Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
amdtp.c
Go to the documentation of this file.
1 /*
2  * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
3  * with Common Isochronous Packet (IEC 61883-1) headers
4  *
5  * Copyright (c) Clemens Ladisch <[email protected]>
6  * Licensed under the terms of the GNU General Public License, version 2.
7  */
8 
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/firewire.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <sound/pcm.h>
15 #include "amdtp.h"
16 
17 #define TICKS_PER_CYCLE 3072
18 #define CYCLES_PER_SECOND 8000
19 #define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND)
20 
21 #define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 µs */
22 
23 #define TAG_CIP 1
24 
25 #define CIP_EOH (1u << 31)
26 #define CIP_FMT_AM (0x10 << 24)
27 #define AMDTP_FDF_AM824 (0 << 19)
28 #define AMDTP_FDF_SFC_SHIFT 16
29 
30 /* TODO: make these configurable */
31 #define INTERRUPT_INTERVAL 16
32 #define QUEUE_LENGTH 48
33 
34 static void pcm_period_tasklet(unsigned long data);
35 
43  enum cip_out_flags flags)
44 {
45  if (flags != CIP_NONBLOCKING)
46  return -EINVAL;
47 
48  s->unit = fw_unit_get(unit);
49  s->flags = flags;
50  s->context = ERR_PTR(-1);
51  mutex_init(&s->mutex);
52  tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s);
53  s->packet_index = 0;
54 
55  return 0;
56 }
58 
64 {
65  WARN_ON(!IS_ERR(s->context));
66  mutex_destroy(&s->mutex);
67  fw_unit_put(s->unit);
68 }
70 
79 void amdtp_out_stream_set_rate(struct amdtp_out_stream *s, unsigned int rate)
80 {
81  static const struct {
82  unsigned int rate;
83  unsigned int syt_interval;
84  } rate_info[] = {
85  [CIP_SFC_32000] = { 32000, 8, },
86  [CIP_SFC_44100] = { 44100, 8, },
87  [CIP_SFC_48000] = { 48000, 8, },
88  [CIP_SFC_88200] = { 88200, 16, },
89  [CIP_SFC_96000] = { 96000, 16, },
90  [CIP_SFC_176400] = { 176400, 32, },
91  [CIP_SFC_192000] = { 192000, 32, },
92  };
93  unsigned int sfc;
94 
95  if (WARN_ON(!IS_ERR(s->context)))
96  return;
97 
98  for (sfc = 0; sfc < ARRAY_SIZE(rate_info); ++sfc)
99  if (rate_info[sfc].rate == rate) {
100  s->sfc = sfc;
101  s->syt_interval = rate_info[sfc].syt_interval;
102  return;
103  }
104  WARN_ON(1);
105 }
107 
117 {
118  static const unsigned int max_data_blocks[] = {
119  [CIP_SFC_32000] = 4,
120  [CIP_SFC_44100] = 6,
121  [CIP_SFC_48000] = 6,
122  [CIP_SFC_88200] = 12,
123  [CIP_SFC_96000] = 12,
124  [CIP_SFC_176400] = 23,
125  [CIP_SFC_192000] = 24,
126  };
127 
130 
131  return 8 + max_data_blocks[s->sfc] * 4 * s->data_block_quadlets;
132 }
134 
135 static void amdtp_write_s16(struct amdtp_out_stream *s,
136  struct snd_pcm_substream *pcm,
137  __be32 *buffer, unsigned int frames);
138 static void amdtp_write_s32(struct amdtp_out_stream *s,
139  struct snd_pcm_substream *pcm,
140  __be32 *buffer, unsigned int frames);
141 
152 {
153  if (WARN_ON(!IS_ERR(s->context)))
154  return;
155 
156  switch (format) {
157  default:
158  WARN_ON(1);
159  /* fall through */
160  case SNDRV_PCM_FORMAT_S16:
161  s->transfer_samples = amdtp_write_s16;
162  break;
163  case SNDRV_PCM_FORMAT_S32:
164  s->transfer_samples = amdtp_write_s32;
165  break;
166  }
167 }
169 
177 {
179  s->pcm_buffer_pointer = 0;
180  s->pcm_period_pointer = 0;
181  s->pointer_flush = true;
182 }
184 
185 static unsigned int calculate_data_blocks(struct amdtp_out_stream *s)
186 {
187  unsigned int phase, data_blocks;
188 
189  if (!cip_sfc_is_base_44100(s->sfc)) {
190  /* Sample_rate / 8000 is an integer, and precomputed. */
191  data_blocks = s->data_block_state;
192  } else {
193  phase = s->data_block_state;
194 
195  /*
196  * This calculates the number of data blocks per packet so that
197  * 1) the overall rate is correct and exactly synchronized to
198  * the bus clock, and
199  * 2) packets with a rounded-up number of blocks occur as early
200  * as possible in the sequence (to prevent underruns of the
201  * device's buffer).
