Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
setup.c
Go to the documentation of this file.
1 /*
2  *
3  * linux/arch/cris/kernel/setup.c
4  *
5  * Copyright (C) 1995 Linus Torvalds
6  * Copyright (c) 2001 Axis Communications AB
7  */
8 
9 /*
10  * This file handles the architecture-dependent parts of initialization
11  */
12 
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/bootmem.h>
16 #include <asm/pgtable.h>
17 #include <linux/seq_file.h>
18 #include <linux/screen_info.h>
19 #include <linux/utsname.h>
20 #include <linux/pfn.h>
21 #include <linux/cpu.h>
22 #include <asm/setup.h>
23 #include <arch/system.h>
24 
25 /*
26  * Setup options
27  */
29 
30 extern int root_mountflags;
31 extern char _etext, _edata, _end;
32 
34 
35 extern const unsigned long text_start, edata; /* set by the linker script */
36 extern unsigned long dram_start, dram_end;
37 
38 extern unsigned long romfs_start, romfs_length, romfs_in_flash; /* from head.S */
39 
40 static struct cpu cpu_devices[NR_CPUS];
41 
42 extern void show_etrax_copyright(void); /* arch-vX/kernel/setup.c */
43 
44 /* This mainly sets up the memory area, and can be really confusing.
45  *
46  * The physical DRAM is virtually mapped into dram_start to dram_end
47  * (usually c0000000 to c0000000 + DRAM size). The physical address is
48  * given by the macro __pa().
49  *
50  * In this DRAM, the kernel code and data is loaded, in the beginning.
51  * It really starts at c0004000 to make room for some special pages -
52  * the start address is text_start. The kernel data ends at _end. After
53  * this the ROM filesystem is appended (if there is any).
54  *
55  * Between this address and dram_end, we have RAM pages usable to the
56  * boot code and the system.
57  *
58  */
59 
60 void __init setup_arch(char **cmdline_p)
61 {
62  extern void init_etrax_debug(void);
63  unsigned long bootmap_size;
64  unsigned long start_pfn, max_pfn;
65  unsigned long memory_start;
66 
67  /* register an initial console printing routine for printk's */
68 
70 
71  /* we should really poll for DRAM size! */
72 
74 
76  /* if we have the romfs in flash, or if there is no rom filesystem,
77  * our free area starts directly after the BSS
78  */
79  memory_start = (unsigned long) &_end;
80  } else {
81  /* otherwise the free area starts after the ROM filesystem */
82  printk("ROM fs in RAM, size %lu bytes\n", romfs_length);
83  memory_start = romfs_start + romfs_length;
84  }
85 
86  /* process 1's initial memory region is the kernel code/data */
87 
88  init_mm.start_code = (unsigned long) &text_start;
89  init_mm.end_code = (unsigned long) &_etext;
90  init_mm.end_data = (unsigned long) &_edata;
91  init_mm.brk = (unsigned long) &_end;
92 
93  /* min_low_pfn points to the start of DRAM, start_pfn points
94  * to the first DRAM pages after the kernel, and max_low_pfn
95  * to the end of DRAM.
96  */
97 
98  /*
99  * partially used pages are not usable - thus
100  * we are rounding upwards:
101  */
102 
103  start_pfn = PFN_UP(memory_start); /* usually c0000000 + kernel + romfs */
104  max_pfn = PFN_DOWN((unsigned long)high_memory); /* usually c0000000 + dram size */
105 
106  /*
107  * Initialize the boot-time allocator (start, end)
108  *
109  * We give it access to all our DRAM, but we could as well just have
110  * given it a small slice. No point in doing that though, unless we
111  * have non-contiguous memory and want the boot-stuff to be in, say,
112  * the smallest area.
113  *
114  * It will put a bitmap of the allocated pages in the beginning
115  * of the range we give it, but it won't mark the bitmaps pages
116  * as reserved. We have to do that ourselves below.
117  *
118  * We need to use init_bootmem_node instead of init_bootmem
119  * because our map starts at a quite high address (min_low_pfn).
120  */
121 
124 
125  bootmap_size = init_bootmem_node(NODE_DATA(0), start_pfn,
126  min_low_pfn,
127  max_low_pfn);
128 
129  /* And free all memory not belonging to the kernel (addr, size) */
130 
131  free_bootmem(PFN_PHYS(start_pfn), PFN_PHYS(max_pfn - start_pfn));
132 
133  /*
134  * Reserve the bootmem bitmap itself as well. We do this in two
135  * steps (first step was init_bootmem()) because this catches
136  * the (very unlikely) case of us accidentally initializing the
137  * bootmem allocator with an invalid RAM area.
138  *
139  * Arguments are start, size
140  */
141 
142  reserve_bootmem(PFN_PHYS(start_pfn), bootmap_size, BOOTMEM_DEFAULT);
143 
144  /* paging_init() sets up the MMU and marks all pages as reserved */
145 
146  paging_init();
147 
148  *cmdline_p = cris_command_line;
149 
150 #ifdef CONFIG_ETRAX_CMDLINE
151  if (!strcmp(cris_command_line, "")) {
152  strlcpy(cris_command_line, CONFIG_ETRAX_CMDLINE, COMMAND_LINE_SIZE);
154  }
155 #endif
156 
157  /* Save command line for future references. */
160 
161  /* give credit for the CRIS port */
163 
164  /* Setup utsname */
165  strcpy(init_utsname()->machine, cris_machine_name);
166 }
167 
168 static void *c_start(struct seq_file *m, loff_t *pos)
169 {
170  return *pos < nr_cpu_ids ? (void *)(int)(*pos + 1) : NULL;
171 }
172 
173 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
174 {
175  ++*pos;
176  return c_start(m, pos);
177 }
178 
179 static void c_stop(struct seq_file *m, void *v)
180 {
181 }
182 
183 extern int show_cpuinfo(struct seq_file *m, void *v);
184 
185 const struct seq_operations cpuinfo_op = {
186  .start = c_start,
187  .next = c_next,
188  .stop = c_stop,
189  .show = show_cpuinfo,
190 };
191 
192 static int __init topology_init(void)
193 {
194  int i;
195 
197  return register_cpu(&cpu_devices[i], i);
198  }
199 
200  return 0;
201 }
202 
203 subsys_initcall(topology_init);
204