Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ad714x.c
Go to the documentation of this file.
1 /*
2  * AD714X CapTouch Programmable Controller driver supporting AD7142/3/7/8/7A
3  *
4  * Copyright 2009-2011 Analog Devices Inc.
5  *
6  * Licensed under the GPL-2 or later.
7  */
8 
9 #include <linux/device.h>
10 #include <linux/init.h>
11 #include <linux/input.h>
12 #include <linux/interrupt.h>
13 #include <linux/slab.h>
14 #include <linux/input/ad714x.h>
15 #include <linux/module.h>
16 #include "ad714x.h"
17 
18 #define AD714X_PWR_CTRL 0x0
19 #define AD714X_STG_CAL_EN_REG 0x1
20 #define AD714X_AMB_COMP_CTRL0_REG 0x2
21 #define AD714X_PARTID_REG 0x17
22 #define AD7142_PARTID 0xE620
23 #define AD7143_PARTID 0xE630
24 #define AD7147_PARTID 0x1470
25 #define AD7148_PARTID 0x1480
26 #define AD714X_STAGECFG_REG 0x80
27 #define AD714X_SYSCFG_REG 0x0
28 
29 #define STG_LOW_INT_EN_REG 0x5
30 #define STG_HIGH_INT_EN_REG 0x6
31 #define STG_COM_INT_EN_REG 0x7
32 #define STG_LOW_INT_STA_REG 0x8
33 #define STG_HIGH_INT_STA_REG 0x9
34 #define STG_COM_INT_STA_REG 0xA
35 
36 #define CDC_RESULT_S0 0xB
37 #define CDC_RESULT_S1 0xC
38 #define CDC_RESULT_S2 0xD
39 #define CDC_RESULT_S3 0xE
40 #define CDC_RESULT_S4 0xF
41 #define CDC_RESULT_S5 0x10
42 #define CDC_RESULT_S6 0x11
43 #define CDC_RESULT_S7 0x12
44 #define CDC_RESULT_S8 0x13
45 #define CDC_RESULT_S9 0x14
46 #define CDC_RESULT_S10 0x15
47 #define CDC_RESULT_S11 0x16
48 
49 #define STAGE0_AMBIENT 0xF1
50 #define STAGE1_AMBIENT 0x115
51 #define STAGE2_AMBIENT 0x139
52 #define STAGE3_AMBIENT 0x15D
53 #define STAGE4_AMBIENT 0x181
54 #define STAGE5_AMBIENT 0x1A5
55 #define STAGE6_AMBIENT 0x1C9
56 #define STAGE7_AMBIENT 0x1ED
57 #define STAGE8_AMBIENT 0x211
58 #define STAGE9_AMBIENT 0x234
59 #define STAGE10_AMBIENT 0x259
60 #define STAGE11_AMBIENT 0x27D
61 
62 #define PER_STAGE_REG_NUM 36
63 #define STAGE_CFGREG_NUM 8
64 #define SYS_CFGREG_NUM 8
65 
66 /*
67  * driver information which will be used to maintain the software flow
68  */
70 
73  int abs_pos;
74  int flt_pos;
76  struct input_dev *input;
77 };
78 
80  int abs_pos;
81  int flt_pos;
85  struct input_dev *input;
86 };
87 
90  int x_flt_pos;
91  int x_abs_pos;
93  int y_flt_pos;
94  int y_abs_pos;
95  int left_ep;
97  int right_ep;
99  int top_ep;
104  struct input_dev *input;
105 };
106 
109  /*
110  * Unlike slider/wheel/touchpad, all buttons point to
111  * same input_dev instance
112  */
113  struct input_dev *input;
114 };
115 
121 };
122 
123 /*
124  * information to integrate all things which will be private data
125  * of spi/i2c device
126  */
127 
128 static void ad714x_use_com_int(struct ad714x_chip *ad714x,
129  int start_stage, int end_stage)
130 {
131  unsigned short data;
132  unsigned short mask;
133 
134  mask = ((1 << (end_stage + 1)) - 1) - ((1 << start_stage) - 1);
135 
136  ad714x->read(ad714x, STG_COM_INT_EN_REG, &data, 1);
137  data |= 1 << end_stage;
138  ad714x->write(ad714x, STG_COM_INT_EN_REG, data);
139 
140  ad714x->read(ad714x, STG_HIGH_INT_EN_REG, &data, 1);
141  data &= ~mask;
142  ad714x->write(ad714x, STG_HIGH_INT_EN_REG, data);
143 }
144 
145 static void ad714x_use_thr_int(struct ad714x_chip *ad714x,
146  int start_stage, int end_stage)
147 {
148  unsigned short data;
149  unsigned short mask;
150 
151  mask = ((1 << (end_stage + 1)) - 1) - ((1 << start_stage) - 1);
152 
153  ad714x->read(ad714x, STG_COM_INT_EN_REG, &data, 1);
154  data &= ~(1 << end_stage);
155  ad714x->write(ad714x, STG_COM_INT_EN_REG, data);
156 
157  ad714x->read(ad714x, STG_HIGH_INT_EN_REG, &data, 1);
158  data |= mask;
159  ad714x->write(ad714x, STG_HIGH_INT_EN_REG, data);
160 }
161 
162 static int ad714x_cal_highest_stage(struct ad714x_chip *ad714x,
163  int start_stage, int end_stage)
164 {
165  int max_res = 0;
166  int max_idx = 0;
167  int i;
168 
169  for (i = start_stage; i <= end_stage; i++) {
170  if (ad714x->sensor_val[i] > max_res) {
171  max_res = ad714x->sensor_val[i];
172  max_idx = i;
173  }
174  }
175 
176  return max_idx;
177 }
178 
179 static int ad714x_cal_abs_pos(struct ad714x_chip *ad714x,
180  int start_stage, int end_stage,
181  int highest_stage, int max_coord)
182 {
183  int a_param, b_param;
184 
185  if (highest_stage == start_stage) {
186  a_param = ad714x->sensor_val[start_stage + 1];
187  b_param = ad714x->sensor_val[start_stage] +
188  ad714x->sensor_val[start_stage + 1];
189  } else if (highest_stage == end_stage) {
190  a_param = ad714x->sensor_val[end_stage] *
191  (end_stage - start_stage) +
192  ad714x->sensor_val[end_stage - 1] *
193  (end_stage - start_stage - 1);
194  b_param = ad714x->sensor_val[end_stage] +
195  ad714x->sensor_val[end_stage - 1];
196  } else {
197  a_param = ad714x->sensor_val[highest_stage] *
198  (highest_stage - start_stage) +
199  ad714x->sensor_val[highest_stage - 1] *
200  (highest_stage - start_stage - 1) +
201  ad714x->sensor_val[highest_stage + 1] *
202  (highest_stage - start_stage + 1);
203  b_param = ad714x->sensor_val[highest_stage] +
204  ad714x->sensor_val[highest_stage - 1] +
205  ad714x->sensor_val[highest_stage + 1];
206  }
207 
208  return (max_coord / (end_stage - start_stage)) * a_param / b_param;
209 }
