Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
aes.c
Go to the documentation of this file.
1 /*
2  * Cryptographic API.
3  *
4  * AES Cipher Algorithm.
5  *
6  * Based on Brian Gladman's code.
7  *
8  * Linux developers:
9  * Alexander Kjeldaas <[email protected]>
10  * Herbert Valerio Riedel <[email protected]>
11  * Kyle McMartin <[email protected]>
12  * Adam J. Richter <[email protected]> (conversion to 2.5 API).
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * ---------------------------------------------------------------------------
20  * Copyright (c) 2002, Dr Brian Gladman <[email protected]>, Worcester, UK.
21  * All rights reserved.
22  *
23  * LICENSE TERMS
24  *
25  * The free distribution and use of this software in both source and binary
26  * form is allowed (with or without changes) provided that:
27  *
28  * 1. distributions of this source code include the above copyright
29  * notice, this list of conditions and the following disclaimer;
30  *
31  * 2. distributions in binary form include the above copyright
32  * notice, this list of conditions and the following disclaimer
33  * in the documentation and/or other associated materials;
34  *
35  * 3. the copyright holder's name is not used to endorse products
36  * built using this software without specific written permission.
37  *
38  * ALTERNATIVELY, provided that this notice is retained in full, this product
39  * may be distributed under the terms of the GNU General Public License (GPL),
40  * in which case the provisions of the GPL apply INSTEAD OF those given above.
41  *
42  * DISCLAIMER
43  *
44  * This software is provided 'as is' with no explicit or implied warranties
45  * in respect of its properties, including, but not limited to, correctness
46  * and/or fitness for purpose.
47  * ---------------------------------------------------------------------------
48  */
49 
50 /* Some changes from the Gladman version:
51  s/RIJNDAEL(e_key)/E_KEY/g
52  s/RIJNDAEL(d_key)/D_KEY/g
53 */
54 
55 #include <linux/module.h>
56 #include <linux/init.h>
57 #include <linux/types.h>
58 #include <linux/errno.h>
59 //#include <linux/crypto.h>
60 #include "rtl_crypto.h"
61 #include <asm/byteorder.h>
62 
63 #define AES_MIN_KEY_SIZE 16
64 #define AES_MAX_KEY_SIZE 32
65 
66 #define AES_BLOCK_SIZE 16
67 
68 static inline
69 u32 generic_rotr32 (const u32 x, const unsigned bits)
70 {
71  const unsigned n = bits % 32;
72  return (x >> n) | (x << (32 - n));
73 }
74 
75 static inline
76 u32 generic_rotl32 (const u32 x, const unsigned bits)
77 {
78  const unsigned n = bits % 32;
79  return (x << n) | (x >> (32 - n));
80 }
81 
82 #define rotl generic_rotl32
83 #define rotr generic_rotr32
84 
85 /*
86  * #define byte(x, nr) ((unsigned char)((x) >> (nr*8)))
87  */
88 inline static u8
89 byte(const u32 x, const unsigned n)
90 {
91  return x >> (n << 3);
92 }
93 
94 #define u32_in(x) le32_to_cpu(*(const u32 *)(x))
95 #define u32_out(to, from) (*(u32 *)(to) = cpu_to_le32(from))
96 
97 struct aes_ctx {
99  u32 E[60];
100  u32 D[60];
101 };
102 
103 #define E_KEY ctx->E
104 #define D_KEY ctx->D
105 
106 static u8 pow_tab[256] __initdata;
107 static u8 log_tab[256] __initdata;
108 static u8 sbx_tab[256] __initdata;
109 static u8 isb_tab[256] __initdata;
110 static u32 rco_tab[10];
