Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
kprobes.h
Go to the documentation of this file.
1 /*
2  * arch/arm/kernel/kprobes.h
3  *
4  * Copyright (C) 2011 Jon Medhurst <[email protected]>.
5  *
6  * Some contents moved here from arch/arm/include/asm/kprobes.h which is
7  * Copyright (C) 2006, 2007 Motorola Inc.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * General Public License for more details.
17  */
18 
19 #ifndef _ARM_KERNEL_KPROBES_H
20 #define _ARM_KERNEL_KPROBES_H
21 
22 /*
23  * These undefined instructions must be unique and
24  * reserved solely for kprobes' use.
25  */
26 #define KPROBE_ARM_BREAKPOINT_INSTRUCTION 0x07f001f8
27 #define KPROBE_THUMB16_BREAKPOINT_INSTRUCTION 0xde18
28 #define KPROBE_THUMB32_BREAKPOINT_INSTRUCTION 0xf7f0a018
29 
30 
35 };
36 
38  struct arch_specific_insn *);
39 
40 #ifdef CONFIG_THUMB2_KERNEL
41 
43  struct arch_specific_insn *);
45  struct arch_specific_insn *);
46 
47 #else /* !CONFIG_THUMB2_KERNEL */
48 
50  struct arch_specific_insn *);
51 #endif
52 
54 
55 extern kprobe_check_cc * const kprobe_condition_checks[16];
56 
57 
58 #if __LINUX_ARM_ARCH__ >= 7
59 
60 /* str_pc_offset is architecturally defined from ARMv7 onwards */
61 #define str_pc_offset 8
62 #define find_str_pc_offset()
63 
64 #else /* __LINUX_ARM_ARCH__ < 7 */
65 
66 /* We need a run-time check to determine str_pc_offset */
67 extern int str_pc_offset;
68 void __init find_str_pc_offset(void);
69 
70 #endif
71 
72 
73 /*
74  * Update ITSTATE after normal execution of an IT block instruction.
75  *
76  * The 8 IT state bits are split into two parts in CPSR:
77  * ITSTATE<1:0> are in CPSR<26:25>
78  * ITSTATE<7:2> are in CPSR<15:10>
79  */
80 static inline unsigned long it_advance(unsigned long cpsr)
81  {
82  if ((cpsr & 0x06000400) == 0) {
83  /* ITSTATE<2:0> == 0 means end of IT block, so clear IT state */
84  cpsr &= ~PSR_IT_MASK;
85  } else {
86  /* We need to shift left ITSTATE<4:0> */
87  const unsigned long mask = 0x06001c00; /* Mask ITSTATE<4:0> */
88  unsigned long it = cpsr & mask;
89  it <<= 1;
90  it |= it >> (27 - 10); /* Carry ITSTATE<2> to correct place */
91  it &= mask;
92  cpsr &= ~mask;
93  cpsr |= it;
94  }
95  return cpsr;
96 }
97 
98 static inline void __kprobes bx_write_pc(long pcv, struct pt_regs *regs)
99 {
100  long cpsr = regs->ARM_cpsr;
101  if (pcv & 0x1) {
102  cpsr |= PSR_T_BIT;
103  pcv &= ~0x1;
104  } else {
105  cpsr &= ~PSR_T_BIT;
106  pcv &= ~0x2; /* Avoid UNPREDICTABLE address allignment */
107  }
108  regs->ARM_cpsr = cpsr;
109  regs->ARM_pc = pcv;
110 }
111 
112 
113 #if __LINUX_ARM_ARCH__ >= 6
114 
115 /* Kernels built for >= ARMv6 should never run on <= ARMv5 hardware, so... */
116 #define load_write_pc_interworks true
117 #define test_load_write_pc_interworking()
118 
119 #else /* __LINUX_ARM_ARCH__ < 6 */
120 
121 /* We need run-time testing to determine if load_write_pc() should interwork. */
122 extern bool load_write_pc_interworks;
124 
125 #endif
126 
127 static inline void __kprobes load_write_pc(long pcv, struct pt_regs *regs)
128 {
129  if (load_write_pc_interworks)
130  bx_write_pc(pcv, regs);
131  else
132  regs->ARM_pc = pcv;
133 }
134 
135 
136 #if __LINUX_ARM_ARCH__ >= 7
137 
138 #define alu_write_pc_interworks true
139 #define test_alu_write_pc_interworking()
140 
141 #elif __LINUX_ARM_ARCH__ <= 5
142 
143 /* Kernels built for <= ARMv5 should never run on >= ARMv6 hardware, so... */
144 #define alu_write_pc_interworks false
145 #define test_alu_write_pc_interworking()
146 
147 #else /* __LINUX_ARM_ARCH__ == 6 */
148 
149 /* We could be an ARMv6 binary on ARMv7 hardware so we need a run-time check. */
150 extern bool alu_write_pc_interworks;
152 
153 #endif /* __LINUX_ARM_ARCH__ == 6 */
154 
155 static inline void __kprobes alu_write_pc(long pcv, struct pt_regs *regs)
156 {
157  if (alu_write_pc_interworks)
158  bx_write_pc(pcv, regs);
159  else
160  regs->ARM_pc = pcv;
161 }
162 
163 
164 void __kprobes kprobe_simulate_nop(struct kprobe *p, struct pt_regs *regs);
165 void __kprobes kprobe_emulate_none(struct kprobe *p, struct pt_regs *regs);
166 
169 
170 /*
171  * Test if load/store instructions writeback the address register.
