Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
bitops.h
Go to the documentation of this file.
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License. See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (c) 1994 - 1997, 99, 2000, 06, 07 Ralf Baechle ([email protected])
7  * Copyright (c) 1999, 2000 Silicon Graphics, Inc.
8  */
9 #ifndef _ASM_BITOPS_H
10 #define _ASM_BITOPS_H
11 
12 #ifndef _LINUX_BITOPS_H
13 #error only <linux/bitops.h> can be included directly
14 #endif
15 
16 #include <linux/compiler.h>
17 #include <linux/types.h>
18 #include <asm/barrier.h>
19 #include <asm/byteorder.h> /* sigh ... */
20 #include <asm/cpu-features.h>
21 #include <asm/sgidefs.h>
22 #include <asm/war.h>
23 
24 #if _MIPS_SZLONG == 32
25 #define SZLONG_LOG 5
26 #define SZLONG_MASK 31UL
27 #define __LL "ll "
28 #define __SC "sc "
29 #define __INS "ins "
30 #define __EXT "ext "
31 #elif _MIPS_SZLONG == 64
32 #define SZLONG_LOG 6
33 #define SZLONG_MASK 63UL
34 #define __LL "lld "
35 #define __SC "scd "
36 #define __INS "dins "
37 #define __EXT "dext "
38 #endif
39 
40 /*
41  * clear_bit() doesn't provide any barrier for the compiler.
42  */
43 #define smp_mb__before_clear_bit() smp_mb__before_llsc()
44 #define smp_mb__after_clear_bit() smp_llsc_mb()
45 
46 
47 /*
48  * These are the "slower" versions of the functions and are in bitops.c.
49  * These functions call raw_local_irq_{save,restore}().
50  */
51 void __mips_set_bit(unsigned long nr, volatile unsigned long *addr);
52 void __mips_clear_bit(unsigned long nr, volatile unsigned long *addr);
53 void __mips_change_bit(unsigned long nr, volatile unsigned long *addr);
54 int __mips_test_and_set_bit(unsigned long nr,
55  volatile unsigned long *addr);
56 int __mips_test_and_set_bit_lock(unsigned long nr,
57  volatile unsigned long *addr);
58 int __mips_test_and_clear_bit(unsigned long nr,
59  volatile unsigned long *addr);
60 int __mips_test_and_change_bit(unsigned long nr,
61  volatile unsigned long *addr);
62 
63 
64 /*
65  * set_bit - Atomically set a bit in memory
66  * @nr: the bit to set
67  * @addr: the address to start counting from
68  *
69  * This function is atomic and may not be reordered. See __set_bit()
70  * if you do not require the atomic guarantees.
71  * Note that @nr may be almost arbitrarily large; this function is not
72  * restricted to acting on a single-word quantity.
73  */
74 static inline void set_bit(unsigned long nr, volatile unsigned long *addr)
75 {
76  unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
77  int bit = nr & SZLONG_MASK;
78  unsigned long temp;
79 
81  __asm__ __volatile__(
82  " .set mips3 \n"
83  "1: " __LL "%0, %1 # set_bit \n"
84  " or %0, %2 \n"
85  " " __SC "%0, %1 \n"
86  " beqzl %0, 1b \n"
87  " .set mips0 \n"
88  : "=&r" (temp), "=m" (*m)
89  : "ir" (1UL << bit), "m" (*m));
90 #ifdef CONFIG_CPU_MIPSR2
91  } else if (kernel_uses_llsc && __builtin_constant_p(bit)) {
92  do {
93  __asm__ __volatile__(
94  " " __LL "%0, %1 # set_bit \n"
95  " " __INS "%0, %3, %2, 1 \n"
96  " " __SC "%0, %1 \n"
97  : "=&r" (temp), "+m" (*m)
98  : "ir" (bit), "r" (~0));
99  } while (unlikely(!temp));
100 #endif /* CONFIG_CPU_MIPSR2 */
101  } else if (kernel_uses_llsc) {
102  do {
103  __asm__ __volatile__(
104  " .set mips3 \n"
105  " " __LL "%0, %1 # set_bit \n"
106  " or %0, %2 \n"
107  " " __SC "%0, %1 \n"
108  " .set mips0 \n"
109  : "=&r" (temp), "+m" (*m)
110  : "ir" (1UL << bit));
111  } while (unlikely(!temp));
112  } else
113  __mips_set_bit(nr, addr);
114 }
115 
116 /*
117  * clear_bit - Clears a bit in memory
118  * @nr: Bit to clear
119  * @addr: Address to start counting from
120  *
121  * clear_bit() is atomic and may not be reordered. However, it does
122  * not contain a memory barrier, so if it is used for locking purposes,
123  * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
124  * in order to ensure changes are visible on other processors.
125  */
126 static inline void clear_bit(unsigned long nr, volatile unsigned long *addr)
127 {
128  unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
129  int bit = nr & SZLONG_MASK;
130  unsigned long temp;
131 
133  __asm__ __volatile__(
134  " .set mips3 \n"
135  "1: " __LL "%0, %1 # clear_bit \n"
136  " and %0, %2 \n"
137  " " __SC "%0, %1 \n"
138  " beqzl %0, 1b \n"
139  " .set mips0 \n"
140  : "=&r" (temp), "+m" (*m)
141  : "ir" (~(1UL << bit)));
142 #ifdef CONFIG_CPU_MIPSR2
143  } else if (kernel_uses_llsc && __builtin_constant_p(bit)) {
144  do {
145  __asm__ __volatile__(
146  " " __LL "%0, %1 # clear_bit \n"
147  " " __INS "%0, $0, %2, 1 \n"
148  " " __SC "%0, %1 \n"
149  : "=&r" (temp), "+m" (*m)
150  : "ir" (bit));
151  } while (unlikely(!temp));
152 #endif /* CONFIG_CPU_MIPSR2 */
153  } else if (kernel_uses_llsc) {
154  do {
155  __asm__ __volatile__(
156  " .set mips3 \n"
157  " " __LL "%0, %1 # clear_bit \n"
158  " and %0, %2 \n"
159  " " __SC "%0, %1 \n"
160  " .set mips0 \n"
161  : "=&r" (temp), "+m" (*m)
162  : "ir" (~(1UL << bit)));
163  } while (unlikely(!temp));
164  } else
165  __mips_clear_bit(nr, addr);
166 }
167 
168 /*
169  * clear_bit_unlock - Clears a bit in memory
170  * @nr: Bit to clear
171  * @addr: Address to start counting from
172  *
173  * clear_bit() is atomic and implies release semantics before the memory
174  * operation. It can be used for an unlock.
