Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
process.c
Go to the documentation of this file.
1 /*
2  * linux/arch/alpha/kernel/process.c
3  *
4  * Copyright (C) 1995 Linus Torvalds
5  */
6 
7 /*
8  * This file handles the architecture-dependent parts of process handling.
9  */
10 
11 #include <linux/errno.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/smp.h>
17 #include <linux/stddef.h>
18 #include <linux/unistd.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/time.h>
22 #include <linux/major.h>
23 #include <linux/stat.h>
24 #include <linux/vt.h>
25 #include <linux/mman.h>
26 #include <linux/elfcore.h>
27 #include <linux/reboot.h>
28 #include <linux/tty.h>
29 #include <linux/console.h>
30 #include <linux/slab.h>
31 #include <linux/rcupdate.h>
32 
33 #include <asm/reg.h>
34 #include <asm/uaccess.h>
35 #include <asm/io.h>
36 #include <asm/pgtable.h>
37 #include <asm/hwrpb.h>
38 #include <asm/fpu.h>
39 
40 #include "proto.h"
41 #include "pci_impl.h"
42 
43 /*
44  * Power off function, if any
45  */
48 
49 void
50 cpu_idle(void)
51 {
52  current_thread_info()->status |= TS_POLLING;
53 
54  while (1) {
55  /* FIXME -- EV6 and LCA45 know how to power down
56  the CPU. */
57 
59  while (!need_resched())
60  cpu_relax();
61 
62  rcu_idle_exit();
64  }
65 }
66 
67 
68 struct halt_info {
69  int mode;
70  char *restart_cmd;
71 };
72 
73 static void
74 common_shutdown_1(void *generic_ptr)
75 {
76  struct halt_info *how = (struct halt_info *)generic_ptr;
77  struct percpu_struct *cpup;
78  unsigned long *pflags, flags;
79  int cpuid = smp_processor_id();
80 
81  /* No point in taking interrupts anymore. */
83 
84  cpup = (struct percpu_struct *)
85  ((unsigned long)hwrpb + hwrpb->processor_offset
86  + hwrpb->processor_size * cpuid);
87  pflags = &cpup->flags;
88  flags = *pflags;
89 
90  /* Clear reason to "default"; clear "bootstrap in progress". */
91  flags &= ~0x00ff0001UL;
92 
93 #ifdef CONFIG_SMP
94  /* Secondaries halt here. */
95  if (cpuid != boot_cpuid) {
96  flags |= 0x00040000UL; /* "remain halted" */
97  *pflags = flags;
98  set_cpu_present(cpuid, false);
99  set_cpu_possible(cpuid, false);
100  halt();
101  }
102 #endif
103 
104  if (how->mode == LINUX_REBOOT_CMD_RESTART) {
105  if (!how->restart_cmd) {
106  flags |= 0x00020000UL; /* "cold bootstrap" */
107  } else {
108  /* For SRM, we could probably set environment
109  variables to get this to work. We'd have to
110  delay this until after srm_paging_stop unless
111  we ever got srm_fixup working.
112 
113  At the moment, SRM will use the last boot device,
114  but the file and flags will be the defaults, when
115  doing a "warm" bootstrap. */
116  flags |= 0x00030000UL; /* "warm bootstrap" */
117  }
118  } else {
119  flags |= 0x00040000UL; /* "remain halted" */
120  }
121  *pflags = flags;
122 
123 #ifdef CONFIG_SMP
124  /* Wait for the secondaries to halt. */
125  set_cpu_present(boot_cpuid, false);
127  while (cpumask_weight(cpu_present_mask))
128  barrier();
129 #endif
130 
131  /* If booted from SRM, reset some of the original environment. */
132  if (alpha_using_srm) {
133 #ifdef CONFIG_DUMMY_CONSOLE
134  /* If we've gotten here after SysRq-b, leave interrupt
135  context before taking over the console. */
136  if (in_interrupt())
137  irq_exit();
138  /* This has the effect of resetting the VGA video origin. */
140 #endif
142  set_hae(srm_hae);
143  }
144 
145  if (alpha_mv.kill_arch)
146  alpha_mv.kill_arch(how->mode);
147 
148  if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) {
149  /* Unfortunately, since MILO doesn't currently understand
150  the hwrpb bits above, we can't reliably halt the
151  processor and keep it halted. So just loop. */
152  return;
153  }
154 
155  if (alpha_using_srm)
156  srm_paging_stop();
157 
158  halt();
159 }
160 
161 static void
162 common_shutdown(int mode, char *restart_cmd)
163 {
164  struct halt_info args;
165  args.mode = mode;
166  args.restart_cmd = restart_cmd;
167  on_each_cpu(common_shutdown_1, &args, 0);
168 }
169 
170 void
172 {
173  common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd);
174 }
175 
176 
177 void
179 {
180  common_shutdown(LINUX_REBOOT_CMD_HALT, NULL);
181 }
182 
183 
184 void
186 {
187  common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL);
188 }
189 
190 
191 /* Used by sysrq-p, among others. I don't believe r9-r15 are ever
192  saved in the context it's used. */
193 
194 void
196 {
197  dik_show_regs(regs, NULL);
198 }
199 
200 /*
201  * Re-start a thread when doing execve()
202  */
203 void
204 start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
205 {
206  regs->pc = pc;
207  regs->ps = 8;
208  wrusp(sp);
209 }
211 
212 /*
213  * Free current thread data structures etc..