172  * if P (bit 24) == 0 or W (bit 21) == 1
173  */
174 #define is_writeback(insn) ((insn ^ 0x01000000) & 0x01200000)
175 
176 /*
177  * The following definitions and macros are used to build instruction
178  * decoding tables for use by kprobe_decode_insn.
179  *
180  * These tables are a concatenation of entries each of which consist of one of
181  * the decode_* structs. All of the fields in every type of decode structure
182  * are of the union type decode_item, therefore the entire decode table can be
183  * viewed as an array of these and declared like:
184  *
185  * static const union decode_item table_name[] = {};
186  *
187  * In order to construct each entry in the table, macros are used to
188  * initialise a number of sequential decode_item values in a layout which
189  * matches the relevant struct. E.g. DECODE_SIMULATE initialise a struct
190  * decode_simulate by initialising four decode_item objects like this...
191  *
192  * {.bits = _type},
193  * {.bits = _mask},
194  * {.bits = _value},
195  * {.handler = _handler},
196  *
197  * Initialising a specified member of the union means that the compiler
198  * will produce a warning if the argument is of an incorrect type.
199  *
200  * Below is a list of each of the macros used to initialise entries and a
201  * description of the action performed when that entry is matched to an
202  * instruction. A match is found when (instruction & mask) == value.
203  *
204  * DECODE_TABLE(mask, value, table)
205  * Instruction decoding jumps to parsing the new sub-table 'table'.
206  *
207  * DECODE_CUSTOM(mask, value, decoder)
208  * The custom function 'decoder' is called to the complete decoding
209  * of an instruction.
210  *
211  * DECODE_SIMULATE(mask, value, handler)
212  * Set the probes instruction handler to 'handler', this will be used
213  * to simulate the instruction when the probe is hit. Decoding returns
214  * with INSN_GOOD_NO_SLOT.
215  *
216  * DECODE_EMULATE(mask, value, handler)
217  * Set the probes instruction handler to 'handler', this will be used
218  * to emulate the instruction when the probe is hit. The modified
219  * instruction (see below) is placed in the probes instruction slot so it
220  * may be called by the emulation code. Decoding returns with INSN_GOOD.
221  *
222  * DECODE_REJECT(mask, value)
223  * Instruction decoding fails with INSN_REJECTED
224  *
225  * DECODE_OR(mask, value)
226  * This allows the mask/value test of multiple table entries to be
227  * logically ORed. Once an 'or' entry is matched the decoding action to
228  * be performed is that of the next entry which isn't an 'or'. E.g.
229  *
230  * DECODE_OR (mask1, value1)
231  * DECODE_OR (mask2, value2)
232  * DECODE_SIMULATE (mask3, value3, simulation_handler)
233  *
234  * This means that if any of the three mask/value pairs match the
235  * instruction being decoded, then 'simulation_handler' will be used
236  * for it.
237  *
238  * Both the SIMULATE and EMULATE macros have a second form which take an
239  * additional 'regs' argument.
240  *
241  * DECODE_SIMULATEX(mask, value, handler, regs)
242  * DECODE_EMULATEX (mask, value, handler, regs)
243  *
244  * These are used to specify what kind of CPU register is encoded in each of the
245  * least significant 5 nibbles of the instruction being decoded. The regs value
246  * is specified using the REGS macro, this takes any of the REG_TYPE_* values
247  * from enum decode_reg_type as arguments; only the '*' part of the name is
248  * given. E.g.
249  *
250  * REGS(0, ANY, NOPC, 0, ANY)
251  *
252  * This indicates an instruction is encoded like:
253  *
254  * bits 19..16 ignore
255  * bits 15..12 any register allowed here
256  * bits 11.. 8 any register except PC allowed here
257  * bits 7.. 4 ignore
258  * bits 3.. 0 any register allowed here
259  *
260  * This register specification is checked after a decode table entry is found to
261  * match an instruction (through the mask/value test). Any invalid register then
262  * found in the instruction will cause decoding to fail with INSN_REJECTED. In
263  * the above example this would happen if bits 11..8 of the instruction were
264  * 1111, indicating R15 or PC.
265  *
266  * As well as checking for legal combinations of registers, this data is also
267  * used to modify the registers encoded in the instructions so that an
268  * emulation routines can use it. (See decode_regs() and INSN_NEW_BITS.)
