Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
topology.c
Go to the documentation of this file.
1 /*
2  * arch/arm/kernel/topology.c
3  *
4  * Copyright (C) 2011 Linaro Limited.
5  * Written by: Vincent Guittot
6  *
7  * based on arch/sh/kernel/topology.c
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License. See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 
14 #include <linux/cpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/init.h>
17 #include <linux/percpu.h>
18 #include <linux/node.h>
19 #include <linux/nodemask.h>
20 #include <linux/of.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 
24 #include <asm/cputype.h>
25 #include <asm/topology.h>
26 
27 /*
28  * cpu power scale management
29  */
30 
31 /*
32  * cpu power table
33  * This per cpu data structure describes the relative capacity of each core.
34  * On a heteregenous system, cores don't have the same computation capacity
35  * and we reflect that difference in the cpu_power field so the scheduler can
36  * take this difference into account during load balance. A per cpu structure
37  * is preferred because each CPU updates its own cpu_power field during the
38  * load balance except for idle cores. One idle core is selected to run the
39  * rebalance_domains for all idle cores and the cpu_power can be updated
40  * during this sequence.
41  */
42 static DEFINE_PER_CPU(unsigned long, cpu_scale);
43 
44 unsigned long arch_scale_freq_power(struct sched_domain *sd, int cpu)
45 {
46  return per_cpu(cpu_scale, cpu);
47 }
48 
49 static void set_power_scale(unsigned int cpu, unsigned long power)
50 {
51  per_cpu(cpu_scale, cpu) = power;
52 }
53 
54 #ifdef CONFIG_OF
55 struct cpu_efficiency {
56  const char *compatible;
57  unsigned long efficiency;
58 };
59 
60 /*
61  * Table of relative efficiency of each processors
62  * The efficiency value must fit in 20bit and the final
63  * cpu_scale value must be in the range
64  * 0 < cpu_scale < 3*SCHED_POWER_SCALE/2
65  * in order to return at most 1 when DIV_ROUND_CLOSEST
66  * is used to compute the capacity of a CPU.
67  * Processors that are not defined in the table,
68  * use the default SCHED_POWER_SCALE value for cpu_scale.
69  */
70 struct cpu_efficiency table_efficiency[] = {
71  {"arm,cortex-a15", 3891},
72  {"arm,cortex-a7", 2048},
73  {NULL, },
74 };
75 
76 struct cpu_capacity {
77  unsigned long hwid;
78  unsigned long capacity;
79 };
80 
81 struct cpu_capacity *cpu_capacity;
82 
83 unsigned long middle_capacity = 1;
84 
85 /*
86  * Iterate all CPUs' descriptor in DT and compute the efficiency
87  * (as per table_efficiency). Also calculate a middle efficiency
88  * as close as possible to (max{eff_i} - min{eff_i}) / 2
89  * This is later used to scale the cpu_power field such that an
90  * 'average' CPU is of middle power. Also see the comments near
91  * table_efficiency[] and update_cpu_power().
92  */
93 static void __init parse_dt_topology(void)
94 {
95  struct cpu_efficiency *cpu_eff;
96  struct device_node *cn = NULL;
97  unsigned long min_capacity = (unsigned long)(-1);
98  unsigned long max_capacity = 0;
99  unsigned long capacity = 0;
100  int alloc_size, cpu = 0;
101 
102  alloc_size = nr_cpu_ids * sizeof(struct cpu_capacity);
103  cpu_capacity = (struct cpu_capacity *)kzalloc(alloc_size, GFP_NOWAIT);
104 
105  while ((cn = of_find_node_by_type(cn, "cpu"))) {
106  const u32 *rate, *reg;
107  int len;
108 
109  if (cpu >= num_possible_cpus())
110  break;
111 
112  for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
113  if (of_device_is_compatible(cn, cpu_eff->compatible))
114  break;
115 
116  if (cpu_eff->compatible == NULL)
117  continue;
118 
119  rate = of_get_property(cn, "clock-frequency", &len);
120  if (!rate || len != 4) {
121  pr_err("%s missing clock-frequency property\n",
122  cn->full_name);
123  continue;
124  }
125 
126  reg = of_get_property(cn, "reg", &len);
127  if (!reg || len != 4) {
128  pr_err("%s missing reg property\n", cn->full_name);
129  continue;
130  }
131 
132  capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;
133 
134  /* Save min capacity of the system */
135  if (capacity < min_capacity)
136  min_capacity = capacity;
137 
138  /* Save max capacity of the system */
139  if (capacity > max_capacity)
140  max_capacity = capacity;
141 
142  cpu_capacity[cpu].capacity = capacity;
143  cpu_capacity[cpu++].hwid = be32_to_cpup(reg);
144  }
145 
146  if (cpu < num_possible_cpus())
147  cpu_capacity[cpu].hwid = (unsigned long)(-1);
148 
149  /* If min and max capacities are equals, we bypass the update of the
150  * cpu_scale because all CPUs have the same capacity. Otherwise, we
151  * compute a middle_capacity factor that will ensure that the capacity
152  * of an 'average' CPU of the system will be as close as possible to
153  * SCHED_POWER_SCALE, which is the default value, but with the
154  * constraint explained near table_efficiency[].
155  */
156  if (min_capacity == max_capacity)
157  cpu_capacity[0].hwid = (unsigned long)(-1);
158  else if (4*max_capacity < (3*(max_capacity + min_capacity)))
159  middle_capacity = (min_capacity + max_capacity)
160  >> (SCHED_POWER_SHIFT+1);
161  else
162  middle_capacity = ((max_capacity / 3)
163  >> (SCHED_POWER_SHIFT-1)) + 1;
164 
165 }
166 
167 /*
168  * Look for a customed capacity of a CPU in the cpu_capacity table during the
169  * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
170  * function returns directly for SMP system.
