Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
bitops.h
Go to the documentation of this file.
1 #ifndef _M68K_BITOPS_H
2 #define _M68K_BITOPS_H
3 /*
4  * Copyright 1992, Linus Torvalds.
5  *
6  * This file is subject to the terms and conditions of the GNU General Public
7  * License. See the file COPYING in the main directory of this archive
8  * for more details.
9  */
10 
11 #ifndef _LINUX_BITOPS_H
12 #error only <linux/bitops.h> can be included directly
13 #endif
14 
15 #include <linux/compiler.h>
16 
17 /*
18  * Bit access functions vary across the ColdFire and 68k families.
19  * So we will break them out here, and then macro in the ones we want.
20  *
21  * ColdFire - supports standard bset/bclr/bchg with register operand only
22  * 68000 - supports standard bset/bclr/bchg with memory operand
23  * >= 68020 - also supports the bfset/bfclr/bfchg instructions
24  *
25  * Although it is possible to use only the bset/bclr/bchg with register
26  * operands on all platforms you end up with larger generated code.
27  * So we use the best form possible on a given platform.
28  */
29 
30 static inline void bset_reg_set_bit(int nr, volatile unsigned long *vaddr)
31 {
32  char *p = (char *)vaddr + (nr ^ 31) / 8;
33 
34  __asm__ __volatile__ ("bset %1,(%0)"
35  :
36  : "a" (p), "di" (nr & 7)
37  : "memory");
38 }
39 
40 static inline void bset_mem_set_bit(int nr, volatile unsigned long *vaddr)
41 {
42  char *p = (char *)vaddr + (nr ^ 31) / 8;
43 
44  __asm__ __volatile__ ("bset %1,%0"
45  : "+m" (*p)
46  : "di" (nr & 7));
47 }
48 
49 static inline void bfset_mem_set_bit(int nr, volatile unsigned long *vaddr)
50 {
51  __asm__ __volatile__ ("bfset %1{%0:#1}"
52  :
53  : "d" (nr ^ 31), "o" (*vaddr)
54  : "memory");
55 }
56 
57 #if defined(CONFIG_COLDFIRE)
58 #define set_bit(nr, vaddr) bset_reg_set_bit(nr, vaddr)
59 #elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
60 #define set_bit(nr, vaddr) bset_mem_set_bit(nr, vaddr)
61 #else
62 #define set_bit(nr, vaddr) (__builtin_constant_p(nr) ? \
63  bset_mem_set_bit(nr, vaddr) : \
64  bfset_mem_set_bit(nr, vaddr))
65 #endif
66 
67 #define __set_bit(nr, vaddr) set_bit(nr, vaddr)
68 
69 
70 /*
71  * clear_bit() doesn't provide any barrier for the compiler.
72  */
73 #define smp_mb__before_clear_bit() barrier()
74 #define smp_mb__after_clear_bit() barrier()
75 
76 static inline void bclr_reg_clear_bit(int nr, volatile unsigned long *vaddr)
77 {
78  char *p = (char *)vaddr + (nr ^ 31) / 8;
79 
80  __asm__ __volatile__ ("bclr %1,(%0)"
81  :
82  : "a" (p), "di" (nr & 7)
83  : "memory");
84 }
85 
86 static inline void bclr_mem_clear_bit(int nr, volatile unsigned long *vaddr)
87 {
88  char *p = (char *)vaddr + (nr ^ 31) / 8;
89 
90  __asm__ __volatile__ ("bclr %1,%0"
91  : "+m" (*p)
92  : "di" (nr & 7));
93 }
94 
95 static inline void bfclr_mem_clear_bit(int nr, volatile unsigned long *vaddr)
96 {
97  __asm__ __volatile__ ("bfclr %1{%0:#1}"
98  :
99  : "d" (nr ^ 31), "o" (*vaddr)
100  : "memory");
101 }
102 
103 #if defined(CONFIG_COLDFIRE)
104 #define clear_bit(nr, vaddr) bclr_reg_clear_bit(nr, vaddr)
105 #elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
106 #define clear_bit(nr, vaddr) bclr_mem_clear_bit(nr, vaddr)
107 #else
108 #define clear_bit(nr, vaddr) (__builtin_constant_p(nr) ? \
109  bclr_mem_clear_bit(nr, vaddr) : \
110  bfclr_mem_clear_bit(nr, vaddr))
111 #endif
112 
113 #define __clear_bit(nr, vaddr) clear_bit(nr, vaddr)
114 
115 
116 static inline void bchg_reg_change_bit(int nr, volatile unsigned long *vaddr)
117 {