210 
211 /*
212  * One button can connect to multi positive and negative of CDCs
213  * Multi-buttons can connect to same positive/negative of one CDC
214  */
215 static void ad714x_button_state_machine(struct ad714x_chip *ad714x, int idx)
216 {
217  struct ad714x_button_plat *hw = &ad714x->hw->button[idx];
218  struct ad714x_button_drv *sw = &ad714x->sw->button[idx];
219 
220  switch (sw->state) {
221  case IDLE:
222  if (((ad714x->h_state & hw->h_mask) == hw->h_mask) &&
223  ((ad714x->l_state & hw->l_mask) == hw->l_mask)) {
224  dev_dbg(ad714x->dev, "button %d touched\n", idx);
225  input_report_key(sw->input, hw->keycode, 1);
226  input_sync(sw->input);
227  sw->state = ACTIVE;
228  }
229  break;
230 
231  case ACTIVE:
232  if (((ad714x->h_state & hw->h_mask) != hw->h_mask) ||
233  ((ad714x->l_state & hw->l_mask) != hw->l_mask)) {
234  dev_dbg(ad714x->dev, "button %d released\n", idx);
235  input_report_key(sw->input, hw->keycode, 0);
236  input_sync(sw->input);
237  sw->state = IDLE;
238  }
239  break;
240 
241  default:
242  break;
243  }
244 }
245 
246 /*
247  * The response of a sensor is defined by the absolute number of codes
248  * between the current CDC value and the ambient value.
249  */
250 static void ad714x_slider_cal_sensor_val(struct ad714x_chip *ad714x, int idx)
251 {
252  struct ad714x_slider_plat *hw = &ad714x->hw->slider[idx];
253  int i;
254 
255  ad714x->read(ad714x, CDC_RESULT_S0 + hw->start_stage,
256  &ad714x->adc_reg[hw->start_stage],
257  hw->end_stage - hw->start_stage + 1);
258 
259  for (i = hw->start_stage; i <= hw->end_stage; i++) {
260  ad714x->read(ad714x, STAGE0_AMBIENT + i * PER_STAGE_REG_NUM,
261  &ad714x->amb_reg[i], 1);
262 
263  ad714x->sensor_val[i] =
264  abs(ad714x->adc_reg[i] - ad714x->amb_reg[i]);
265  }
266 }
267 
268 static void ad714x_slider_cal_highest_stage(struct ad714x_chip *ad714x, int idx)
269 {
270  struct ad714x_slider_plat *hw = &ad714x->hw->slider[idx];
271  struct ad714x_slider_drv *sw = &ad714x->sw->slider[idx];
272 
273  sw->highest_stage = ad714x_cal_highest_stage(ad714x, hw->start_stage,
274  hw->end_stage);
275 
276  dev_dbg(ad714x->dev, "slider %d highest_stage:%d\n", idx,
277  sw->highest_stage);
278 }
279 
280 /*
281  * The formulae are very straight forward. It uses the sensor with the
282  * highest response and the 2 adjacent ones.
283  * When Sensor 0 has the highest response, only sensor 0 and sensor 1
284  * are used in the calculations. Similarly when the last sensor has the
285  * highest response, only the last sensor and the second last sensors
286  * are used in the calculations.
287  *
288  * For i= idx_of_peak_Sensor-1 to i= idx_of_peak_Sensor+1
289  * v += Sensor response(i)*i
290  * w += Sensor response(i)
291  * POS=(Number_of_Positions_Wanted/(Number_of_Sensors_Used-1)) *(v/w)
292  */
293 static void ad714x_slider_cal_abs_pos(struct ad714x_chip *ad714x, int idx)
294 {
295  struct ad714x_slider_plat *hw = &ad714x->hw->slider[idx];
296  struct ad714x_slider_drv *sw = &ad714x->sw->slider[idx];
297 
298  sw->abs_pos = ad714x_cal_abs_pos(ad714x, hw->start_stage, hw->end_stage,
299  sw->highest_stage, hw->max_coord);
300 
301  dev_dbg(ad714x->dev, "slider %d absolute position:%d\n", idx,
302  sw->abs_pos);
303 }
304 
305 /*
306  * To minimise the Impact of the noise on the algorithm, ADI developed a
307  * routine that filters the CDC results after they have been read by the
308  * host processor.
309  * The filter used is an Infinite Input Response(IIR) filter implemented
310  * in firmware and attenuates the noise on the CDC results after they've
311  * been read by the host processor.
312  * Filtered_CDC_result = (Filtered_CDC_result * (10 - Coefficient) +
313  * Latest_CDC_result * Coefficient)/10
314  */
315 static void ad714x_slider_cal_flt_pos(struct ad714x_chip *ad714x, int idx)
316 {
317  struct ad714x_slider_drv *sw = &ad714x->sw->slider[idx];
318 
319  sw->flt_pos = (sw->flt_pos * (10 - 4) +
320  sw->abs_pos * 4)/10;
321 
322  dev_dbg(ad714x->dev, "slider %d filter position:%d\n", idx,
323  sw->flt_pos);
324 }
325 
326 static void ad714x_slider_use_com_int(struct ad714x_chip *ad714x, int idx)
327 {
328  struct ad714x_slider_plat *hw = &ad714x->hw->slider[idx];
329 
330  ad714x_use_com_int(ad714x, hw->start_stage, hw->end_stage);
331 }
332 
333 static void ad714x_slider_use_thr_int(struct ad714x_chip *ad714x, int idx)
334 {
335  struct ad714x_slider_plat *hw = &ad714x->hw->slider[idx];
336 
337  ad714x_use_thr_int(ad714x, hw->start_stage, hw->end_stage);
338 }
339 
340 static void ad714x_slider_state_machine(struct ad714x_chip *ad714x, int idx)
341 {
342  struct ad714x_slider_plat *hw = &ad714x->hw->slider[idx];
343  struct ad714x_slider_drv *sw = &ad714x->sw->slider[idx];
344  unsigned short h_state, c_state;
345  unsigned short mask;
346 
347  mask = ((1 << (hw->end_stage + 1)) - 1) - ((1 << hw->start_stage) - 1);
348 
349  h_state = ad714x->h_state & mask;
350  c_state = ad714x->c_state & mask;
351 
352  switch (sw->state) {
353  case IDLE:
354  if (h_state) {
355  sw->state = JITTER;
356  /* In End of Conversion interrupt mode, the AD714X
357  * continuously generates hardware interrupts.