171  */
172 void update_cpu_power(unsigned int cpu, unsigned long hwid)
173 {
174  unsigned int idx = 0;
175 
176  /* look for the cpu's hwid in the cpu capacity table */
177  for (idx = 0; idx < num_possible_cpus(); idx++) {
178  if (cpu_capacity[idx].hwid == hwid)
179  break;
180 
181  if (cpu_capacity[idx].hwid == -1)
182  return;
183  }
184 
185  if (idx == num_possible_cpus())
186  return;
187 
188  set_power_scale(cpu, cpu_capacity[idx].capacity / middle_capacity);
189 
190  printk(KERN_INFO "CPU%u: update cpu_power %lu\n",
191  cpu, arch_scale_freq_power(NULL, cpu));
192 }
193 
194 #else
195 static inline void parse_dt_topology(void) {}
196 static inline void update_cpu_power(unsigned int cpuid, unsigned int mpidr) {}
197 #endif
198 
199 
200 /*
201  * cpu topology management
202  */
203 
204 #define MPIDR_SMP_BITMASK (0x3 << 30)
205 #define MPIDR_SMP_VALUE (0x2 << 30)
206 
207 #define MPIDR_MT_BITMASK (0x1 << 24)
208 
209 /*
210  * These masks reflect the current use of the affinity levels.
211  * The affinity level can be up to 16 bits according to ARM ARM
212  */
213 #define MPIDR_HWID_BITMASK 0xFFFFFF
214 
215 #define MPIDR_LEVEL0_MASK 0x3
216 #define MPIDR_LEVEL0_SHIFT 0
217 
218 #define MPIDR_LEVEL1_MASK 0xF
219 #define MPIDR_LEVEL1_SHIFT 8
220 
221 #define MPIDR_LEVEL2_MASK 0xFF
222 #define MPIDR_LEVEL2_SHIFT 16
223 
224 /*
225  * cpu topology table
226  */
227 struct cputopo_arm cpu_topology[NR_CPUS];
228 
229 const struct cpumask *cpu_coregroup_mask(int cpu)
230 {
231  return &cpu_topology[cpu].core_sibling;
232 }
233 
234 void update_siblings_masks(unsigned int cpuid)
235 {
236  struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
237  int cpu;
238 
239  /* update core and thread sibling masks */
240  for_each_possible_cpu(cpu) {
241  cpu_topo = &cpu_topology[cpu];
242 
243  if (cpuid_topo->socket_id != cpu_topo->socket_id)
244  continue;
245 
246  cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
247  if (cpu != cpuid)
248  cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
249 
250  if (cpuid_topo->core_id != cpu_topo->core_id)
251  continue;
252 
253  cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
254  if (cpu != cpuid)
255  cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
256  }
257  smp_wmb();
258 }
259 
260 /*
261  * store_cpu_topology is called at boot when only one cpu is running
262  * and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
263  * which prevents simultaneous write access to cpu_topology array
264  */
265 void store_cpu_topology(unsigned int cpuid)
266 {
267  struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid];
268  unsigned int mpidr;
269 
270  /* If the cpu topology has been already set, just return */
271  if (cpuid_topo->core_id != -1)
272  return;
273 
274  mpidr = read_cpuid_mpidr();
275 
276  /* create cpu topology mapping */
277  if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
278  /*
279  * This is a multiprocessor system
280  * multiprocessor format & multiprocessor mode field are set
281  */
282 
283  if (mpidr & MPIDR_MT_BITMASK) {
284  /* core performance interdependency */
285  cpuid_topo->thread_id = (mpidr >> MPIDR_LEVEL0_SHIFT)
287  cpuid_topo->core_id = (mpidr >> MPIDR_LEVEL1_SHIFT)
289  cpuid_topo->socket_id = (mpidr >> MPIDR_LEVEL2_SHIFT)
291  } else {
292  /* largely independent cores */
293  cpuid_topo->thread_id = -1;
294  cpuid_topo->core_id = (mpidr >> MPIDR_LEVEL0_SHIFT)
296  cpuid_topo->socket_id = (mpidr >> MPIDR_LEVEL1_SHIFT)
298  }
299  } else {
300  /*
301  * This is an uniprocessor system
302  * we are in multiprocessor format but uniprocessor system
303  * or in the old uniprocessor format
304  */
305  cpuid_topo->thread_id = -1;
306  cpuid_topo->core_id = 0;
307  cpuid_topo->socket_id = -1;
308  }
309 
310  update_siblings_masks(cpuid);
311 
312  update_cpu_power(cpuid, mpidr & MPIDR_HWID_BITMASK);
313 
314  printk(KERN_INFO "CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
315  cpuid, cpu_topology[cpuid].thread_id,
316  cpu_topology[cpuid].core_id,
317  cpu_topology[cpuid].socket_id, mpidr);
318 }
319 
320 /*
321  * init_cpu_topology is called at boot when only one cpu is running
322  * which prevent simultaneous write access to cpu_topology array
323  */
325 {
326  unsigned int cpu;
327 
328  /* init core mask and power*/
329  for_each_possible_cpu(cpu) {
330  struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]);
331 
332  cpu_topo->thread_id = -1;
333  cpu_topo->core_id = -1;
334  cpu_topo->socket_id = -1;
335  cpumask_clear(&cpu_topo->core_sibling);
336  cpumask_clear(&cpu_topo->thread_sibling);
337 
338  set_power_scale(cpu, SCHED_POWER_SCALE);
339  }
340  smp_wmb();
341 
342  parse_dt_topology();
343 }