202  */
203  if (s->sfc == CIP_SFC_44100)
204  /* 6 6 5 6 5 6 5 ... */
205  data_blocks = 5 + ((phase & 1) ^
206  (phase == 0 || phase >= 40));
207  else
208  /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
209  data_blocks = 11 * (s->sfc >> 1) + (phase == 0);
210  if (++phase >= (80 >> (s->sfc >> 1)))
211  phase = 0;
212  s->data_block_state = phase;
213  }
214 
215  return data_blocks;
216 }
217 
218 static unsigned int calculate_syt(struct amdtp_out_stream *s,
219  unsigned int cycle)
220 {
221  unsigned int syt_offset, phase, index, syt;
222 
223  if (s->last_syt_offset < TICKS_PER_CYCLE) {
224  if (!cip_sfc_is_base_44100(s->sfc))
225  syt_offset = s->last_syt_offset + s->syt_offset_state;
226  else {
227  /*
228  * The time, in ticks, of the n'th SYT_INTERVAL sample is:
229  * n * SYT_INTERVAL * 24576000 / sample_rate
230  * Modulo TICKS_PER_CYCLE, the difference between successive
231  * elements is about 1386.23. Rounding the results of this
232  * formula to the SYT precision results in a sequence of
233  * differences that begins with:
234  * 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
235  * This code generates _exactly_ the same sequence.
236  */
237  phase = s->syt_offset_state;
238  index = phase % 13;
239  syt_offset = s->last_syt_offset;
240  syt_offset += 1386 + ((index && !(index & 3)) ||
241  phase == 146);
242  if (++phase >= 147)
243  phase = 0;
244  s->syt_offset_state = phase;
245  }
246  } else
247  syt_offset = s->last_syt_offset - TICKS_PER_CYCLE;
248  s->last_syt_offset = syt_offset;
249 
250  if (syt_offset < TICKS_PER_CYCLE) {
251  syt_offset += TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
252  syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12;
253  syt += syt_offset % TICKS_PER_CYCLE;
254 
255  return syt & 0xffff;
256  } else {
257  return 0xffff; /* no info */
258  }
259 }
260 
261 static void amdtp_write_s32(struct amdtp_out_stream *s,
262  struct snd_pcm_substream *pcm,
263  __be32 *buffer, unsigned int frames)
264 {
265  struct snd_pcm_runtime *runtime = pcm->runtime;
266  unsigned int channels, remaining_frames, frame_step, i, c;
267  const u32 *src;
268 
269  channels = s->pcm_channels;
270  src = (void *)runtime->dma_area +
271  s->pcm_buffer_pointer * (runtime->frame_bits / 8);
272  remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
273  frame_step = s->data_block_quadlets - channels;
274 
275  for (i = 0; i < frames; ++i) {
276  for (c = 0; c < channels; ++c) {
277  *buffer = cpu_to_be32((*src >> 8) | 0x40000000);
278  src++;
279  buffer++;
280  }
281  buffer += frame_step;
282  if (--remaining_frames == 0)
283  src = (void *)runtime->dma_area;
284  }
285 }
286 
287 static void amdtp_write_s16(struct amdtp_out_stream *s,
288  struct snd_pcm_substream *pcm,
289  __be32 *buffer, unsigned int frames)
290 {
291  struct snd_pcm_runtime *runtime = pcm->runtime;
292  unsigned int channels, remaining_frames, frame_step, i, c;
293  const u16 *src;
294 
295  channels = s->pcm_channels;
296  src = (void *)runtime->dma_area +
297  s->pcm_buffer_pointer * (runtime->frame_bits / 8);
298  remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
299  frame_step = s->data_block_quadlets - channels;
300 