358  */
359  ad714x_slider_use_com_int(ad714x, idx);
360  dev_dbg(ad714x->dev, "slider %d touched\n", idx);
361  }
362  break;
363 
364  case JITTER:
365  if (c_state == mask) {
366  ad714x_slider_cal_sensor_val(ad714x, idx);
367  ad714x_slider_cal_highest_stage(ad714x, idx);
368  ad714x_slider_cal_abs_pos(ad714x, idx);
369  sw->flt_pos = sw->abs_pos;
370  sw->state = ACTIVE;
371  }
372  break;
373 
374  case ACTIVE:
375  if (c_state == mask) {
376  if (h_state) {
377  ad714x_slider_cal_sensor_val(ad714x, idx);
378  ad714x_slider_cal_highest_stage(ad714x, idx);
379  ad714x_slider_cal_abs_pos(ad714x, idx);
380  ad714x_slider_cal_flt_pos(ad714x, idx);
381  input_report_abs(sw->input, ABS_X, sw->flt_pos);
382  input_report_key(sw->input, BTN_TOUCH, 1);
383  } else {
384  /* When the user lifts off the sensor, configure
385  * the AD714X back to threshold interrupt mode.
386  */
387  ad714x_slider_use_thr_int(ad714x, idx);
388  sw->state = IDLE;
389  input_report_key(sw->input, BTN_TOUCH, 0);
390  dev_dbg(ad714x->dev, "slider %d released\n",
391  idx);
392  }
393  input_sync(sw->input);
394  }
395  break;
396 
397  default:
398  break;
399  }
400 }
401 
402 /*
403  * When the scroll wheel is activated, we compute the absolute position based
404  * on the sensor values. To calculate the position, we first determine the
405  * sensor that has the greatest response among the 8 sensors that constitutes
406  * the scrollwheel. Then we determined the 2 sensors on either sides of the
407  * sensor with the highest response and we apply weights to these sensors.
408  */
409 static void ad714x_wheel_cal_highest_stage(struct ad714x_chip *ad714x, int idx)
410 {
411  struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx];
412  struct ad714x_wheel_drv *sw = &ad714x->sw->wheel[idx];
413 
415  sw->highest_stage = ad714x_cal_highest_stage(ad714x, hw->start_stage,
416  hw->end_stage);
417 
418  dev_dbg(ad714x->dev, "wheel %d highest_stage:%d\n", idx,
419  sw->highest_stage);
420 }
421 
422 static void ad714x_wheel_cal_sensor_val(struct ad714x_chip *ad714x, int idx)
423 {
424  struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx];
425  int i;
426 
427  ad714x->read(ad714x, CDC_RESULT_S0 + hw->start_stage,
428  &ad714x->adc_reg[hw->start_stage],
429  hw->end_stage - hw->start_stage + 1);
430 
431  for (i = hw->start_stage; i <= hw->end_stage; i++) {
432  ad714x->read(ad714x, STAGE0_AMBIENT + i * PER_STAGE_REG_NUM,
433  &ad714x->amb_reg[i], 1);
434  if (ad714x->adc_reg[i] > ad714x->amb_reg[i])
435  ad714x->sensor_val[i] =
436  ad714x->adc_reg[i] - ad714x->amb_reg[i];
437  else
438  ad714x->sensor_val[i] = 0;
439  }
440 }
441 
442 /*
443  * When the scroll wheel is activated, we compute the absolute position based
444  * on the sensor values. To calculate the position, we first determine the
445  * sensor that has the greatest response among the sensors that constitutes
446  * the scrollwheel. Then we determined the sensors on either sides of the
447  * sensor with the highest response and we apply weights to these sensors. The
448  * result of this computation gives us the mean value.
449  */
450 
451 static void ad714x_wheel_cal_abs_pos(struct ad714x_chip *ad714x, int idx)
452 {
453  struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx];
454  struct ad714x_wheel_drv *sw = &ad714x->sw->wheel[idx];
455  int stage_num = hw->end_stage - hw->start_stage + 1;
456  int first_before, highest, first_after;
457  int a_param, b_param;
458 
459  first_before = (sw->highest_stage + stage_num - 1) % stage_num;
460  highest = sw->highest_stage;
461  first_after = (sw->highest_stage + stage_num + 1) % stage_num;
462 
463  a_param = ad714x->sensor_val[highest] *
464  (highest - hw->start_stage) +
465  ad714x->sensor_val[first_before] *
466  (highest - hw->start_stage - 1) +
467  ad714x->sensor_val[first_after] *
468  (highest - hw->start_stage + 1);
469  b_param = ad714x->sensor_val[highest] +
470  ad714x->sensor_val[first_before] +
471  ad714x->sensor_val[first_after];
472 
473  sw->abs_pos = ((hw->max_coord / (hw->end_stage - hw->start_stage)) *
474  a_param) / b_param;
475 
476  if (sw->abs_pos > hw->max_coord)
477  sw->abs_pos = hw->max_coord;
478  else if (sw->abs_pos < 0)
479  sw->abs_pos = 0;
480 }
481 
482 static void ad714x_wheel_cal_flt_pos(struct ad714x_chip *ad714x, int idx)
483 {
484  struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx];
485  struct ad714x_wheel_drv *sw = &ad714x->sw->wheel[idx];
486  if (((sw->pre_highest_stage == hw->end_stage) &&
487  (sw->highest_stage == hw->start_stage)) ||
488  ((sw->pre_highest_stage == hw->start_stage) &&
489  (sw->highest_stage == hw->end_stage)))
490  sw->flt_pos = sw->abs_pos;
491  else
492  sw->flt_pos = ((sw->flt_pos * 30) + (sw->abs_pos * 71)) / 100;
493 
494  if (sw->flt_pos > hw->max_coord)
495  sw->flt_pos = hw->max_coord;
496 }
497 
498 static void ad714x_wheel_use_com_int(struct ad714x_chip *ad714x, int idx)
499 {
500  struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx];
501 
502  ad714x_use_com_int(ad714x, hw->start_stage, hw->end_stage);
503 }
504 
505 static void ad714x_wheel_use_thr_int(struct ad714x_chip *ad714x, int idx)
506 {
507  struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx];
508 
509  ad714x_use_thr_int(ad714x, hw->start_stage, hw->end_stage);
510 }
511 
512 static void ad714x_wheel_state_machine(struct ad714x_chip *ad714x, int idx)
513 {
514  struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx];
515  struct ad714x_wheel_drv *sw = &ad714x->sw->wheel[idx];
516  unsigned short h_state, c_state;
517  unsigned short mask;
518 
519  mask = ((1 << (hw->end_stage + 1)) - 1) - ((1 << hw->start_stage) - 1);
520 
521  h_state = ad714x->h_state & mask;
522  c_state = ad714x->c_state & mask;
523 
524  switch (sw->state) {
525  case IDLE:
526  if (h_state) {
527  sw->state = JITTER;
528  /* In End of Conversion interrupt mode, the AD714X
529  * continuously generates hardware interrupts.