111 static u32 ft_tab[4][256];
112 static u32 it_tab[4][256];
113 
114 static u32 fl_tab[4][256];
115 static u32 il_tab[4][256];
116 
117 static inline u8 __init
118 f_mult (u8 a, u8 b)
119 {
120  u8 aa = log_tab[a], cc = aa + log_tab[b];
121 
122  return pow_tab[cc + (cc < aa ? 1 : 0)];
123 }
124 
125 #define ff_mult(a,b) (a && b ? f_mult(a, b) : 0)
126 
127 #define f_rn(bo, bi, n, k) \
128  bo[n] = ft_tab[0][byte(bi[n],0)] ^ \
129  ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
130  ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
131  ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
132 
133 #define i_rn(bo, bi, n, k) \
134  bo[n] = it_tab[0][byte(bi[n],0)] ^ \
135  it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
136  it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
137  it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
138 
139 #define ls_box(x) \
140  ( fl_tab[0][byte(x, 0)] ^ \
141  fl_tab[1][byte(x, 1)] ^ \
142  fl_tab[2][byte(x, 2)] ^ \
143  fl_tab[3][byte(x, 3)] )
144 
145 #define f_rl(bo, bi, n, k) \
146  bo[n] = fl_tab[0][byte(bi[n],0)] ^ \
147  fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
148  fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
149  fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
150 
151 #define i_rl(bo, bi, n, k) \
152  bo[n] = il_tab[0][byte(bi[n],0)] ^ \
153  il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
154  il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
155  il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
156 
157 static void __init
158 gen_tabs (void)
159 {
160  u32 i, t;
161  u8 p, q;
162 
163  /* log and power tables for GF(2**8) finite field with
164  0x011b as modular polynomial - the simplest primitive
165  root is 0x03, used here to generate the tables */
166 
167  for (i = 0, p = 1; i < 256; ++i) {
168  pow_tab[i] = (u8) p;
169  log_tab[p] = (u8) i;
170 
171  p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
172  }
173 
174  log_tab[1] = 0;
175 
176  for (i = 0, p = 1; i < 10; ++i) {
177  rco_tab[i] = p;
178 
179  p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
180  }
181 
182  for (i = 0; i < 256; ++i) {
183  p = (i ? pow_tab[255 - log_tab[i]] : 0);
184  q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
185  p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
186  sbx_tab[i] = p;
187  isb_tab[p] = (u8) i;
188  }
189 
190  for (i = 0; i < 256; ++i) {
191  p = sbx_tab[i];
192 
193  t = p;
194  fl_tab[0][i] = t;
195  fl_tab[1][i] = rotl (t, 8);
196  fl_tab[2][i] = rotl (t, 16);
197  fl_tab[3][i] = rotl (t, 24);
198 
199  t = ((u32) ff_mult (2, p)) |
200  ((u32) p << 8) |
201  ((u32) p << 16) | ((u32) ff_mult (3, p) << 24);
202 
203  ft_tab[0][i] = t;
204  ft_tab[1][i] = rotl (t, 8);
205  ft_tab[2][i] = rotl (t, 16);
206  ft_tab[3][i] = rotl (t, 24);
207 
208  p = isb_tab[i];
209 
210  t = p;
211  il_tab[0][i] = t;
212  il_tab[1][i] = rotl (t, 8);
213  il_tab[2][i] = rotl (t, 16);
214  il_tab[3][i] = rotl (t, 24);
215 
216  t = ((u32) ff_mult (14, p)) |
217  ((u32) ff_mult (9, p) << 8) |
218  ((u32) ff_mult (13, p) << 16) |
219  ((u32) ff_mult (11, p) << 24);
220 
221  it_tab[0][i] = t;
222  it_tab[1][i] = rotl (t, 8);
223  it_tab[2][i] = rotl (t, 16);
224  it_tab[3][i] = rotl (t, 24);
