Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ptrace.c
Go to the documentation of this file.
1 /* ptrace.c */
2 /* By Ross Biro 1/23/92 */
3 /* edited by Linus Torvalds */
4 /* mangled further by Bob Manson ([email protected]) */
5 /* more mutilation by David Mosberger ([email protected]) */
6 
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/smp.h>
11 #include <linux/errno.h>
12 #include <linux/ptrace.h>
13 #include <linux/user.h>
14 #include <linux/security.h>
15 #include <linux/signal.h>
16 #include <linux/tracehook.h>
17 
18 #include <asm/uaccess.h>
19 #include <asm/pgtable.h>
20 #include <asm/fpu.h>
21 
22 #include "proto.h"
23 
24 #define DEBUG DBG_MEM
25 #undef DEBUG
26 
27 #ifdef DEBUG
28 enum {
29  DBG_MEM = (1<<0),
30  DBG_BPT = (1<<1),
31  DBG_MEM_ALL = (1<<2)
32 };
33 #define DBG(fac,args) {if ((fac) & DEBUG) printk args;}
34 #else
35 #define DBG(fac,args)
36 #endif
37 
38 #define BREAKINST 0x00000080 /* call_pal bpt */
39 
40 /*
41  * does not yet catch signals sent when the child dies.
42  * in exit.c or in signal.c.
43  */
44 
45 /*
46  * Processes always block with the following stack-layout:
47  *
48  * +================================+ <---- task + 2*PAGE_SIZE
49  * | PALcode saved frame (ps, pc, | ^
50  * | gp, a0, a1, a2) | |
51  * +================================+ | struct pt_regs
52  * | | |
53  * | frame generated by SAVE_ALL | |
54  * | | v
55  * +================================+
56  * | | ^
57  * | frame saved by do_switch_stack | | struct switch_stack
58  * | | v
59  * +================================+
60  */
61 
62 /*
63  * The following table maps a register index into the stack offset at
64  * which the register is saved. Register indices are 0-31 for integer
65  * regs, 32-63 for fp regs, and 64 for the pc. Notice that sp and
66  * zero have no stack-slot and need to be treated specially (see
67  * get_reg/put_reg below).
68  */
69 enum {
70  REG_R0 = 0, REG_F0 = 32, REG_FPCR = 63, REG_PC = 64
71 };
72 
73 #define PT_REG(reg) \
74  (PAGE_SIZE*2 - sizeof(struct pt_regs) + offsetof(struct pt_regs, reg))
75 
76 #define SW_REG(reg) \
77  (PAGE_SIZE*2 - sizeof(struct pt_regs) - sizeof(struct switch_stack) \
78  + offsetof(struct switch_stack, reg))
79 
80 static int regoff[] = {
81  PT_REG( r0), PT_REG( r1), PT_REG( r2), PT_REG( r3),
82  PT_REG( r4), PT_REG( r5), PT_REG( r6), PT_REG( r7),
83  PT_REG( r8), SW_REG( r9), SW_REG( r10), SW_REG( r11),
84  SW_REG( r12), SW_REG( r13), SW_REG( r14), SW_REG( r15),
85  PT_REG( r16), PT_REG( r17), PT_REG( r18), PT_REG( r19),
86  PT_REG( r20), PT_REG( r21), PT_REG( r22), PT_REG( r23),
87  PT_REG( r24), PT_REG( r25), PT_REG( r26), PT_REG( r27),
88  PT_REG( r28), PT_REG( gp), -1, -1,
89  SW_REG(fp[ 0]), SW_REG(fp[ 1]), SW_REG(fp[ 2]), SW_REG(fp[ 3]),
90  SW_REG(fp[ 4]), SW_REG(fp[ 5]), SW_REG(fp[ 6]), SW_REG(fp[ 7]),
91  SW_REG(fp[ 8]), SW_REG(fp[ 9]), SW_REG(fp[10]), SW_REG(fp[11]),
92  SW_REG(fp[12]), SW_REG(fp[13]), SW_REG(fp[14]), SW_REG(fp[15]),
93  SW_REG(fp[16]), SW_REG(fp[17]), SW_REG(fp[18]), SW_REG(fp[19]),
94  SW_REG(fp[20]), SW_REG(fp[21]), SW_REG(fp[22]), SW_REG(fp[23]),
95  SW_REG(fp[24]), SW_REG(fp[25]), SW_REG(fp[26]), SW_REG(fp[27]),
96  SW_REG(fp[28]), SW_REG(fp[29]), SW_REG(fp[30]), SW_REG(fp[31]),
97  PT_REG( pc)
98 };
99 
100 static unsigned long zero;
101 
102 /*
103  * Get address of register REGNO in task TASK.
