Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
aptina-pll.c
Go to the documentation of this file.
1 /*
2  * Aptina Sensor PLL Configuration
3  *
4  * Copyright (C) 2012 Laurent Pinchart <[email protected]>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * version 2 as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13  * General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
18  * 02110-1301 USA
19  */
20 
21 #include <linux/device.h>
22 #include <linux/gcd.h>
23 #include <linux/kernel.h>
24 #include <linux/lcm.h>
25 #include <linux/module.h>
26 
27 #include "aptina-pll.h"
28 
30  const struct aptina_pll_limits *limits,
31  struct aptina_pll *pll)
32 {
33  unsigned int mf_min;
34  unsigned int mf_max;
35  unsigned int p1_min;
36  unsigned int p1_max;
37  unsigned int p1;
38  unsigned int div;
39 
40  dev_dbg(dev, "PLL: ext clock %u pix clock %u\n",
41  pll->ext_clock, pll->pix_clock);
42 
43  if (pll->ext_clock < limits->ext_clock_min ||
44  pll->ext_clock > limits->ext_clock_max) {
45  dev_err(dev, "pll: invalid external clock frequency.\n");
46  return -EINVAL;
47  }
48 
49  if (pll->pix_clock == 0 || pll->pix_clock > limits->pix_clock_max) {
50  dev_err(dev, "pll: invalid pixel clock frequency.\n");
51  return -EINVAL;
52  }
53 
54  /* Compute the multiplier M and combined N*P1 divisor. */
55  div = gcd(pll->pix_clock, pll->ext_clock);
56  pll->m = pll->pix_clock / div;
57  div = pll->ext_clock / div;
58 
59  /* We now have the smallest M and N*P1 values that will result in the
60  * desired pixel clock frequency, but they might be out of the valid
61  * range. Compute the factor by which we should multiply them given the
62  * following constraints:
63  *
64  * - minimum/maximum multiplier
65  * - minimum/maximum multiplier output clock frequency assuming the
66  * minimum/maximum N value
67  * - minimum/maximum combined N*P1 divisor
68  */
69  mf_min = DIV_ROUND_UP(limits->m_min, pll->m);
70  mf_min = max(mf_min, limits->out_clock_min /
71  (pll->ext_clock / limits->n_min * pll->m));
72  mf_min = max(mf_min, limits->n_min * limits->p1_min / div);
73  mf_max = limits->m_max / pll->m;
74  mf_max = min(mf_max, limits->out_clock_max /
75  (pll->ext_clock / limits->n_max * pll->m));
76  mf_max = min(mf_max, DIV_ROUND_UP(limits->n_max * limits->p1_max, div));
77 
78  dev_dbg(dev, "pll: mf min %u max %u\n", mf_min, mf_max);
79  if (mf_min > mf_max) {
80  dev_err(dev, "pll: no valid combined N*P1 divisor.\n");
81  return -EINVAL;
82  }
83 
84  /*
85  * We're looking for the highest acceptable P1 value for which a
86  * multiplier factor MF exists that fulfills the following conditions:
87  *
88  * 1. p1 is in the [p1_min, p1_max] range given by the limits and is
89  * even
90  * 2. mf is in the [mf_min, mf_max] range computed above
91  * 3. div * mf is a multiple of p1, in order to compute
92  * n = div * mf / p1
93  * m = pll->m * mf
94  * 4. the internal clock frequency, given by ext_clock / n, is in the
95  * [int_clock_min, int_clock_max] range given by the limits
96  * 5. the output clock frequency, given by ext_clock / n * m, is in the
97  * [out_clock_min, out_clock_max] range given by the limits
98  *
99  * The first naive approach is to iterate over all p1 values acceptable
100  * according to (1) and all mf values acceptable according to (2), and
101  * stop at the first combination that fulfills (3), (4) and (5). This
102  * has a O(n^2) complexity.
103  *
104  * Instead of iterating over all mf values in the [mf_min, mf_max] range
105  * we can compute the mf increment between two acceptable values
106  * according to (3) with
107  *
108  * mf_inc = p1 / gcd(div, p1) (6)
109  *
110  * and round the minimum up to the nearest multiple of mf_inc. This will
111  * restrict the number of mf values to be checked.
112  *
113  * Furthermore, conditions (4) and (5) only restrict the range of
114  * acceptable p1 and mf values by modifying the minimum and maximum
115  * limits. (5) can be expressed as
116  *
117  * ext_clock / (div * mf / p1) * m * mf >= out_clock_min
118  * ext_clock / (div * mf / p1) * m * mf <= out_clock_max
119  *
120  * or
121  *
122  * p1 >= out_clock_min * div / (ext_clock * m) (7)
123  * p1 <= out_clock_max * div / (ext_clock * m)
124  *
125  * Similarly, (4) can be expressed as
126  *
127  * mf >= ext_clock * p1 / (int_clock_max * div) (8)
128  * mf <= ext_clock * p1 / (int_clock_min * div)
129  *
130  * We can thus iterate over the restricted p1 range defined by the
131  * combination of (1) and (7), and then compute the restricted mf range
132  * defined by the combination of (2), (6) and (8). If the resulting mf
133  * range is not empty, any value in the mf range is acceptable. We thus
134  * select the mf lwoer bound and the corresponding p1 value.
135  */
136  if (limits->p1_min == 0) {
137  dev_err(dev, "pll: P1 minimum value must be >0.\n");
138  return -EINVAL;
139  }
140 
141  p1_min = max(limits->p1_min, DIV_ROUND_UP(limits->out_clock_min * div,
142  pll->ext_clock * pll->m));
143  p1_max = min(limits->p1_max, limits->out_clock_max * div /
144  (pll->ext_clock * pll->m));
145 
146  for (p1 = p1_max & ~1; p1 >= p1_min; p1 -= 2) {
147  unsigned int mf_inc = p1 / gcd(div, p1);
148  unsigned int mf_high;
149  unsigned int mf_low;
150 
151  mf_low = roundup(max(mf_min, DIV_ROUND_UP(pll->ext_clock * p1,
152  limits->int_clock_max * div)), mf_inc);
153  mf_high = min(mf_max, pll->ext_clock * p1 /
154  (limits->int_clock_min * div));
155 
156  if (mf_low > mf_high)
157  continue;
158 
159  pll->n = div * mf_low / p1;
160  pll->m *= mf_low;
161  pll->p1 = p1;
162  dev_dbg(dev, "PLL: N %u M %u P1 %u\n", pll->n, pll->m, pll->p1);
163  return 0;
164  }
165 
166  dev_err(dev, "pll: no valid N and P1 divisors found.\n");
167  return -EINVAL;
168 }
170 
171 MODULE_DESCRIPTION("Aptina PLL Helpers");
172 MODULE_AUTHOR("Laurent Pinchart <[email protected]>");
173 MODULE_LICENSE("GPL v2");