530  */
531  ad714x_wheel_use_com_int(ad714x, idx);
532  dev_dbg(ad714x->dev, "wheel %d touched\n", idx);
533  }
534  break;
535 
536  case JITTER:
537  if (c_state == mask) {
538  ad714x_wheel_cal_sensor_val(ad714x, idx);
539  ad714x_wheel_cal_highest_stage(ad714x, idx);
540  ad714x_wheel_cal_abs_pos(ad714x, idx);
541  sw->flt_pos = sw->abs_pos;
542  sw->state = ACTIVE;
543  }
544  break;
545 
546  case ACTIVE:
547  if (c_state == mask) {
548  if (h_state) {
549  ad714x_wheel_cal_sensor_val(ad714x, idx);
550  ad714x_wheel_cal_highest_stage(ad714x, idx);
551  ad714x_wheel_cal_abs_pos(ad714x, idx);
552  ad714x_wheel_cal_flt_pos(ad714x, idx);
553  input_report_abs(sw->input, ABS_WHEEL,
554  sw->flt_pos);
555  input_report_key(sw->input, BTN_TOUCH, 1);
556  } else {
557  /* When the user lifts off the sensor, configure
558  * the AD714X back to threshold interrupt mode.
559  */
560  ad714x_wheel_use_thr_int(ad714x, idx);
561  sw->state = IDLE;
562  input_report_key(sw->input, BTN_TOUCH, 0);
563 
564  dev_dbg(ad714x->dev, "wheel %d released\n",
565  idx);
566  }
567  input_sync(sw->input);
568  }
569  break;
570 
571  default:
572  break;
573  }
574 }
575 
576 static void touchpad_cal_sensor_val(struct ad714x_chip *ad714x, int idx)
577 {
578  struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx];
579  int i;
580 
581  ad714x->read(ad714x, CDC_RESULT_S0 + hw->x_start_stage,
582  &ad714x->adc_reg[hw->x_start_stage],
583  hw->x_end_stage - hw->x_start_stage + 1);
584 
585  for (i = hw->x_start_stage; i <= hw->x_end_stage; i++) {
586  ad714x->read(ad714x, STAGE0_AMBIENT + i * PER_STAGE_REG_NUM,
587  &ad714x->amb_reg[i], 1);
588  if (ad714x->adc_reg[i] > ad714x->amb_reg[i])
589  ad714x->sensor_val[i] =
590  ad714x->adc_reg[i] - ad714x->amb_reg[i];
591  else
592  ad714x->sensor_val[i] = 0;
593  }
594 }
595 
596 static void touchpad_cal_highest_stage(struct ad714x_chip *ad714x, int idx)
597 {
598  struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx];
599  struct ad714x_touchpad_drv *sw = &ad714x->sw->touchpad[idx];
600 
601  sw->x_highest_stage = ad714x_cal_highest_stage(ad714x,
602  hw->x_start_stage, hw->x_end_stage);
603  sw->y_highest_stage = ad714x_cal_highest_stage(ad714x,
604  hw->y_start_stage, hw->y_end_stage);
605 
606  dev_dbg(ad714x->dev,
607  "touchpad %d x_highest_stage:%d, y_highest_stage:%d\n",
608  idx, sw->x_highest_stage, sw->y_highest_stage);
609 }
610 
611 /*
612  * If 2 fingers are touching the sensor then 2 peaks can be observed in the
613  * distribution.
614  * The arithmetic doesn't support to get absolute coordinates for multi-touch
615  * yet.
616  */
617 static int touchpad_check_second_peak(struct ad714x_chip *ad714x, int idx)
618 {
619  struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx];
620  struct ad714x_touchpad_drv *sw = &ad714x->sw->touchpad[idx];
621  int i;
622 
623  for (i = hw->x_start_stage; i < sw->x_highest_stage; i++) {
624  if ((ad714x->sensor_val[i] - ad714x->sensor_val[i + 1])
625  > (ad714x->sensor_val[i + 1] / 10))
626  return 1;
627  }
628 
629  for (i = sw->x_highest_stage; i < hw->x_end_stage; i++) {
630  if ((ad714x->sensor_val[i + 1] - ad714x->sensor_val[i])
631  > (ad714x->sensor_val[i] / 10))
632  return 1;
633  }
634 
635  for (i = hw->y_start_stage; i < sw->y_highest_stage; i++) {
636  if ((ad714x->sensor_val[i] - ad714x->sensor_val[i + 1])
637  > (ad714x->sensor_val[i + 1] / 10))
638  return 1;
639  }
640 
641  for (i = sw->y_highest_stage; i < hw->y_end_stage; i++) {
642  if ((ad714x->sensor_val[i + 1] - ad714x->sensor_val[i])
643  > (ad714x->sensor_val[i] / 10))
644  return 1;
645  }
646 
647  return 0;
648 }
649 
650 /*
651  * If only one finger is used to activate the touch pad then only 1 peak will be
652  * registered in the distribution. This peak and the 2 adjacent sensors will be
653  * used in the calculation of the absolute position. This will prevent hand
654  * shadows to affect the absolute position calculation.
