Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
bitops.h
Go to the documentation of this file.
1 /*
2  * Bit operations for the Hexagon architecture
3  *
4  * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
5  *
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 and
9  * only version 2 as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
19  * 02110-1301, USA.
20  */
21 
22 #ifndef _ASM_BITOPS_H
23 #define _ASM_BITOPS_H
24 
25 #include <linux/compiler.h>
26 #include <asm/byteorder.h>
27 #include <asm/atomic.h>
28 
29 #ifdef __KERNEL__
30 
31 #define smp_mb__before_clear_bit() barrier()
32 #define smp_mb__after_clear_bit() barrier()
33 
34 /*
35  * The offset calculations for these are based on BITS_PER_LONG == 32
36  * (i.e. I get to shift by #5-2 (32 bits per long, 4 bytes per access),
37  * mask by 0x0000001F)
38  *
39  * Typically, R10 is clobbered for address, R11 bit nr, and R12 is temp
40  */
41 
47 static inline int test_and_clear_bit(int nr, volatile void *addr)
48 {
49  int oldval;
50 
51  __asm__ __volatile__ (
52  " {R10 = %1; R11 = asr(%2,#5); }\n"
53  " {R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
54  "1: R12 = memw_locked(R10);\n"
55  " { P0 = tstbit(R12,R11); R12 = clrbit(R12,R11); }\n"
56  " memw_locked(R10,P1) = R12;\n"
57  " {if !P1 jump 1b; %0 = mux(P0,#1,#0);}\n"
58  : "=&r" (oldval)
59  : "r" (addr), "r" (nr)
60  : "r10", "r11", "r12", "p0", "p1", "memory"
61  );
62 
63  return oldval;
64 }
65 
71 static inline int test_and_set_bit(int nr, volatile void *addr)
72 {
73  int oldval;
74 
75  __asm__ __volatile__ (
76  " {R10 = %1; R11 = asr(%2,#5); }\n"
77  " {R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
78  "1: R12 = memw_locked(R10);\n"
79  " { P0 = tstbit(R12,R11); R12 = setbit(R12,R11); }\n"
80  " memw_locked(R10,P1) = R12;\n"
81  " {if !P1 jump 1b; %0 = mux(P0,#1,#0);}\n"
82  : "=&r" (oldval)
83  : "r" (addr), "r" (nr)
84  : "r10", "r11", "r12", "p0", "p1", "memory"
85  );
86 
87 
88  return oldval;
89 
90 }
91 
97 static inline int test_and_change_bit(int nr, volatile void *addr)
98 {
99  int oldval;
100 
101  __asm__ __volatile__ (
102  " {R10 = %1; R11 = asr(%2,#5); }\n"
103  " {R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
104  "1: R12 = memw_locked(R10);\n"
105  " { P0 = tstbit(R12,R11); R12 = togglebit(R12,R11); }\n"
106  " memw_locked(R10,P1) = R12;\n"
107  " {if !P1 jump 1b; %0 = mux(P0,#1,#0);}\n"
108  : "=&r" (oldval)
109  : "r" (addr), "r" (nr)
110  : "r10", "r11", "r12", "p0", "p1", "memory"
111  );
112 
113  return oldval;
114 
115 }
116 
117 /*
118  * Atomic, but doesn't care about the return value.
119  * Rewrite later to save a cycle or two.
120  */
121 
122 static inline void clear_bit(int nr, volatile void *addr)
123 {
124  test_and_clear_bit(nr, addr);
125 }
126 
127 static inline void set_bit(int nr, volatile void *addr)
128 {
129  test_and_set_bit(nr, addr);
130 }
131 
132 static inline void change_bit(int nr, volatile void *addr)
133 {
134  test_and_change_bit(nr, addr);
135 }
136 
137 
138 /*
139  * These are allowed to be non-atomic. In fact the generic flavors are
140  * in non-atomic.h. Would it be better to use intrinsics for this?
141  *
142  * OK, writes in our architecture do not invalidate LL/SC, so this has to
143  * be atomic, particularly for things like slab_lock and slab_unlock.
