher_givcrypt_request *req)
442 {
443  return -ENOSYS;
444 }
445 
446 static int crypto_init_givcipher_ops(struct crypto_tfm *tfm, u32 type,
447  u32 mask)
448 {
449  struct ablkcipher_alg *alg = &tfm->__crt_alg->cra_ablkcipher;
450  struct ablkcipher_tfm *crt = &tfm->crt_ablkcipher;
451 
452  if (alg->ivsize > PAGE_SIZE / 8)
453  return -EINVAL;
454 
455  crt->setkey = tfm->__crt_alg->cra_flags & CRYPTO_ALG_GENIV ?
456  alg->setkey : setkey;
457  crt->encrypt = alg->encrypt;
458  crt->decrypt = alg->decrypt;
459  crt->givencrypt = alg->givencrypt;
460  crt->givdecrypt = alg->givdecrypt ?: no_givdecrypt;
461  crt->base = __crypto_ablkcipher_cast(tfm);
462  crt->ivsize = alg->ivsize;
463 
464  return 0;
465 }
466 
467 #ifdef CONFIG_NET
468 static int crypto_givcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
469 {
470  struct crypto_report_blkcipher rblkcipher;
471 
472  snprintf(rblkcipher.type, CRYPTO_MAX_ALG_NAME, "%s", "givcipher");
473  snprintf(rblkcipher.geniv, CRYPTO_MAX_ALG_NAME, "%s",
474  alg->cra_ablkcipher.geniv ?: "<built-in>");
475 
476  rblkcipher.blocksize = alg->cra_blocksize;
477  rblkcipher.min_keysize = alg->cra_ablkcipher.min_keysize;
478  rblkcipher.max_keysize = alg->cra_ablkcipher.max_keysize;
479  rblkcipher.ivsize = alg->cra_ablkcipher.ivsize;
480 
482  sizeof(struct crypto_report_blkcipher), &rblkcipher))
483  goto nla_put_failure;
484  return 0;
485 
486 nla_put_failure:
487  return -EMSGSIZE;
488 }
489 #else
490 static int crypto_givcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
491 {
492  return -ENOSYS;
493 }
494 #endif
495 
496 static void crypto_givcipher_show(struct seq_file *m, struct crypto_alg *alg)
497  __attribute__ ((unused));
498 static void crypto_givcipher_show(struct seq_file *m, struct crypto_alg *alg)
499 {
500  struct ablkcipher_alg *ablkcipher = &alg->cra_ablkcipher;
501 
502  seq_printf(m, "type : givcipher\n");
503  seq_printf(m, "async : %s\n", alg->cra_flags & CRYPTO_ALG_ASYNC ?
504  "yes" : "no");
505  seq_printf(m, "blocksize : %u\n", alg->cra_blocksize);
506  seq_printf(m, "min keysize : %u\n", ablkcipher->min_keysize);
507  seq_printf(m, "max keysize : %u\n", ablkcipher->max_keysize);
508  seq_printf(m, "ivsize : %u\n", ablkcipher->ivsize);
509  seq_printf(m, "geniv : %s\n", ablkcipher->geniv ?: "<built-in>");
510 }
511 
513  .ctxsize = crypto_ablkcipher_ctxsize,
514  .init = crypto_init_givcipher_ops,
515 #ifdef CONFIG_PROC_FS
516  .show = crypto_givcipher_show,
517 #endif
518  .report = crypto_givcipher_report,
519 };
520 EXPORT_SYMBOL_GPL(crypto_givcipher_type);
521 
522 const char *crypto_default_geniv(const struct crypto_alg *alg)
523 {
524  if (((alg->cra_flags & CRYPTO_ALG_TYPE_MASK) ==
525  CRYPTO_ALG_TYPE_BLKCIPHER ? alg->cra_blkcipher.ivsize :
526  alg->cra_ablkcipher.ivsize) !=
527  alg->cra_blocksize)
528  return "chainiv";
529 
530  return alg->cra_flags & CRYPTO_ALG_ASYNC ?