655  */
656 static void touchpad_cal_abs_pos(struct ad714x_chip *ad714x, int idx)
657 {
658  struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx];
659  struct ad714x_touchpad_drv *sw = &ad714x->sw->touchpad[idx];
660 
661  sw->x_abs_pos = ad714x_cal_abs_pos(ad714x, hw->x_start_stage,
662  hw->x_end_stage, sw->x_highest_stage, hw->x_max_coord);
663  sw->y_abs_pos = ad714x_cal_abs_pos(ad714x, hw->y_start_stage,
664  hw->y_end_stage, sw->y_highest_stage, hw->y_max_coord);
665 
666  dev_dbg(ad714x->dev, "touchpad %d absolute position:(%d, %d)\n", idx,
667  sw->x_abs_pos, sw->y_abs_pos);
668 }
669 
670 static void touchpad_cal_flt_pos(struct ad714x_chip *ad714x, int idx)
671 {
672  struct ad714x_touchpad_drv *sw = &ad714x->sw->touchpad[idx];
673 
674  sw->x_flt_pos = (sw->x_flt_pos * (10 - 4) +
675  sw->x_abs_pos * 4)/10;
676  sw->y_flt_pos = (sw->y_flt_pos * (10 - 4) +
677  sw->y_abs_pos * 4)/10;
678 
679  dev_dbg(ad714x->dev, "touchpad %d filter position:(%d, %d)\n",
680  idx, sw->x_flt_pos, sw->y_flt_pos);
681 }
682 
683 /*
684  * To prevent distortion from showing in the absolute position, it is
685  * necessary to detect the end points. When endpoints are detected, the
686  * driver stops updating the status variables with absolute positions.
687  * End points are detected on the 4 edges of the touchpad sensor. The
688  * method to detect them is the same for all 4.
689  * To detect the end points, the firmware computes the difference in
690  * percent between the sensor on the edge and the adjacent one. The
691  * difference is calculated in percent in order to make the end point
692  * detection independent of the pressure.
693  */
694 
695 #define LEFT_END_POINT_DETECTION_LEVEL 550
696 #define RIGHT_END_POINT_DETECTION_LEVEL 750
697 #define LEFT_RIGHT_END_POINT_DEAVTIVALION_LEVEL 850
698 #define TOP_END_POINT_DETECTION_LEVEL 550
699 #define BOTTOM_END_POINT_DETECTION_LEVEL 950
700 #define TOP_BOTTOM_END_POINT_DEAVTIVALION_LEVEL 700
701 static int touchpad_check_endpoint(struct ad714x_chip *ad714x, int idx)
702 {
703  struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx];
704  struct ad714x_touchpad_drv *sw = &ad714x->sw->touchpad[idx];
705  int percent_sensor_diff;
706 
707  /* left endpoint detect */
708  percent_sensor_diff = (ad714x->sensor_val[hw->x_start_stage] -
709  ad714x->sensor_val[hw->x_start_stage + 1]) * 100 /
710  ad714x->sensor_val[hw->x_start_stage + 1];
711  if (!sw->left_ep) {
712  if (percent_sensor_diff >= LEFT_END_POINT_DETECTION_LEVEL) {
713  sw->left_ep = 1;
714  sw->left_ep_val =
715  ad714x->sensor_val[hw->x_start_stage + 1];
716  }
717  } else {
718  if ((percent_sensor_diff < LEFT_END_POINT_DETECTION_LEVEL) &&
719  (ad714x->sensor_val[hw->x_start_stage + 1] >
721  sw->left_ep = 0;
722  }
723 
724  /* right endpoint detect */
725  percent_sensor_diff = (ad714x->sensor_val[hw->x_end_stage] -
726  ad714x->sensor_val[hw->x_end_stage - 1]) * 100 /
727  ad714x->sensor_val[hw->x_end_stage - 1];
728  if (!sw->right_ep) {
729  if (percent_sensor_diff >= RIGHT_END_POINT_DETECTION_LEVEL) {
730  sw->right_ep = 1;
731  sw->right_ep_val =
732  ad714x->sensor_val[hw->x_end_stage - 1];
733  }
734  } else {
735  if ((percent_sensor_diff < RIGHT_END_POINT_DETECTION_LEVEL) &&
736  (ad714x->sensor_val[hw->x_end_stage - 1] >
738  sw->right_ep = 0;
739  }
740 
741  /* top endpoint detect */
742  percent_sensor_diff = (ad714x->sensor_val[hw->y_start_stage] -
743  ad714x->sensor_val[hw->y_start_stage + 1]) * 100 /
744  ad714x->sensor_val[hw->y_start_stage + 1];
745  if (!sw->top_ep) {
746  if (percent_sensor_diff >= TOP_END_POINT_DETECTION_LEVEL) {
747  sw->top_ep = 1;
748  sw->top_ep_val =
749  ad714x->sensor_val[hw->y_start_stage + 1];
750  }
751  } else {
752  if ((percent_sensor_diff < TOP_END_POINT_DETECTION_LEVEL) &&
753  (ad714x->sensor_val[hw->y_start_stage + 1] >
755  sw->top_ep = 0;
756  }
757 
758  /* bottom endpoint detect */
759  percent_sensor_diff = (ad714x->sensor_val[hw->y_end_stage] -
760  ad714x->sensor_val[hw->y_end_stage - 1]) * 100 /
761  ad714x->sensor_val[hw->y_end_stage - 1];
762  if (!sw->bottom_ep) {
763  if (percent_sensor_diff >= BOTTOM_END_POINT_DETECTION_LEVEL) {
764  sw->bottom_ep = 1;
765  sw->bottom_ep_val =
766  ad714x->sensor_val[hw->y_end_stage - 1];
767  }
768  } else {
769  if ((percent_sensor_diff < BOTTOM_END_POINT_DETECTION_LEVEL) &&
770  (ad714x->sensor_val[hw->y_end_stage - 1] >
772  sw->bottom_ep = 0;
773  }
774 
775  return sw->left_ep || sw->right_ep || sw->top_ep || sw->bottom_ep;
776 }
777 
778 static void touchpad_use_com_int(struct ad714x_chip *ad714x, int idx)
779 {
780  struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx];
781 
782  ad714x_use_com_int(ad714x, hw->x_start_stage, hw->x_end_stage);
783 }
784 
785 static void touchpad_use_thr_int(struct ad714x_chip *ad714x, int idx)
786 {
787  struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx];
788 
789  ad714x_use_thr_int(ad714x, hw->x_start_stage, hw->x_end_stage);
790  ad714x_use_thr_int(ad714x, hw->y_start_stage, hw->y_end_stage);
791 }
792 
793 static void ad714x_touchpad_state_machine(struct ad714x_chip *ad714x, int idx)
794 {
795  struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx];
796  struct ad714x_touchpad_drv *sw = &ad714x->sw->touchpad[idx];
797  unsigned short h_state, c_state;
798  unsigned short mask;
799 
800  mask = (((1 << (hw->x_end_stage + 1)) - 1) -
801  ((1 << hw->x_start_stage) - 1)) +
802  (((1 << (hw->y_end_stage + 1)) - 1) -
803  ((1 << hw->y_start_stage) - 1));
804 
805  h_state = ad714x->h_state & mask;
806  c_state = ad714x->c_state & mask;
807 
808  switch (sw->state) {
809  case IDLE:
810  if (h_state) {
811  sw->state = JITTER;
812  /* In End of Conversion interrupt mode, the AD714X
813  * continuously generates hardware interrupts.
