Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
time.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2004-2007 Atmel Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/init.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/kernel.h>
14 #include <linux/time.h>
15 
16 #include <asm/sysreg.h>
17 
18 #include <mach/pm.h>
19 
20 
21 static cycle_t read_cycle_count(struct clocksource *cs)
22 {
23  return (cycle_t)sysreg_read(COUNT);
24 }
25 
26 /*
27  * The architectural cycle count registers are a fine clocksource unless
28  * the system idle loop use sleep states like "idle": the CPU cycles
29  * measured by COUNT (and COMPARE) don't happen during sleep states.
30  * Their duration also changes if cpufreq changes the CPU clock rate.
31  * So we rate the clocksource using COUNT as very low quality.
32  */
33 static struct clocksource counter = {
34  .name = "avr32_counter",
35  .rating = 50,
36  .read = read_cycle_count,
37  .mask = CLOCKSOURCE_MASK(32),
39 };
40 
41 static irqreturn_t timer_interrupt(int irq, void *dev_id)
42 {
43  struct clock_event_device *evdev = dev_id;
44 
45  if (unlikely(!(intc_get_pending(0) & 1)))
46  return IRQ_NONE;
47 
48  /*
49  * Disable the interrupt until the clockevent subsystem
50  * reprograms it.
51  */
53 
54  evdev->event_handler(evdev);
55  return IRQ_HANDLED;
56 }
57 
58 static struct irqaction timer_irqaction = {
59  .handler = timer_interrupt,
60  /* Oprofile uses the same irq as the timer, so allow it to be shared */
62  .name = "avr32_comparator",
63 };
64 
65 static int comparator_next_event(unsigned long delta,
66  struct clock_event_device *evdev)
67 {
68  unsigned long flags;
69 
70  raw_local_irq_save(flags);
71 
72  /* The time to read COUNT then update COMPARE must be less
73  * than the min_delta_ns value for this clockevent source.
74  */
75  sysreg_write(COMPARE, (sysreg_read(COUNT) + delta) ? : 1);
76 
77  raw_local_irq_restore(flags);
78 
79  return 0;
80 }
81 
82 static void comparator_mode(enum clock_event_mode mode,
83  struct clock_event_device *evdev)
84 {
85  switch (mode) {
86  case CLOCK_EVT_MODE_ONESHOT:
87  pr_debug("%s: start\n", evdev->name);
88  /* FALLTHROUGH */
89  case CLOCK_EVT_MODE_RESUME:
90  cpu_disable_idle_sleep();
91  break;
92  case CLOCK_EVT_MODE_UNUSED:
93  case CLOCK_EVT_MODE_SHUTDOWN:
95  pr_debug("%s: stop\n", evdev->name);
96  cpu_enable_idle_sleep();
97  break;
98  default:
99  BUG();
100  }
101 }
102 
103 static struct clock_event_device comparator = {
104  .name = "avr32_comparator",
105  .features = CLOCK_EVT_FEAT_ONESHOT,
106  .shift = 16,
107  .rating = 50,
108  .set_next_event = comparator_next_event,
109  .set_mode = comparator_mode,
110 };
111 
113 {
114  ts->tv_sec = mktime(2007, 1, 1, 0, 0, 0);
115  ts->tv_nsec = 0;
116 }
117 
118 void __init time_init(void)
119 {
120  unsigned long counter_hz;
121  int ret;
122 
123  /* figure rate for counter */
124  counter_hz = clk_get_rate(boot_cpu_data.clk);
125  ret = clocksource_register_hz(&counter, counter_hz);
126  if (ret)
127  pr_debug("timer: could not register clocksource: %d\n", ret);
128 
129  /* setup COMPARE clockevent */
130  comparator.mult = div_sc(counter_hz, NSEC_PER_SEC, comparator.shift);
131  comparator.max_delta_ns = clockevent_delta2ns((u32)~0, &comparator);
132  comparator.min_delta_ns = clockevent_delta2ns(50, &comparator) + 1;
133  comparator.cpumask = cpumask_of(0);
134 
135  sysreg_write(COMPARE, 0);
136  timer_irqaction.dev_id = &comparator;
137 
138  ret = setup_irq(0, &timer_irqaction);
139  if (ret)
140  pr_debug("timer: could not request IRQ 0: %d\n", ret);
141  else {
142  clockevents_register_device(&comparator);
143 
144  pr_info("%s: irq 0, %lu.%03lu MHz\n", comparator.name,
145  ((counter_hz + 500) / 1000) / 1000,
146  ((counter_hz + 500) / 1000) % 1000);
147  }
148 }