118  char *p = (char *)vaddr + (nr ^ 31) / 8;
119 
120  __asm__ __volatile__ ("bchg %1,(%0)"
121  :
122  : "a" (p), "di" (nr & 7)
123  : "memory");
124 }
125 
126 static inline void bchg_mem_change_bit(int nr, volatile unsigned long *vaddr)
127 {
128  char *p = (char *)vaddr + (nr ^ 31) / 8;
129 
130  __asm__ __volatile__ ("bchg %1,%0"
131  : "+m" (*p)
132  : "di" (nr & 7));
133 }
134 
135 static inline void bfchg_mem_change_bit(int nr, volatile unsigned long *vaddr)
136 {
137  __asm__ __volatile__ ("bfchg %1{%0:#1}"
138  :
139  : "d" (nr ^ 31), "o" (*vaddr)
140  : "memory");
141 }
142 
143 #if defined(CONFIG_COLDFIRE)
144 #define change_bit(nr, vaddr) bchg_reg_change_bit(nr, vaddr)
145 #elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
146 #define change_bit(nr, vaddr) bchg_mem_change_bit(nr, vaddr)
147 #else
148 #define change_bit(nr, vaddr) (__builtin_constant_p(nr) ? \
149  bchg_mem_change_bit(nr, vaddr) : \
150  bfchg_mem_change_bit(nr, vaddr))
151 #endif
152 
153 #define __change_bit(nr, vaddr) change_bit(nr, vaddr)
154 
155 
156 static inline int test_bit(int nr, const unsigned long *vaddr)
157 {
158  return (vaddr[nr >> 5] & (1UL << (nr & 31))) != 0;
159 }
160 
161 
162 static inline int bset_reg_test_and_set_bit(int nr,
163  volatile unsigned long *vaddr)
164 {
165  char *p = (char *)vaddr + (nr ^ 31) / 8;
166  char retval;
167 
168  __asm__ __volatile__ ("bset %2,(%1); sne %0"
169  : "=d" (retval)
170  : "a" (p), "di" (nr & 7)
171  : "memory");
172  return retval;
173 }
174 
175 static inline int bset_mem_test_and_set_bit(int nr,
176  volatile unsigned long *vaddr)
177 {
178  char *p = (char *)vaddr + (nr ^ 31) / 8;
179  char retval;
180 
181  __asm__ __volatile__ ("bset %2,%1; sne %0"
182  : "=d" (retval), "+m" (*p)
183  : "di" (nr & 7));
184  return retval;
185 }
186 
187 static inline int bfset_mem_test_and_set_bit(int nr,
188  volatile unsigned long *vaddr)
189 {
190  char retval;
191 
192  __asm__ __volatile__ ("bfset %2{%1:#1}; sne %0"
193  : "=d" (retval)
194  : "d" (nr ^ 31), "o" (*vaddr)
195  : "memory");
196  return retval;
197 }
198 
199 #if defined(CONFIG_COLDFIRE)
200 #define test_and_set_bit(nr, vaddr) bset_reg_test_and_set_bit(nr, vaddr)
201 #elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
202 #define test_and_set_bit(nr, vaddr) bset_mem_test_and_set_bit(nr, vaddr)
203 #else
204 #define test_and_set_bit(nr, vaddr) (__builtin_constant_p(nr) ? \
205  bset_mem_test_and_set_bit(nr, vaddr) : \
206  bfset_mem_test_and_set_bit(nr, vaddr))
207 #endif
208 
209 #define __test_and_set_bit(nr, vaddr) test_and_set_bit(nr, vaddr)
210 
211 
212 static inline int bclr_reg_test_and_clear_bit(int nr,
213  volatile unsigned long *vaddr)
214 {
215  char *p = (char *)vaddr + (nr ^ 31) / 8;
216  char retval;
217 
218  __asm__ __volatile__ ("bclr %2,(%1); sne %0"
219  : "=d" (retval)
220  : "a" (p), "di" (nr & 7)
221  : "memory");
222  return retval;
223 }
224 
225 static inline int bclr_mem_test_and_clear_bit(int nr,
226  volatile unsigned long *vaddr)
227 {
228  char *p = (char *)vaddr + (nr ^ 31) / 8;
229  char retval;
230 
231  __asm__ __volatile__ ("bclr %2,%1; sne %0"
232  : "=d" (retval), "+m" (*p)
233  : "di" (nr & 7));
234  return retval;
235 }
236 
237 static inline int bfclr_mem_test_and_clear_bit(int nr,
238  volatile unsigned long *vaddr)
239 {
240  char retval;
241 
242  __asm__ __volatile__ ("bfclr %2{%1:#1}; sne %0"
243  : "=d" (retval)
244  : "d" (nr ^ 31), "o" (*vaddr)
245  : "memory");
246  return retval;
247 }
248 
249 #if defined(CONFIG_COLDFIRE)