531  "eseqiv" : skcipher_default_geniv;
532 }
533 
534 static int crypto_givcipher_default(struct crypto_alg *alg, u32 type, u32 mask)
535 {
536  struct rtattr *tb[3];
537  struct {
538  struct rtattr attr;
539  struct crypto_attr_type data;
540  } ptype;
541  struct {
542  struct rtattr attr;
543  struct crypto_attr_alg data;
544  } palg;
545  struct crypto_template *tmpl;
546  struct crypto_instance *inst;
547  struct crypto_alg *larval;
548  const char *geniv;
549  int err;
550 
552  (type & ~CRYPTO_ALG_TYPE_MASK) |
554  mask | CRYPTO_ALG_TYPE_MASK);
555  err = PTR_ERR(larval);
556  if (IS_ERR(larval))
557  goto out;
558 
559  err = -EAGAIN;
560  if (!crypto_is_larval(larval))
561  goto drop_larval;
562 
563  ptype.attr.rta_len = sizeof(ptype);
564  ptype.attr.rta_type = CRYPTOA_TYPE;
565  ptype.data.type = type | CRYPTO_ALG_GENIV;
566  /* GENIV tells the template that we're making a default geniv. */
567  ptype.data.mask = mask | CRYPTO_ALG_GENIV;
568  tb[0] = &ptype.attr;
569 
570  palg.attr.rta_len = sizeof(palg);
571  palg.attr.rta_type = CRYPTOA_ALG;
572  /* Must use the exact name to locate ourselves. */
573  memcpy(palg.data.name, alg->cra_driver_name, CRYPTO_MAX_ALG_NAME);
574  tb[1] = &palg.attr;
575 
576  tb[2] = NULL;
577 
578  if ((alg->cra_flags & CRYPTO_ALG_TYPE_MASK) ==
580  geniv = alg->cra_blkcipher.geniv;
581  else
582  geniv = alg->cra_ablkcipher.geniv;
583 
584  if (!geniv)
585  geniv = crypto_default_geniv(alg);
586 
587  tmpl = crypto_lookup_template(geniv);
588  err = -ENOENT;
589  if (!tmpl)
590  goto kill_larval;
591 
592  inst = tmpl->alloc(tb);
593  err = PTR_ERR(inst);
594  if (IS_ERR(inst))
595  goto put_tmpl;
596 
597  if ((err = crypto_register_instance(tmpl, inst))) {
598  tmpl->free(inst);
599  goto put_tmpl;
600  }
601 
602  /* Redo the lookup to use the instance we just registered. */
603  err = -EAGAIN;
604 
605 put_tmpl:
606  crypto_tmpl_put(tmpl);
607 kill_larval:
608  crypto_larval_kill(larval);
609 drop_larval:
610  crypto_mod_put(larval);
611 out:
612  crypto_mod_put(alg);
613  return err;
614 }
615 
616 struct crypto_alg *crypto_lookup_skcipher(const char *name, u32 type, u32 mask)
617 {
618  struct crypto_alg *alg;
619 
620  alg = crypto_alg_mod_lookup(name, type, mask);
621  if (IS_ERR(alg))
622  return alg;
623 
624  if ((alg->cra_flags & CRYPTO_ALG_TYPE_MASK) ==
626  return alg;
627 
628  if (!((alg->cra_flags & CRYPTO_ALG_TYPE_MASK) ==
629  CRYPTO_ALG_TYPE_BLKCIPHER ? alg->cra_blkcipher.ivsize :
630  alg->cra_ablkcipher.ivsize))
631  return alg;
632 
633  crypto_mod_put(alg);
634  alg = crypto_alg_mod_lookup(name, type | CRYPTO_ALG_TESTED,
635  mask & ~CRYPTO_ALG_TESTED);
636  if (IS_ERR(alg))
637  return alg;
638 
639  if ((alg->cra_flags & CRYPTO_ALG_TYPE_MASK) ==
641  if ((alg->cra_flags ^ type ^ ~mask) & CRYPTO_ALG_TESTED) {
642  crypto_mod_put(alg);
643  alg = ERR_PTR(-ENOENT);
644  }
645  return alg;
646  }
647 
649  CRYPTO_ALG_TYPE_BLKCIPHER ? alg->cra_blkcipher.ivsize :
650  alg->cra_ablkcipher.ivsize));
651 
652  return ERR_PTR(crypto_givcipher_default(alg, type, mask));
653 }
655 
656 int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn, const char *name,
657  u32 type, u32 mask)
658 {
659  struct crypto_alg *alg;
660  int err;
661 
662  type = crypto_skcipher_type(type);
663  mask = crypto_skcipher_mask(mask);
664 
665  alg = crypto_lookup_skcipher(name, type, mask);
666  if (IS_ERR(alg))
667  return PTR_ERR(alg);
668 
669  err = crypto_init_spawn(&spawn->base, alg, spawn->base.inst, mask);
670  crypto_mod_put(alg);
671  return err;
672 }
674 
675 struct crypto_ablkcipher *crypto_alloc_ablkcipher(const char *alg_name,
676  u32 type, u32 mask)
677 {
678  struct crypto_tfm *tfm;
679  int err;
680 
681  type = crypto_skcipher_type(type);
682  mask = crypto_skcipher_mask(mask);
683 
684  for (;;) {
685  struct crypto_alg *alg;
686 
687  alg = crypto_lookup_skcipher(alg_name, type, mask);
688  if (IS_ERR(alg)) {
689  err = PTR_ERR(alg);
690  goto err;
691  }
692 
693  tfm = __crypto_alloc_tfm(alg, type, mask);
694  if (!IS_ERR(tfm))
695  return __crypto_ablkcipher_cast(tfm);
696 
697  crypto_mod_put(alg);
698  err = PTR_ERR(tfm);
699 
700 err:
701  if (err != -EAGAIN)
702  break;
703  if (signal_pending(current)) {
704  err = -EINTR;
705  break;
706  }
707  }
708 
709  return ERR_PTR(err);
710 }
712 
713 static int __init skcipher_module_init(void)
714 {
715  skcipher_default_geniv = num_possible_cpus() > 1 ?
716  "eseqiv" : "chainiv";
717  return 0;
718 }
719 
720 static void skcipher_module_exit(void)
721 {
722 }
723 
724 module_init(skcipher_module_init);
725 module_exit(skcipher_module_exit);