269  *
270  * Here is a real example which matches ARM instructions of the form
271  * "AND <Rd>,<Rn>,<Rm>,<shift> <Rs>"
272  *
273  * DECODE_EMULATEX (0x0e000090, 0x00000010, emulate_rd12rn16rm0rs8_rwflags,
274  * REGS(ANY, ANY, NOPC, 0, ANY)),
275  * ^ ^ ^ ^
276  * Rn Rd Rs Rm
277  *
278  * Decoding the instruction "AND R4, R5, R6, ASL R15" will be rejected because
279  * Rs == R15
280  *
281  * Decoding the instruction "AND R4, R5, R6, ASL R7" will be accepted and the
282  * instruction will be modified to "AND R0, R2, R3, ASL R1" and then placed into
283  * the kprobes instruction slot. This can then be called later by the handler
284  * function emulate_rd12rn16rm0rs8_rwflags in order to simulate the instruction.
285  */
286 
295  NUM_DECODE_TYPES /* Must be last enum */
296 };
297 
298 #define DECODE_TYPE_BITS 4
299 #define DECODE_TYPE_MASK ((1 << DECODE_TYPE_BITS) - 1)
300 
302  REG_TYPE_NONE = 0, /* Not a register, ignore */
303  REG_TYPE_ANY, /* Any register allowed */
304  REG_TYPE_SAMEAS16, /* Register should be same as that at bits 19..16 */
305  REG_TYPE_SP, /* Register must be SP */
306  REG_TYPE_PC, /* Register must be PC */
307  REG_TYPE_NOSP, /* Register must not be SP */
308  REG_TYPE_NOSPPC, /* Register must not be SP or PC */
309  REG_TYPE_NOPC, /* Register must not be PC */
310  REG_TYPE_NOPCWB, /* No PC if load/store write-back flag also set */
311 
312  /* The following types are used when the encoding for PC indicates
313  * another instruction form. This distiction only matters for test
314  * case coverage checks.
315  */
316  REG_TYPE_NOPCX, /* Register must not be PC */
317  REG_TYPE_NOSPPCX, /* Register must not be SP or PC */
318 
319  /* Alias to allow '0' arg to be used in REGS macro. */
321 };
322 
323 #define REGS(r16, r12, r8, r4, r0) \
324  ((REG_TYPE_##r16) << 16) + \
325  ((REG_TYPE_##r12) << 12) + \
326  ((REG_TYPE_##r8) << 8) + \
327  ((REG_TYPE_##r4) << 4) + \
328  (REG_TYPE_##r0)
329 
330 union decode_item {
332  const union decode_item *table;
335 };
336 
337 
338 #define DECODE_END \
339  {.bits = DECODE_TYPE_END}
340 
341 
346 };
347 
348 #define DECODE_HEADER(_type, _mask, _value, _regs) \
349  {.bits = (_type) | ((_regs) << DECODE_TYPE_BITS)}, \
350  {.bits = (_mask)}, \
351  {.bits = (_value)}
352 
353 
354 struct decode_table {
357 };
358 
359 #define DECODE_TABLE(_mask, _value, _table) \
360  DECODE_HEADER(DECODE_TYPE_TABLE, _mask, _value, 0), \
361  {.table = (_table)}
362 
363 
367 };
368 
369 #define DECODE_CUSTOM(_mask, _value, _decoder) \
370  DECODE_HEADER(DECODE_TYPE_CUSTOM, _mask, _value, 0), \
371  {.decoder = (_decoder)}
372 
373 
377 };
378 
379 #define DECODE_SIMULATEX(_mask, _value, _handler, _regs) \
380  DECODE_HEADER(DECODE_TYPE_SIMULATE, _mask, _value, _regs), \
381  {.handler = (_handler)}
382 
383 #define DECODE_SIMULATE(_mask, _value, _handler) \
384  DECODE_SIMULATEX(_mask, _value, _handler, 0)
385 
386 
390 };
391 
392 #define DECODE_EMULATEX(_mask, _value, _handler, _regs) \
393  DECODE_HEADER(DECODE_TYPE_EMULATE, _mask, _value, _regs), \
394  {.handler = (_handler)}
395 
396 #define DECODE_EMULATE(_mask, _value, _handler) \
397  DECODE_EMULATEX(_mask, _value, _handler, 0)
398 
399 
400 struct decode_or {
402 };
403 
404 #define DECODE_OR(_mask, _value) \
405  DECODE_HEADER(DECODE_TYPE_OR, _mask, _value, 0)
406 
407 
410 };
411 
412 #define DECODE_REJECT(_mask, _value) \
413  DECODE_HEADER(DECODE_TYPE_REJECT, _mask, _value, 0)
414 
415 
416 #ifdef CONFIG_THUMB2_KERNEL
417 extern const union decode_item kprobe_decode_thumb16_table[];
418 extern const union decode_item kprobe_decode_thumb32_table[];
419 #else
420 extern const union decode_item kprobe_decode_arm_table[];
421 #endif
422 
423 
425  const union decode_item *table, bool thumb16);
426 
427 
428 #endif /* _ARM_KERNEL_KPROBES_H */