214  */
215 void
217 {
218 }
219 
220 void
222 {
223  /* Arrange for each exec'ed process to start off with a clean slate
224  with respect to the FPU. This is all exceptions disabled. */
225  current_thread_info()->ieee_state = 0;
226  wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0));
227 
228  /* Clean slate for TLS. */
229  current_thread_info()->pcb.unique = 0;
230 }
231 
232 void
233 release_thread(struct task_struct *dead_task)
234 {
235 }
236 
237 /*
238  * "alpha_clone()".. By the time we get here, the
239  * non-volatile registers have also been saved on the
240  * stack. We do some ugly pointer stuff here.. (see
241  * also copy_thread)
242  *
243  * Notice that "fork()" is implemented in terms of clone,
244  * with parameters (SIGCHLD, 0).
245  */
246 int
247 alpha_clone(unsigned long clone_flags, unsigned long usp,
248  int __user *parent_tid, int __user *child_tid,
249  unsigned long tls_value, struct pt_regs *regs)
250 {
251  if (!usp)
252  usp = rdusp();
253 
254  return do_fork(clone_flags, usp, regs, 0, parent_tid, child_tid);
255 }
256 
257 int
259 {
260  return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(),
261  regs, 0, NULL, NULL);
262 }
263 
264 /*
265  * Copy an alpha thread..
266  */
267 
268 int
269 copy_thread(unsigned long clone_flags, unsigned long usp,
270  unsigned long arg,
271  struct task_struct * p, struct pt_regs * regs)
272 {
273  extern void ret_from_fork(void);
274  extern void ret_from_kernel_thread(void);
275 
276  struct thread_info *childti = task_thread_info(p);
277  struct pt_regs *childregs = task_pt_regs(p);
278  struct switch_stack *childstack, *stack;
279  unsigned long settls;
280 
281  childstack = ((struct switch_stack *) childregs) - 1;
282  if (unlikely(!regs)) {
283  /* kernel thread */
284  memset(childstack, 0,
285  sizeof(struct switch_stack) + sizeof(struct pt_regs));
286  childstack->r26 = (unsigned long) ret_from_kernel_thread;
287  childstack->r9 = usp; /* function */
288  childstack->r10 = arg;
289  childregs->hae = alpha_mv.hae_cache,
290  childti->pcb.usp = 0;
291  childti->pcb.ksp = (unsigned long) childstack;
292  childti->pcb.flags = 1; /* set FEN, clear everything else */
293  return 0;
294  }
295  *childregs = *regs;
296  settls = regs->r20;
297  childregs->r0 = 0;
298  childregs->r19 = 0;
299  childregs->r20 = 1; /* OSF/1 has some strange fork() semantics. */
300  regs->r20 = 0;
301  stack = ((struct switch_stack *) regs) - 1;
302  *childstack = *stack;
303  childstack->r26 = (unsigned long) ret_from_fork;
304  childti->pcb.usp = usp;
305  childti->pcb.ksp = (unsigned long) childstack;
306  childti->pcb.flags = 1; /* set FEN, clear everything else */
307 
308  /* Set a new TLS for the child thread? Peek back into the
309  syscall arguments that we saved on syscall entry. Oops,
310  except we'd have clobbered it with the parent/child set
311  of r20. Read the saved copy. */
312  /* Note: if CLONE_SETTLS is not set, then we must inherit the
313  value from the parent, which will have been set by the block
314  copy in dup_task_struct. This is non-intuitive, but is
315  required for proper operation in the case of a threaded
316  application calling fork. */
317  if (clone_flags & CLONE_SETTLS)
318  childti->pcb.unique = settls;
319 
320  return 0;
321 }
322 
323 /*
324  * Fill in the user structure for a ELF core dump.