250 #define test_and_clear_bit(nr, vaddr) bclr_reg_test_and_clear_bit(nr, vaddr)
251 #elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
252 #define test_and_clear_bit(nr, vaddr) bclr_mem_test_and_clear_bit(nr, vaddr)
253 #else
254 #define test_and_clear_bit(nr, vaddr) (__builtin_constant_p(nr) ? \
255  bclr_mem_test_and_clear_bit(nr, vaddr) : \
256  bfclr_mem_test_and_clear_bit(nr, vaddr))
257 #endif
258 
259 #define __test_and_clear_bit(nr, vaddr) test_and_clear_bit(nr, vaddr)
260 
261 
262 static inline int bchg_reg_test_and_change_bit(int nr,
263  volatile unsigned long *vaddr)
264 {
265  char *p = (char *)vaddr + (nr ^ 31) / 8;
266  char retval;
267 
268  __asm__ __volatile__ ("bchg %2,(%1); sne %0"
269  : "=d" (retval)
270  : "a" (p), "di" (nr & 7)
271  : "memory");
272  return retval;
273 }
274 
275 static inline int bchg_mem_test_and_change_bit(int nr,
276  volatile unsigned long *vaddr)
277 {
278  char *p = (char *)vaddr + (nr ^ 31) / 8;
279  char retval;
280 
281  __asm__ __volatile__ ("bchg %2,%1; sne %0"
282  : "=d" (retval), "+m" (*p)
283  : "di" (nr & 7));
284  return retval;
285 }
286 
287 static inline int bfchg_mem_test_and_change_bit(int nr,
288  volatile unsigned long *vaddr)
289 {
290  char retval;
291 
292  __asm__ __volatile__ ("bfchg %2{%1:#1}; sne %0"
293  : "=d" (retval)
294  : "d" (nr ^ 31), "o" (*vaddr)
295  : "memory");
296  return retval;
297 }
298 
299 #if defined(CONFIG_COLDFIRE)
300 #define test_and_change_bit(nr, vaddr) bchg_reg_test_and_change_bit(nr, vaddr)
301 #elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
302 #define test_and_change_bit(nr, vaddr) bchg_mem_test_and_change_bit(nr, vaddr)
303 #else
304 #define test_and_change_bit(nr, vaddr) (__builtin_constant_p(nr) ? \
305  bchg_mem_test_and_change_bit(nr, vaddr) : \
306  bfchg_mem_test_and_change_bit(nr, vaddr))
307 #endif
308 
309 #define __test_and_change_bit(nr, vaddr) test_and_change_bit(nr, vaddr)
310 
311 
312 /*
313  * The true 68020 and more advanced processors support the "bfffo"
314  * instruction for finding bits. ColdFire and simple 68000 parts
315  * (including CPU32) do not support this. They simply use the generic
316  * functions.
317  */
318 #if defined(CONFIG_CPU_HAS_NO_BITFIELDS)
319 #include <asm-generic/bitops/find.h>
320 #include <asm-generic/bitops/ffz.h>
321 #else
322 
323 static inline int find_first_zero_bit(const unsigned long *vaddr,
324  unsigned size)
325 {
326  const unsigned long *p = vaddr;
327  int res = 32;
328  unsigned int words;
329  unsigned long num;
330 
331  if (!size)
332  return 0;
333 
334  words = (size + 31) >> 5;
335  while (!(num = ~*p++)) {
336  if (!--words)
337  goto out;
338  }
339 
340  __asm__ __volatile__ ("bfffo %1{#0,#0},%0"
341  : "=d" (res) : "d" (num & -num));
342  res ^= 31;
343 out:
344  res += ((long)p - (long)vaddr - 4) * 8;
345  return res < size ? res : size;
346 }
347 #define find_first_zero_bit find_first_zero_bit
348 
349 static inline int find_next_zero_bit(const unsigned long *vaddr, int size,
350  int offset)
351 {
352  const unsigned long *p = vaddr + (offset >> 5);
353  int bit = offset & 31UL, res;
354 
355  if (offset >= size)
356  return size;
357 
358  if (bit) {
359  unsigned long num = ~*p++ & (~0UL << bit);
360  offset -= bit;
361 
362  /* Look for zero in first longword */
363  __asm__ __volatile__ ("bfffo %1{#0,#0},%0"
364  : "=d" (res) : "d" (num & -num));
365  if (res < 32) {
366  offset += res ^ 31;
367  return offset < size ? offset : size;
368  }
369  offset += 32;
370 
371  if (offset >= size)
372  return size;
373  }
374  /* No zero yet, search remaining full bytes for a zero */