814  */
815  touchpad_use_com_int(ad714x, idx);
816  dev_dbg(ad714x->dev, "touchpad %d touched\n", idx);
817  }
818  break;
819 
820  case JITTER:
821  if (c_state == mask) {
822  touchpad_cal_sensor_val(ad714x, idx);
823  touchpad_cal_highest_stage(ad714x, idx);
824  if ((!touchpad_check_second_peak(ad714x, idx)) &&
825  (!touchpad_check_endpoint(ad714x, idx))) {
826  dev_dbg(ad714x->dev,
827  "touchpad%d, 2 fingers or endpoint\n",
828  idx);
829  touchpad_cal_abs_pos(ad714x, idx);
830  sw->x_flt_pos = sw->x_abs_pos;
831  sw->y_flt_pos = sw->y_abs_pos;
832  sw->state = ACTIVE;
833  }
834  }
835  break;
836 
837  case ACTIVE:
838  if (c_state == mask) {
839  if (h_state) {
840  touchpad_cal_sensor_val(ad714x, idx);
841  touchpad_cal_highest_stage(ad714x, idx);
842  if ((!touchpad_check_second_peak(ad714x, idx))
843  && (!touchpad_check_endpoint(ad714x, idx))) {
844  touchpad_cal_abs_pos(ad714x, idx);
845  touchpad_cal_flt_pos(ad714x, idx);
846  input_report_abs(sw->input, ABS_X,
847  sw->x_flt_pos);
848  input_report_abs(sw->input, ABS_Y,
849  sw->y_flt_pos);
850  input_report_key(sw->input, BTN_TOUCH,
851  1);
852  }
853  } else {
854  /* When the user lifts off the sensor, configure
855  * the AD714X back to threshold interrupt mode.
856  */
857  touchpad_use_thr_int(ad714x, idx);
858  sw->state = IDLE;
859  input_report_key(sw->input, BTN_TOUCH, 0);
860  dev_dbg(ad714x->dev, "touchpad %d released\n",
861  idx);
862  }
863  input_sync(sw->input);
864  }
865  break;
866 
867  default:
868  break;
869  }
870 }
871 
872 static int ad714x_hw_detect(struct ad714x_chip *ad714x)
873 {
874  unsigned short data;
875 
876  ad714x->read(ad714x, AD714X_PARTID_REG, &data, 1);
877  switch (data & 0xFFF0) {
878  case AD7142_PARTID:
879  ad714x->product = 0x7142;
880  ad714x->version = data & 0xF;
881  dev_info(ad714x->dev, "found AD7142 captouch, rev:%d\n",
882  ad714x->version);
883  return 0;
884 
885  case AD7143_PARTID:
886  ad714x->product = 0x7143;
887  ad714x->version = data & 0xF;
888  dev_info(ad714x->dev, "found AD7143 captouch, rev:%d\n",
889  ad714x->version);
890  return 0;
891 
892  case AD7147_PARTID:
893  ad714x->product = 0x7147;
894  ad714x->version = data & 0xF;
895  dev_info(ad714x->dev, "found AD7147(A) captouch, rev:%d\n",
896  ad714x->version);
897  return 0;
898 
899  case AD7148_PARTID:
900  ad714x->product = 0x7148;
901  ad714x->version = data & 0xF;
902  dev_info(ad714x->dev, "found AD7148 captouch, rev:%d\n",
903  ad714x->version);
904  return 0;
905 
906  default:
907  dev_err(ad714x->dev,
908  "fail to detect AD714X captouch, read ID is %04x\n",
909  data);
910  return -ENODEV;
911  }
912 }
913 
914 static void ad714x_hw_init(struct ad714x_chip *ad714x)
915 {
916  int i, j;
917  unsigned short reg_base;
918  unsigned short data;
919 
920  /* configuration CDC and interrupts */
921 
922  for (i = 0; i < STAGE_NUM; i++) {
923  reg_base = AD714X_STAGECFG_REG + i * STAGE_CFGREG_NUM;
924  for (j = 0; j < STAGE_CFGREG_NUM; j++)
925  ad714x->write(ad714x, reg_base + j,
926  ad714x->hw->stage_cfg_reg[i][j]);
927  }
928 
929  for (i = 0; i < SYS_CFGREG_NUM; i++)
930  ad714x->write(ad714x, AD714X_SYSCFG_REG + i,
931  ad714x->hw->sys_cfg_reg[i]);
932  for (i = 0; i < SYS_CFGREG_NUM; i++)
933  ad714x->read(ad714x, AD714X_SYSCFG_REG + i, &data, 1);
934 
935  ad714x->write(ad714x, AD714X_STG_CAL_EN_REG, 0xFFF);
936 
937  /* clear all interrupts */
938  ad714x->read(ad714x, STG_LOW_INT_STA_REG, &ad714x->l_state, 3);
939 }
940 
941 static irqreturn_t ad714x_interrupt_thread(int irq, void *data)
942 {
943  struct ad714x_chip *ad714x = data;
944  int i;
945 
946  mutex_lock(&ad714x->mutex);
947 
948  ad714x->read(ad714x, STG_LOW_INT_STA_REG, &ad714x->l_state, 3);
949 
950  for (i = 0; i < ad714x->hw->button_num; i++)
951  ad714x_button_state_machine(ad714x, i);
952  for (i = 0; i < ad714x->hw->slider_num; i++)
953  ad714x_slider_state_machine(ad714x, i);
954  for (i = 0; i < ad714x->hw->wheel_num; i++)
955  ad714x_wheel_state_machine(ad714x, i);
956  for (i = 0; i < ad714x->hw->touchpad_num; i++)
957  ad714x_touchpad_state_machine(ad714x, i);
958 
959  mutex_unlock(&ad714x->mutex);
960 
961  return IRQ_HANDLED;
962 }
963 
964 #define MAX_DEVICE_NUM 8
965 struct ad714x_chip *ad714x_probe(struct device *dev, u16 bus_type, int irq,
967 {
968  int i, alloc_idx;
969  int error;
970  struct input_dev *input[MAX_DEVICE_NUM];