225  }
226 }
227 
228 #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
229 
230 #define imix_col(y,x) \
231  u = star_x(x); \
232  v = star_x(u); \
233  w = star_x(v); \
234  t = w ^ (x); \
235  (y) = u ^ v ^ w; \
236  (y) ^= rotr(u ^ t, 8) ^ \
237  rotr(v ^ t, 16) ^ \
238  rotr(t,24)
239 
240 /* initialise the key schedule from the user supplied key */
241 
242 #define loop4(i) \
243 { t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \
244  t ^= E_KEY[4 * i]; E_KEY[4 * i + 4] = t; \
245  t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t; \
246  t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t; \
247  t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t; \
248 }
249 
250 #define loop6(i) \
251 { t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \
252  t ^= E_KEY[6 * i]; E_KEY[6 * i + 6] = t; \
253  t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t; \
254  t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t; \
255  t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t; \
256  t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t; \
257  t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t; \
258 }
259 
260 #define loop8(i) \
261 { t = rotr(t, 8); ; t = ls_box(t) ^ rco_tab[i]; \
262  t ^= E_KEY[8 * i]; E_KEY[8 * i + 8] = t; \
263  t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t; \
264  t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t; \
265  t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t; \
266  t = E_KEY[8 * i + 4] ^ ls_box(t); \
267  E_KEY[8 * i + 12] = t; \
268  t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t; \
269  t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t; \
270  t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t; \
271 }
272 
273 static int
274 aes_set_key(void *ctx_arg, const u8 *in_key, unsigned int key_len, u32 *flags)
275 {
276  struct aes_ctx *ctx = ctx_arg;
277  u32 i, t, u, v, w;
278 
279  if (key_len != 16 && key_len != 24 && key_len != 32) {
280  *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
281  return -EINVAL;
282  }
283 
284  ctx->key_length = key_len;
285 
286  E_KEY[0] = u32_in (in_key);
287  E_KEY[1] = u32_in (in_key + 4);
288  E_KEY[2] = u32_in (in_key + 8);
289  E_KEY[3] = u32_in (in_key + 12);
290 
291  switch (key_len) {
292  case 16:
293  t = E_KEY[3];
294  for (i = 0; i < 10; ++i)
295  loop4 (i);
296  break;
297 
298  case 24:
299  E_KEY[4] = u32_in (in_key + 16);
300  t = E_KEY[5] = u32_in (in_key + 20);
301  for (i = 0; i < 8; ++i)
302  loop6 (i);
303  break;
304 
305  case 32:
306  E_KEY[4] = u32_in (in_key + 16);
307  E_KEY[5] = u32_in (in_key + 20);
308  E_KEY[6] = u32_in (in_key + 24);
309  t = E_KEY[7] = u32_in (in_key + 28);
310  for (i = 0; i < 7; ++i)
311  loop8 (i);
312  break;
313  }
314 
315  D_KEY[0] = E_KEY[0];
316  D_KEY[1] = E_KEY[1];
317  D_KEY[2] = E_KEY[2];
318  D_KEY[3] = E_KEY[3];
319 
320  for (i = 4; i < key_len + 24; ++i) {
321  imix_col (D_KEY[i], E_KEY[i]);
322  }
323 
324  return 0;
325 }
326 
327 /* encrypt a block of text */
328 
329 #define f_nround(bo, bi, k) \
330  f_rn(bo, bi, 0, k); \
331  f_rn(bo, bi, 1, k); \
332  f_rn(bo, bi, 2, k); \
333  f_rn(bo, bi, 3, k); \
334  k += 4
335 
336 #define f_lround(bo, bi, k) \
337  f_rl(bo, bi, 0, k); \
338  f_rl(bo, bi, 1, k); \