104  */
105 static unsigned long *
106 get_reg_addr(struct task_struct * task, unsigned long regno)
107 {
108  unsigned long *addr;
109 
110  if (regno == 30) {
111  addr = &task_thread_info(task)->pcb.usp;
112  } else if (regno == 65) {
113  addr = &task_thread_info(task)->pcb.unique;
114  } else if (regno == 31 || regno > 65) {
115  zero = 0;
116  addr = &zero;
117  } else {
118  addr = task_stack_page(task) + regoff[regno];
119  }
120  return addr;
121 }
122 
123 /*
124  * Get contents of register REGNO in task TASK.
125  */
126 static unsigned long
127 get_reg(struct task_struct * task, unsigned long regno)
128 {
129  /* Special hack for fpcr -- combine hardware and software bits. */
130  if (regno == 63) {
131  unsigned long fpcr = *get_reg_addr(task, regno);
132  unsigned long swcr
133  = task_thread_info(task)->ieee_state & IEEE_SW_MASK;
134  swcr = swcr_update_status(swcr, fpcr);
135  return fpcr | swcr;
136  }
137  return *get_reg_addr(task, regno);
138 }
139 
140 /*
141  * Write contents of register REGNO in task TASK.
142  */
143 static int
144 put_reg(struct task_struct *task, unsigned long regno, unsigned long data)
145 {
146  if (regno == 63) {
147  task_thread_info(task)->ieee_state
148  = ((task_thread_info(task)->ieee_state & ~IEEE_SW_MASK)
149  | (data & IEEE_SW_MASK));
150  data = (data & FPCR_DYN_MASK) | ieee_swcr_to_fpcr(data);
151  }
152  *get_reg_addr(task, regno) = data;
153  return 0;
154 }
155 
156 static inline int
157 read_int(struct task_struct *task, unsigned long addr, int * data)
158 {
159  int copied = access_process_vm(task, addr, data, sizeof(int), 0);
160  return (copied == sizeof(int)) ? 0 : -EIO;
161 }
162 
163 static inline int
164 write_int(struct task_struct *task, unsigned long addr, int data)
165 {
166  int copied = access_process_vm(task, addr, &data, sizeof(int), 1);
167  return (copied == sizeof(int)) ? 0 : -EIO;
168 }
169 
170 /*
171  * Set breakpoint.
172  */
173 int
175 {
176  int displ, i, res, reg_b, nsaved = 0;
177  unsigned int insn, op_code;
178  unsigned long pc;
179 
180  pc = get_reg(child, REG_PC);
181  res = read_int(child, pc, (int *) &insn);
182  if (res < 0)
183  return res;
184 
185  op_code = insn >> 26;
186  if (op_code >= 0x30) {
187  /*
188  * It's a branch: instead of trying to figure out
189  * whether the branch will be taken or not, we'll put
190  * a breakpoint at either location. This is simpler,
191  * more reliable, and probably not a whole lot slower
192  * than the alternative approach of emulating the
193  * branch (emulation can be tricky for fp branches).