971 
972  struct ad714x_platform_data *plat_data = dev->platform_data;
973  struct ad714x_chip *ad714x;
974  void *drv_mem;
975  unsigned long irqflags;
976 
977  struct ad714x_button_drv *bt_drv;
978  struct ad714x_slider_drv *sd_drv;
979  struct ad714x_wheel_drv *wl_drv;
980  struct ad714x_touchpad_drv *tp_drv;
981 
982 
983  if (irq <= 0) {
984  dev_err(dev, "IRQ not configured!\n");
985  error = -EINVAL;
986  goto err_out;
987  }
988 
989  if (dev->platform_data == NULL) {
990  dev_err(dev, "platform data for ad714x doesn't exist\n");
991  error = -EINVAL;
992  goto err_out;
993  }
994 
995  ad714x = kzalloc(sizeof(*ad714x) + sizeof(*ad714x->sw) +
996  sizeof(*sd_drv) * plat_data->slider_num +
997  sizeof(*wl_drv) * plat_data->wheel_num +
998  sizeof(*tp_drv) * plat_data->touchpad_num +
999  sizeof(*bt_drv) * plat_data->button_num, GFP_KERNEL);
1000  if (!ad714x) {
1001  error = -ENOMEM;
1002  goto err_out;
1003  }
1004 
1005  ad714x->hw = plat_data;
1006 
1007  drv_mem = ad714x + 1;
1008  ad714x->sw = drv_mem;
1009  drv_mem += sizeof(*ad714x->sw);
1010  ad714x->sw->slider = sd_drv = drv_mem;
1011  drv_mem += sizeof(*sd_drv) * ad714x->hw->slider_num;
1012  ad714x->sw->wheel = wl_drv = drv_mem;
1013  drv_mem += sizeof(*wl_drv) * ad714x->hw->wheel_num;
1014  ad714x->sw->touchpad = tp_drv = drv_mem;
1015  drv_mem += sizeof(*tp_drv) * ad714x->hw->touchpad_num;
1016  ad714x->sw->button = bt_drv = drv_mem;
1017  drv_mem += sizeof(*bt_drv) * ad714x->hw->button_num;
1018 
1019  ad714x->read = read;
1020  ad714x->write = write;
1021  ad714x->irq = irq;
1022  ad714x->dev = dev;
1023 
1024  error = ad714x_hw_detect(ad714x);
1025  if (error)
1026  goto err_free_mem;
1027 
1028  /* initialize and request sw/hw resources */
1029 
1030  ad714x_hw_init(ad714x);
1031  mutex_init(&ad714x->mutex);
1032 
1033  /*
1034  * Allocate and register AD714X input device
1035  */
1036  alloc_idx = 0;
1037 
1038  /* a slider uses one input_dev instance */
1039  if (ad714x->hw->slider_num > 0) {
1040  struct ad714x_slider_plat *sd_plat = ad714x->hw->slider;
1041 
1042  for (i = 0; i < ad714x->hw->slider_num; i++) {
1043  sd_drv[i].input = input[alloc_idx] = input_allocate_device();
1044  if (!input[alloc_idx]) {
1045  error = -ENOMEM;
1046  goto err_free_dev;
1047  }
1048 
1049  __set_bit(EV_ABS, input[alloc_idx]->evbit);
1050  __set_bit(EV_KEY, input[alloc_idx]->evbit);
1051  __set_bit(ABS_X, input[alloc_idx]->absbit);
1052  __set_bit(BTN_TOUCH, input[alloc_idx]->keybit);
1053  input_set_abs_params(input[alloc_idx],
1054  ABS_X, 0, sd_plat->max_coord, 0, 0);
1055 
1056  input[alloc_idx]->id.bustype = bus_type;
1057  input[alloc_idx]->id.product = ad714x->product;
1058  input[alloc_idx]->id.version = ad714x->version;
1059  input[alloc_idx]->name = "ad714x_captouch_slider";
1060  input[alloc_idx]->dev.parent = dev;
1061 
1062  error = input_register_device(input[alloc_idx]);
1063  if (error)
1064  goto err_free_dev;
1065 
1066  alloc_idx++;
1067  }
1068  }
1069 
1070  /* a wheel uses one input_dev instance */
1071  if (ad714x->hw->wheel_num > 0) {
1072  struct ad714x_wheel_plat *wl_plat = ad714x->hw->wheel;
1073 
1074  for (i = 0; i < ad714x->hw->wheel_num; i++) {
1075  wl_drv[i].input = input[alloc_idx] = input_allocate_device();
1076  if (!input[alloc_idx]) {
1077  error = -ENOMEM;
1078  goto err_free_dev;
1079  }
1080 
1081  __set_bit(EV_KEY, input[alloc_idx]->evbit);
1082  __set_bit(EV_ABS, input[alloc_idx]->evbit);
1083  __set_bit(ABS_WHEEL, input[alloc_idx]->absbit);
1084  __set_bit(BTN_TOUCH, input[alloc_idx]->keybit);
1085  input_set_abs_params(input[alloc_idx],
1086  ABS_WHEEL, 0, wl_plat->max_coord, 0, 0);
1087 
1088  input[alloc_idx]->id.bustype = bus_type;
1089  input[alloc_idx]->id.product = ad714x->product;
1090  input[alloc_idx]->id.version = ad714x->version;
1091  input[alloc_idx]->name = "ad714x_captouch_wheel";
1092  input[alloc_idx]->dev.parent = dev;
1093 
1094  error = input_register_device(input[alloc_idx]);
1095  if (error)
1096  goto err_free_dev;
1097 
1098  alloc_idx++;
1099  }
1100  }
1101 
1102  /* a touchpad uses one input_dev instance */
1103  if (ad714x->hw->touchpad_num > 0) {
1104  struct ad714x_touchpad_plat *tp_plat = ad714x->hw->touchpad;
1105 
1106  for (i = 0; i < ad714x->hw->touchpad_num; i++) {
1107  tp_drv[i].input = input[alloc_idx] = input_allocate_device();
1108  if (!input[alloc_idx]) {
1109  error = -ENOMEM;