375  return offset + find_first_zero_bit(p, size - offset);
376 }
377 #define find_next_zero_bit find_next_zero_bit
378 
379 static inline int find_first_bit(const unsigned long *vaddr, unsigned size)
380 {
381  const unsigned long *p = vaddr;
382  int res = 32;
383  unsigned int words;
384  unsigned long num;
385 
386  if (!size)
387  return 0;
388 
389  words = (size + 31) >> 5;
390  while (!(num = *p++)) {
391  if (!--words)
392  goto out;
393  }
394 
395  __asm__ __volatile__ ("bfffo %1{#0,#0},%0"
396  : "=d" (res) : "d" (num & -num));
397  res ^= 31;
398 out:
399  res += ((long)p - (long)vaddr - 4) * 8;
400  return res < size ? res : size;
401 }
402 #define find_first_bit find_first_bit
403 
404 static inline int find_next_bit(const unsigned long *vaddr, int size,
405  int offset)
406 {
407  const unsigned long *p = vaddr + (offset >> 5);
408  int bit = offset & 31UL, res;
409 
410  if (offset >= size)
411  return size;
412 
413  if (bit) {
414  unsigned long num = *p++ & (~0UL << bit);
415  offset -= bit;
416 
417  /* Look for one in first longword */
418  __asm__ __volatile__ ("bfffo %1{#0,#0},%0"
419  : "=d" (res) : "d" (num & -num));
420  if (res < 32) {
421  offset += res ^ 31;
422  return offset < size ? offset : size;
423  }
424  offset += 32;
425 
426  if (offset >= size)
427  return size;
428  }
429  /* No one yet, search remaining full bytes for a one */
430  return offset + find_first_bit(p, size - offset);
431 }
432 #define find_next_bit find_next_bit
433 
434 /*
435  * ffz = Find First Zero in word. Undefined if no zero exists,
436  * so code should check against ~0UL first..
437  */
438 static inline unsigned long ffz(unsigned long word)
439 {
440  int res;
441 
442  __asm__ __volatile__ ("bfffo %1{#0,#0},%0"
443  : "=d" (res) : "d" (~word & -~word));
444  return res ^ 31;
445 }
446 
447 #endif
448 
449 #ifdef __KERNEL__
450 
451 #if defined(CONFIG_CPU_HAS_NO_BITFIELDS)
452 
453 /*
454  * The newer ColdFire family members support a "bitrev" instruction
455  * and we can use that to implement a fast ffs. Older Coldfire parts,
456  * and normal 68000 parts don't have anything special, so we use the
457  * generic functions for those.
458  */
459 #if (defined(__mcfisaaplus__) || defined(__mcfisac__)) && \
460  !defined(CONFIG_M68000) && !defined(CONFIG_MCPU32)
461 static inline int __ffs(int x)
462 {
463  __asm__ __volatile__ ("bitrev %0; ff1 %0"
464  : "=d" (x)
465  : "0" (x));
466  return x;
467 }
468 
469 static inline int ffs(int x)
470 {
471  if (!x)
472  return 0;
473  return __ffs(x) + 1;
474 }
475 
476 #else
477 #include <asm-generic/bitops/ffs.h>
479 #endif
480 
481 #include <asm-generic/bitops/fls.h>
483 
484 #else
485 
486 /*
487  * ffs: find first bit set. This is defined the same way as
488  * the libc and compiler builtin ffs routines, therefore
489  * differs in spirit from the above ffz (man ffs).
490  */
491 static inline int ffs(int x)
492 {
493  int cnt;
494 
495  __asm__ ("bfffo %1{#0:#0},%0"
496  : "=d" (cnt)
497  : "dm" (x & -x));
498  return 32 - cnt;
499 }
500 #define __ffs(x) (ffs(x) - 1)
501 
502 /*
503  * fls: find last bit set.
504  */
505 static inline int fls(int x)
506 {
507  int cnt;
508 
509  __asm__ ("bfffo %1{#0,#0},%0"
510  : "=d" (cnt)
511  : "dm" (x));
512  return 32 - cnt;
513 }
514 
515 static inline int __fls(int x)
516 {
517  return fls(x) - 1;
518 }
519 
520 #endif
521 
523 #include <asm-generic/bitops/le.h>
527 #include <asm-generic/bitops/lock.h>
528 #endif /* __KERNEL__ */
529 
530 #endif /* _M68K_BITOPS_H */