339  f_rl(bo, bi, 2, k); \
340  f_rl(bo, bi, 3, k)
341 
342 static void aes_encrypt(void *ctx_arg, u8 *out, const u8 *in)
343 {
344  const struct aes_ctx *ctx = ctx_arg;
345  u32 b0[4], b1[4];
346  const u32 *kp = E_KEY + 4;
347 
348  b0[0] = u32_in (in) ^ E_KEY[0];
349  b0[1] = u32_in (in + 4) ^ E_KEY[1];
350  b0[2] = u32_in (in + 8) ^ E_KEY[2];
351  b0[3] = u32_in (in + 12) ^ E_KEY[3];
352 
353  if (ctx->key_length > 24) {
354  f_nround (b1, b0, kp);
355  f_nround (b0, b1, kp);
356  }
357 
358  if (ctx->key_length > 16) {
359  f_nround (b1, b0, kp);
360  f_nround (b0, b1, kp);
361  }
362 
363  f_nround (b1, b0, kp);
364  f_nround (b0, b1, kp);
365  f_nround (b1, b0, kp);
366  f_nround (b0, b1, kp);
367  f_nround (b1, b0, kp);
368  f_nround (b0, b1, kp);
369  f_nround (b1, b0, kp);
370  f_nround (b0, b1, kp);
371  f_nround (b1, b0, kp);
372  f_lround (b0, b1, kp);
373 
374  u32_out (out, b0[0]);
375  u32_out (out + 4, b0[1]);
376  u32_out (out + 8, b0[2]);
377  u32_out (out + 12, b0[3]);
378 }
379 
380 /* decrypt a block of text */
381 
382 #define i_nround(bo, bi, k) \
383  i_rn(bo, bi, 0, k); \
384  i_rn(bo, bi, 1, k); \
385  i_rn(bo, bi, 2, k); \
386  i_rn(bo, bi, 3, k); \
387  k -= 4
388 
389 #define i_lround(bo, bi, k) \
390  i_rl(bo, bi, 0, k); \
391  i_rl(bo, bi, 1, k); \
392  i_rl(bo, bi, 2, k); \
393  i_rl(bo, bi, 3, k)
394 
395 static void aes_decrypt(void *ctx_arg, u8 *out, const u8 *in)
396 {
397  const struct aes_ctx *ctx = ctx_arg;
398  u32 b0[4], b1[4];
399  const int key_len = ctx->key_length;
400  const u32 *kp = D_KEY + key_len + 20;
401 
402  b0[0] = u32_in (in) ^ E_KEY[key_len + 24];
403  b0[1] = u32_in (in + 4) ^ E_KEY[key_len + 25];
404  b0[2] = u32_in (in + 8) ^ E_KEY[key_len + 26];
405  b0[3] = u32_in (in + 12) ^ E_KEY[key_len + 27];
406 
407  if (key_len > 24) {
408  i_nround (b1, b0, kp);
409  i_nround (b0, b1, kp);
410  }
411 
412  if (key_len > 16) {
413  i_nround (b1, b0, kp);
414  i_nround (b0, b1, kp);
415  }
416 
417  i_nround (b1, b0, kp);
418  i_nround (b0, b1, kp);
419  i_nround (b1, b0, kp);
420  i_nround (b0, b1, kp);
421  i_nround (b1, b0, kp);
422  i_nround (b0, b1, kp);
423  i_nround (b1, b0, kp);
424  i_nround (b0, b1, kp);
425  i_nround (b1, b0, kp);
426  i_lround (b0, b1, kp);
427 
428  u32_out (out, b0[0]);
429  u32_out (out + 4, b0[1]);
430  u32_out (out + 8, b0[2]);
431  u32_out (out + 12, b0[3]);
432 }
433 
434 
435 static struct crypto_alg aes_alg = {
436  .cra_name = "aes",
437  .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
438  .cra_blocksize = AES_BLOCK_SIZE,
439  .cra_ctxsize = sizeof(struct aes_ctx),
440  .cra_module = THIS_MODULE,
441  .cra_list = LIST_HEAD_INIT(aes_alg.cra_list),
442  .cra_u = {
443  .cipher = {
444  .cia_min_keysize = AES_MIN_KEY_SIZE,
445  .cia_max_keysize = AES_MAX_KEY_SIZE,
446  .cia_setkey = aes_set_key,
447  .cia_encrypt = aes_encrypt,
448  .cia_decrypt = aes_decrypt
449  }
450  }
451 };
452 
453 static int __init aes_init(void)
454 {
455  gen_tabs();
456  return crypto_register_alg(&aes_alg);
457 }
458 
459 static void __exit aes_fini(void)
460 {
461  crypto_unregister_alg(&aes_alg);
462 }
463 
464 module_init(aes_init);
465 module_exit(aes_fini);
466 
467 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
468 MODULE_LICENSE("Dual BSD/GPL");
469