1110  goto err_free_dev;
1111  }
1112 
1113  __set_bit(EV_ABS, input[alloc_idx]->evbit);
1114  __set_bit(EV_KEY, input[alloc_idx]->evbit);
1115  __set_bit(ABS_X, input[alloc_idx]->absbit);
1116  __set_bit(ABS_Y, input[alloc_idx]->absbit);
1117  __set_bit(BTN_TOUCH, input[alloc_idx]->keybit);
1118  input_set_abs_params(input[alloc_idx],
1119  ABS_X, 0, tp_plat->x_max_coord, 0, 0);
1120  input_set_abs_params(input[alloc_idx],
1121  ABS_Y, 0, tp_plat->y_max_coord, 0, 0);
1122 
1123  input[alloc_idx]->id.bustype = bus_type;
1124  input[alloc_idx]->id.product = ad714x->product;
1125  input[alloc_idx]->id.version = ad714x->version;
1126  input[alloc_idx]->name = "ad714x_captouch_pad";
1127  input[alloc_idx]->dev.parent = dev;
1128 
1129  error = input_register_device(input[alloc_idx]);
1130  if (error)
1131  goto err_free_dev;
1132 
1133  alloc_idx++;
1134  }
1135  }
1136 
1137  /* all buttons use one input node */
1138  if (ad714x->hw->button_num > 0) {
1139  struct ad714x_button_plat *bt_plat = ad714x->hw->button;
1140 
1141  input[alloc_idx] = input_allocate_device();
1142  if (!input[alloc_idx]) {
1143  error = -ENOMEM;
1144  goto err_free_dev;
1145  }
1146 
1147  __set_bit(EV_KEY, input[alloc_idx]->evbit);
1148  for (i = 0; i < ad714x->hw->button_num; i++) {
1149  bt_drv[i].input = input[alloc_idx];
1150  __set_bit(bt_plat[i].keycode, input[alloc_idx]->keybit);
1151  }
1152 
1153  input[alloc_idx]->id.bustype = bus_type;
1154  input[alloc_idx]->id.product = ad714x->product;
1155  input[alloc_idx]->id.version = ad714x->version;
1156  input[alloc_idx]->name = "ad714x_captouch_button";
1157  input[alloc_idx]->dev.parent = dev;
1158 
1159  error = input_register_device(input[alloc_idx]);
1160  if (error)
1161  goto err_free_dev;
1162 
1163  alloc_idx++;
1164  }
1165 
1166  irqflags = plat_data->irqflags ?: IRQF_TRIGGER_FALLING;
1167  irqflags |= IRQF_ONESHOT;
1168 
1169  error = request_threaded_irq(ad714x->irq, NULL, ad714x_interrupt_thread,
1170  irqflags, "ad714x_captouch", ad714x);
1171  if (error) {
1172  dev_err(dev, "can't allocate irq %d\n", ad714x->irq);
1173  goto err_unreg_dev;
1174  }
1175 
1176  return ad714x;
1177 
1178  err_free_dev:
1179  dev_err(dev, "failed to setup AD714x input device %i\n", alloc_idx);
1180  input_free_device(input[alloc_idx]);
1181  err_unreg_dev:
1182  while (--alloc_idx >= 0)
1183  input_unregister_device(input[alloc_idx]);
1184  err_free_mem:
1185  kfree(ad714x);
1186  err_out:
1187  return ERR_PTR(error);
1188 }
1190 
1191 void ad714x_remove(struct ad714x_chip *ad714x)
1192 {
1193  struct ad714x_platform_data *hw = ad714x->hw;
1194  struct ad714x_driver_data *sw = ad714x->sw;
1195  int i;
1196 
1197  free_irq(ad714x->irq, ad714x);
1198 
1199  /* unregister and free all input devices */
1200 
1201  for (i = 0; i < hw->slider_num; i++)
1202  input_unregister_device(sw->slider[i].input);
1203 
1204  for (i = 0; i < hw->wheel_num; i++)
1205  input_unregister_device(sw->wheel[i].input);
1206 
1207  for (i = 0; i < hw->touchpad_num; i++)
1208  input_unregister_device(sw->touchpad[i].input);
1209 
1210  if (hw->button_num)
1211  input_unregister_device(sw->button[0].input);
1212 
1213  kfree(ad714x);
1214 }
1216 
1217 #ifdef CONFIG_PM
1218 int ad714x_disable(struct ad714x_chip *ad714x)
1219 {
1220  unsigned short data;
1221 
1222  dev_dbg(ad714x->dev, "%s enter\n", __func__);
1223 
1224  mutex_lock(&ad714x->mutex);
1225 
1226  data = ad714x->hw->sys_cfg_reg[AD714X_PWR_CTRL] | 0x3;
1227  ad714x->write(ad714x, AD714X_PWR_CTRL, data);
1228 
1229  mutex_unlock(&ad714x->mutex);
1230 
1231  return 0;
1232 }
1234 
1235 int ad714x_enable(struct ad714x_chip *ad714x)
1236 {
1237  dev_dbg(ad714x->dev, "%s enter\n", __func__);
1238 
1239  mutex_lock(&ad714x->mutex);
1240 
1241  /* resume to non-shutdown mode */
1242 
1243  ad714x->write(ad714x, AD714X_PWR_CTRL,
1244  ad714x->hw->sys_cfg_reg[AD714X_PWR_CTRL]);
1245 
1246  /* make sure the interrupt output line is not low level after resume,
1247  * otherwise we will get no chance to enter falling-edge irq again
1248  */
1249 
1250  ad714x->read(ad714x, STG_LOW_INT_STA_REG, &ad714x->l_state, 3);
1251 
1252  mutex_unlock(&ad714x->mutex);
1253 
1254  return 0;
1255 }
1257 #endif
1258 
1259 MODULE_DESCRIPTION("Analog Devices AD714X Capacitance Touch Sensor Driver");
1260 MODULE_AUTHOR("Barry Song <[email protected]>");
1261 MODULE_LICENSE("GPL");