325  */
326 void
328 {
329  /* switch stack follows right below pt_regs: */
330  struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
331 
332  dest[ 0] = pt->r0;
333  dest[ 1] = pt->r1;
334  dest[ 2] = pt->r2;
335  dest[ 3] = pt->r3;
336  dest[ 4] = pt->r4;
337  dest[ 5] = pt->r5;
338  dest[ 6] = pt->r6;
339  dest[ 7] = pt->r7;
340  dest[ 8] = pt->r8;
341  dest[ 9] = sw->r9;
342  dest[10] = sw->r10;
343  dest[11] = sw->r11;
344  dest[12] = sw->r12;
345  dest[13] = sw->r13;
346  dest[14] = sw->r14;
347  dest[15] = sw->r15;
348  dest[16] = pt->r16;
349  dest[17] = pt->r17;
350  dest[18] = pt->r18;
351  dest[19] = pt->r19;
352  dest[20] = pt->r20;
353  dest[21] = pt->r21;
354  dest[22] = pt->r22;
355  dest[23] = pt->r23;
356  dest[24] = pt->r24;
357  dest[25] = pt->r25;
358  dest[26] = pt->r26;
359  dest[27] = pt->r27;
360  dest[28] = pt->r28;
361  dest[29] = pt->gp;
362  dest[30] = ti == current_thread_info() ? rdusp() : ti->pcb.usp;
363  dest[31] = pt->pc;
364 
365  /* Once upon a time this was the PS value. Which is stupid
366  since that is always 8 for usermode. Usurped for the more
367  useful value of the thread's UNIQUE field. */
368  dest[32] = ti->pcb.unique;
369 }
371 
372 int
374 {
375  dump_elf_thread(dest, task_pt_regs(task), task_thread_info(task));
376  return 1;
377 }
379 
380 int
382 {
383  struct switch_stack *sw = (struct switch_stack *)task_pt_regs(task) - 1;
384  memcpy(dest, sw->fp, 32 * 8);
385  return 1;
386 }
388 
389 /*
390  * Return saved PC of a blocked thread. This assumes the frame
391  * pointer is the 6th saved long on the kernel stack and that the
392  * saved return address is the first long in the frame. This all
393  * holds provided the thread blocked through a call to schedule() ($15
394  * is the frame pointer in schedule() and $15 is saved at offset 48 by
395  * entry.S:do_switch_stack).
396  *
397  * Under heavy swap load I've seen this lose in an ugly way. So do
398  * some extra sanity checking on the ranges we expect these pointers
399  * to be in so that we can fail gracefully. This is just for ps after
400  * all. -- r~
401  */
402 
403 unsigned long
405 {
406  unsigned long base = (unsigned long)task_stack_page(t);
407  unsigned long fp, sp = task_thread_info(t)->pcb.ksp;
408 
409  if (sp > base && sp+6*8 < base + 16*1024) {
410  fp = ((unsigned long*)sp)[6];
411  if (fp > sp && fp < base + 16*1024)
412  return *(unsigned long *)fp;
413  }
414 
415  return 0;
416 }
417 
418 unsigned long
420 {
421  unsigned long schedule_frame;
422  unsigned long pc;
423  if (!p || p == current || p->state == TASK_RUNNING)
424  return 0;
425  /*
426  * This one depends on the frame size of schedule(). Do a
427  * "disass schedule" in gdb to find the frame size. Also, the
428  * code assumes that sleep_on() follows immediately after
429  * interruptible_sleep_on() and that add_timer() follows
430  * immediately after interruptible_sleep(). Ugly, isn't it?
431  * Maybe adding a wchan field to task_struct would be better,
432  * after all...
433  */
434 
435  pc = thread_saved_pc(p);
436  if (in_sched_functions(pc)) {
437  schedule_frame = ((unsigned long *)task_thread_info(p)->pcb.ksp)[6];
438  return ((unsigned long *)schedule_frame)[12];
439  }
440  return pc;
441 }