301  for (i = 0; i < frames; ++i) {
302  for (c = 0; c < channels; ++c) {
303  *buffer = cpu_to_be32((*src << 8) | 0x40000000);
304  src++;
305  buffer++;
306  }
307  buffer += frame_step;
308  if (--remaining_frames == 0)
309  src = (void *)runtime->dma_area;
310  }
311 }
312 
313 static void amdtp_fill_pcm_silence(struct amdtp_out_stream *s,
314  __be32 *buffer, unsigned int frames)
315 {
316  unsigned int i, c;
317 
318  for (i = 0; i < frames; ++i) {
319  for (c = 0; c < s->pcm_channels; ++c)
320  buffer[c] = cpu_to_be32(0x40000000);
321  buffer += s->data_block_quadlets;
322  }
323 }
324 
325 static void amdtp_fill_midi(struct amdtp_out_stream *s,
326  __be32 *buffer, unsigned int frames)
327 {
328  unsigned int i;
329 
330  for (i = 0; i < frames; ++i)
331  buffer[s->pcm_channels + i * s->data_block_quadlets] =
332  cpu_to_be32(0x80000000);
333 }
334 
335 static void queue_out_packet(struct amdtp_out_stream *s, unsigned int cycle)
336 {
337  __be32 *buffer;
338  unsigned int index, data_blocks, syt, ptr;
339  struct snd_pcm_substream *pcm;
340  struct fw_iso_packet packet;
341  int err;
342 
343  if (s->packet_index < 0)
344  return;
345  index = s->packet_index;
346 
347  data_blocks = calculate_data_blocks(s);
348  syt = calculate_syt(s, cycle);
349 
350  buffer = s->buffer.packets[index].buffer;
352  (s->data_block_quadlets << 16) |
353  s->data_block_counter);
355  (s->sfc << AMDTP_FDF_SFC_SHIFT) | syt);
356  buffer += 2;
357 
358  pcm = ACCESS_ONCE(s->pcm);
359  if (pcm)
360  s->transfer_samples(s, pcm, buffer, data_blocks);
361  else
362  amdtp_fill_pcm_silence(s, buffer, data_blocks);
363  if (s->midi_ports)
364  amdtp_fill_midi(s, buffer, data_blocks);
365 
366  s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff;
367 
368  packet.payload_length = 8 + data_blocks * 4 * s->data_block_quadlets;
369  packet.interrupt = IS_ALIGNED(index + 1, INTERRUPT_INTERVAL);
370  packet.skip = 0;
371  packet.tag = TAG_CIP;
372  packet.sy = 0;
373  packet.header_length = 0;
374 
375  err = fw_iso_context_queue(s->context, &packet, &s->buffer.iso_buffer,
376  s->buffer.packets[index].offset);
377  if (err < 0) {
378  dev_err(&s->unit->device, "queueing error: %d\n", err);
379  s->packet_index = -1;
381  return;
382  }
383 
384  if (++index >= QUEUE_LENGTH)
385  index = 0;
386  s->packet_index = index;
387 
388  if (pcm) {
389  ptr = s->pcm_buffer_pointer + data_blocks;
390  if (ptr >= pcm->runtime->buffer_size)
391  ptr -= pcm->runtime->buffer_size;
393 
394  s->pcm_period_pointer += data_blocks;
395  if (s->pcm_period_pointer >= pcm->runtime->period_size) {
396  s->pcm_period_pointer -= pcm->runtime->period_size;
397  s->pointer_flush = false;
398  tasklet_hi_schedule(&s->period_tasklet);
399  }
400  }
401 }
402 
403 static void pcm_period_tasklet(unsigned long data)
404 {
405  struct amdtp_out_stream *s = (void *)data;
406  struct snd_pcm_substream *pcm = ACCESS_ONCE(s->pcm);
407 
408  if (pcm)
410 }
411 
412 static void out_packet_callback(struct fw_iso_context *context, u32 cycle,
413  size_t header_length, void *header, void *data)
414 {
415  struct amdtp_out_stream *s = data;
416  unsigned int i, packets = header_length / 4;
417 
418  /*
419  * Compute the cycle of the last queued packet.