144  *
145  */
146 static inline void __clear_bit(int nr, volatile unsigned long *addr)
147 {
148  test_and_clear_bit(nr, addr);
149 }
150 
151 static inline void __set_bit(int nr, volatile unsigned long *addr)
152 {
153  test_and_set_bit(nr, addr);
154 }
155 
156 static inline void __change_bit(int nr, volatile unsigned long *addr)
157 {
158  test_and_change_bit(nr, addr);
159 }
160 
161 /* Apparently, at least some of these are allowed to be non-atomic */
162 static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
163 {
164  return test_and_clear_bit(nr, addr);
165 }
166 
167 static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
168 {
169  return test_and_set_bit(nr, addr);
170 }
171 
172 static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
173 {
174  return test_and_change_bit(nr, addr);
175 }
176 
177 static inline int __test_bit(int nr, const volatile unsigned long *addr)
178 {
179  int retval;
180 
181  asm volatile(
182  "{P0 = tstbit(%1,%2); if (P0.new) %0 = #1; if (!P0.new) %0 = #0;}\n"
183  : "=&r" (retval)
184  : "r" (addr[BIT_WORD(nr)]), "r" (nr % BITS_PER_LONG)
185  : "p0"
186  );
187 
188  return retval;
189 }
190 
191 #define test_bit(nr, addr) __test_bit(nr, addr)
192 
193 /*
194  * ffz - find first zero in word.
195  * @word: The word to search
196  *
197  * Undefined if no zero exists, so code should check against ~0UL first.
198  */
199 static inline long ffz(int x)
200 {
201  int r;
202 
203  asm("%0 = ct1(%1);\n"
204  : "=&r" (r)
205  : "r" (x));
206  return r;
207 }
208 
209 /*
210  * fls - find last (most-significant) bit set
211  * @x: the word to search
212  *
213  * This is defined the same way as ffs.
214  * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
215  */
216 static inline long fls(int x)
217 {
218  int r;
219 
220  asm("{ %0 = cl0(%1);}\n"
221  "%0 = sub(#32,%0);\n"
222  : "=&r" (r)
223  : "r" (x)
224  : "p0");
225 
226  return r;
227 }
228 
229 /*
230  * ffs - find first bit set
231  * @x: the word to search
232  *
233  * This is defined the same way as
234  * the libc and compiler builtin ffs routines, therefore
235  * differs in spirit from the above ffz (man ffs).
236  */
237 static inline long ffs(int x)
238 {
239  int r;
240 
241  asm("{ P0 = cmp.eq(%1,#0); %0 = ct0(%1);}\n"
242  "{ if P0 %0 = #0; if !P0 %0 = add(%0,#1);}\n"
243  : "=&r" (r)
244  : "r" (x)
245  : "p0");
246 
247  return r;
248 }
249 
250 /*
251  * __ffs - find first bit in word.
252  * @word: The word to search
253  *
254  * Undefined if no bit exists, so code should check against 0 first.
255  *
256  * bits_per_long assumed to be 32
257  * numbering starts at 0 I think (instead of 1 like ffs)
258  */
259 static inline unsigned long __ffs(unsigned long word)
260 {
261  int num;
262 
263  asm("%0 = ct0(%1);\n"
264  : "=&r" (num)
265  : "r" (word));
266 
267  return num;
268 }
269 
270 /*
271  * __fls - find last (most-significant) set bit in a long word
272  * @word: the word to search
273  *
274  * Undefined if no set bit exists, so code should check against 0 first.
275  * bits_per_long assumed to be 32
276  */
277 static inline unsigned long __fls(unsigned long word)
278 {
279  int num;
280 
281  asm("%0 = cl0(%1);\n"
282  "%0 = sub(#31,%0);\n"
283  : "=&r" (num)
284  : "r" (word));
285 
286  return num;
287 }
288 
289 #include <asm-generic/bitops/lock.h>
290 #include <asm-generic/bitops/find.h>
291 
295 
296 #include <asm-generic/bitops/le.h>
298 
299 #endif /* __KERNEL__ */
300 #endif