194  */
195  displ = ((s32)(insn << 11)) >> 9;
196  task_thread_info(child)->bpt_addr[nsaved++] = pc + 4;
197  if (displ) /* guard against unoptimized code */
198  task_thread_info(child)->bpt_addr[nsaved++]
199  = pc + 4 + displ;
200  DBG(DBG_BPT, ("execing branch\n"));
201  } else if (op_code == 0x1a) {
202  reg_b = (insn >> 16) & 0x1f;
203  task_thread_info(child)->bpt_addr[nsaved++] = get_reg(child, reg_b);
204  DBG(DBG_BPT, ("execing jump\n"));
205  } else {
206  task_thread_info(child)->bpt_addr[nsaved++] = pc + 4;
207  DBG(DBG_BPT, ("execing normal insn\n"));
208  }
209 
210  /* install breakpoints: */
211  for (i = 0; i < nsaved; ++i) {
212  res = read_int(child, task_thread_info(child)->bpt_addr[i],
213  (int *) &insn);
214  if (res < 0)
215  return res;
216  task_thread_info(child)->bpt_insn[i] = insn;
217  DBG(DBG_BPT, (" -> next_pc=%lx\n",
218  task_thread_info(child)->bpt_addr[i]));
219  res = write_int(child, task_thread_info(child)->bpt_addr[i],
220  BREAKINST);
221  if (res < 0)
222  return res;
223  }
224  task_thread_info(child)->bpt_nsaved = nsaved;
225  return 0;
226 }
227 
228 /*
229  * Ensure no single-step breakpoint is pending. Returns non-zero
230  * value if child was being single-stepped.
231  */
232 int
234 {
235  int i, nsaved = task_thread_info(child)->bpt_nsaved;
236 
237  task_thread_info(child)->bpt_nsaved = 0;
238 
239  if (nsaved > 2) {
240  printk("ptrace_cancel_bpt: bogus nsaved: %d!\n", nsaved);
241  nsaved = 2;
242  }
243 
244  for (i = 0; i < nsaved; ++i) {
245  write_int(child, task_thread_info(child)->bpt_addr[i],
246  task_thread_info(child)->bpt_insn[i]);
247  }
248  return (nsaved != 0);
249 }
250 
252 {
253  /* Mark single stepping. */
254  task_thread_info(child)->bpt_nsaved = -1;
255 }
256 
258 {
259  ptrace_cancel_bpt(child);
260 }
261 
262 /*
263  * Called by kernel/ptrace.c when detaching..
264  *
265  * Make sure the single step bit is not set.
266  */
268 {
270 }
271 
273  unsigned long addr, unsigned long data)
274 {
275  unsigned long tmp;
276  size_t copied;
277  long ret;
278 
279  switch (request) {
280  /* When I and D space are separate, these will need to be fixed. */
281  case PTRACE_PEEKTEXT: /* read word at location addr. */
282  case PTRACE_PEEKDATA:
283  copied = access_process_vm(child, addr, &tmp, sizeof(tmp), 0);
284  ret = -EIO;
285  if (copied != sizeof(tmp))
286  break;
287 
289  ret = tmp;
290  break;
291 
292  /* Read register number ADDR. */
293  case PTRACE_PEEKUSR:
295  ret = get_reg(child, addr);
296  DBG(DBG_MEM, ("peek $%lu->%#lx\n", addr, ret));
297  break;
298 
299  /* When I and D space are separate, this will have to be fixed. */
300  case PTRACE_POKETEXT: /* write the word at location addr. */
301  case PTRACE_POKEDATA:
302  ret = generic_ptrace_pokedata(child, addr, data);
303  break;
304 
305  case PTRACE_POKEUSR: /* write the specified register */
306  DBG(DBG_MEM, ("poke $%lu<-%#lx\n", addr, data));
307  ret = put_reg(child, addr, data);
308  break;
309  default:
310  ret = ptrace_request(child, request, addr, data);
311  break;
312  }
313  return ret;
314 }
315 
316 asmlinkage unsigned long syscall_trace_enter(void)
317 {
318  unsigned long ret = 0;
319  if (test_thread_flag(TIF_SYSCALL_TRACE) &&
320  tracehook_report_syscall_entry(current_pt_regs()))
321  ret = -1UL;
322  return ret ?: current_pt_regs()->r0;
323 }
324 
325 asmlinkage void
327 {
328  if (test_thread_flag(TIF_SYSCALL_TRACE))
329  tracehook_report_syscall_exit(current_pt_regs(), 0);
330 }