420  * (We need only the four lowest bits for the SYT, so we can ignore
421  * that bits 0-11 must wrap around at 3072.)
422  */
423  cycle += QUEUE_LENGTH - packets;
424 
425  for (i = 0; i < packets; ++i)
426  queue_out_packet(s, ++cycle);
428 }
429 
430 static int queue_initial_skip_packets(struct amdtp_out_stream *s)
431 {
432  struct fw_iso_packet skip_packet = {
433  .skip = 1,
434  };
435  unsigned int i;
436  int err;
437 
438  for (i = 0; i < QUEUE_LENGTH; ++i) {
439  skip_packet.interrupt = IS_ALIGNED(s->packet_index + 1,
441  err = fw_iso_context_queue(s->context, &skip_packet, NULL, 0);
442  if (err < 0)
443  return err;
444  if (++s->packet_index >= QUEUE_LENGTH)
445  s->packet_index = 0;
446  }
447 
448  return 0;
449 }
450 
462 int amdtp_out_stream_start(struct amdtp_out_stream *s, int channel, int speed)
463 {
464  static const struct {
465  unsigned int data_block;
466  unsigned int syt_offset;
467  } initial_state[] = {
468  [CIP_SFC_32000] = { 4, 3072 },
469  [CIP_SFC_48000] = { 6, 1024 },
470  [CIP_SFC_96000] = { 12, 1024 },
471  [CIP_SFC_192000] = { 24, 1024 },
472  [CIP_SFC_44100] = { 0, 67 },
473  [CIP_SFC_88200] = { 0, 67 },
474  [CIP_SFC_176400] = { 0, 67 },
475  };
476  int err;
477 
478  mutex_lock(&s->mutex);
479 
480  if (WARN_ON(!IS_ERR(s->context) ||
481  (!s->pcm_channels && !s->midi_ports))) {
482  err = -EBADFD;
483  goto err_unlock;
484  }
485 
486  s->data_block_state = initial_state[s->sfc].data_block;
487  s->syt_offset_state = initial_state[s->sfc].syt_offset;
489 
490  err = iso_packets_buffer_init(&s->buffer, s->unit, QUEUE_LENGTH,
492  DMA_TO_DEVICE);
493  if (err < 0)
494  goto err_unlock;
495 
496  s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
498  channel, speed, 0,
499  out_packet_callback, s);
500  if (IS_ERR(s->context)) {
501  err = PTR_ERR(s->context);
502  if (err == -EBUSY)
503  dev_err(&s->unit->device,
504  "no free output stream on this controller\n");
505  goto err_buffer;
506  }
507 
509 
510  s->packet_index = 0;
511  s->data_block_counter = 0;
512  err = queue_initial_skip_packets(s);
513  if (err < 0)
514  goto err_context;
515 
516  err = fw_iso_context_start(s->context, -1, 0, 0);
517  if (err < 0)
518  goto err_context;
519 
520  mutex_unlock(&s->mutex);
521 
522  return 0;
523 
524 err_context:
526  s->context = ERR_PTR(-1);
527 err_buffer:
529 err_unlock:
530  mutex_unlock(&s->mutex);
531 
532  return err;
533 }
535 
543 {
544  /* this optimization is allowed to be racy */
545  if (s->pointer_flush)
547  else
548  s->pointer_flush = true;
549 
550  return ACCESS_ONCE(s->pcm_buffer_pointer);
551 }
553 
559 {
561  (fw_parent_device(s->unit)->card->node_id & 0x3f) << 24;
562 }
564 
573 {
574  mutex_lock(&s->mutex);
575 
576  if (IS_ERR(s->context)) {
577  mutex_unlock(&s->mutex);
578  return;
579  }
580 
584  s->context = ERR_PTR(-1);
586 
587  mutex_unlock(&s->mutex);
588 }
590 
599 {
600  struct snd_pcm_substream *pcm;
601 
602  pcm = ACCESS_ONCE(s->pcm);
603  if (pcm) {
604  snd_pcm_stream_lock_irq(pcm);
605  if (snd_pcm_running(pcm))
607  snd_pcm_stream_unlock_irq(pcm);
608  }
609 }