175  */
176 static inline void clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
177 {
179  clear_bit(nr, addr);
180 }
181 
182 /*
183  * change_bit - Toggle a bit in memory
184  * @nr: Bit to change
185  * @addr: Address to start counting from
186  *
187  * change_bit() is atomic and may not be reordered.
188  * Note that @nr may be almost arbitrarily large; this function is not
189  * restricted to acting on a single-word quantity.
190  */
191 static inline void change_bit(unsigned long nr, volatile unsigned long *addr)
192 {
193  int bit = nr & SZLONG_MASK;
194 
196  unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
197  unsigned long temp;
198 
199  __asm__ __volatile__(
200  " .set mips3 \n"
201  "1: " __LL "%0, %1 # change_bit \n"
202  " xor %0, %2 \n"
203  " " __SC "%0, %1 \n"
204  " beqzl %0, 1b \n"
205  " .set mips0 \n"
206  : "=&r" (temp), "+m" (*m)
207  : "ir" (1UL << bit));
208  } else if (kernel_uses_llsc) {
209  unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
210  unsigned long temp;
211 
212  do {
213  __asm__ __volatile__(
214  " .set mips3 \n"
215  " " __LL "%0, %1 # change_bit \n"
216  " xor %0, %2 \n"
217  " " __SC "%0, %1 \n"
218  " .set mips0 \n"
219  : "=&r" (temp), "+m" (*m)
220  : "ir" (1UL << bit));
221  } while (unlikely(!temp));
222  } else
223  __mips_change_bit(nr, addr);
224 }
225 
226 /*
227  * test_and_set_bit - Set a bit and return its old value
228  * @nr: Bit to set
229  * @addr: Address to count from
230  *
231  * This operation is atomic and cannot be reordered.
232  * It also implies a memory barrier.
233  */
234 static inline int test_and_set_bit(unsigned long nr,
235  volatile unsigned long *addr)
236 {
237  int bit = nr & SZLONG_MASK;
238  unsigned long res;
239 
241 
243  unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
244  unsigned long temp;
245 
246  __asm__ __volatile__(
247  " .set mips3 \n"
248  "1: " __LL "%0, %1 # test_and_set_bit \n"
249  " or %2, %0, %3 \n"
250  " " __SC "%2, %1 \n"
251  " beqzl %2, 1b \n"
252  " and %2, %0, %3 \n"
253  " .set mips0 \n"
254  : "=&r" (temp), "+m" (*m), "=&r" (res)
255  : "r" (1UL << bit)
256  : "memory");
257  } else if (kernel_uses_llsc) {
258  unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
259  unsigned long temp;
260 
261  do {
262  __asm__ __volatile__(
263  " .set mips3 \n"
264  " " __LL "%0, %1 # test_and_set_bit \n"
265  " or %2, %0, %3 \n"
266  " " __SC "%2, %1 \n"
267  " .set mips0 \n"
268  : "=&r" (temp), "+m" (*m), "=&r" (res)
269  : "r" (1UL << bit)
270  : "memory");
271  } while (unlikely(!res));
272 
273  res = temp & (1UL << bit);
274  } else
275  res = __mips_test_and_set_bit(nr, addr);
276 
277  smp_llsc_mb();
278 
279  return res != 0;
280 }
281 
282 /*
283  * test_and_set_bit_lock - Set a bit and return its old value
284  * @nr: Bit to set
285  * @addr: Address to count from
286  *
287  * This operation is atomic and implies acquire ordering semantics
288  * after the memory operation.
289  */
290 static inline int test_and_set_bit_lock(unsigned long nr,
291  volatile unsigned long *addr)
292 {
293  int bit = nr & SZLONG_MASK;
294  unsigned long res;
295 
297  unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
298  unsigned long temp;
299 
300  __asm__ __volatile__(
301  " .set mips3 \n"
302  "1: " __LL "%0, %1 # test_and_set_bit \n"
303  " or %2, %0, %3 \n"
304  " " __SC "%2, %1 \n"
305  " beqzl %2, 1b \n"
306  " and %2, %0, %3 \n"
307  " .set mips0 \n"
308  : "=&r" (temp), "+m" (*m), "=&r" (res)
309  : "r" (1UL << bit)
310  : "memory");
311  } else if (kernel_uses_llsc) {
312  unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
313  unsigned long temp;
314 
315  do {
316  __asm__ __volatile__(
317  " .set mips3 \n"
318  " " __LL "%0, %1 # test_and_set_bit \n"
319  " or %2, %0, %3 \n"
320  " " __SC "%2, %1 \n"
321  " .set mips0 \n"
322  : "=&r" (temp), "+m" (*m), "=&r" (res)
323  : "r" (1UL << bit)
324  : "memory");
325  } while (unlikely(!res));
326 
327  res = temp & (1UL << bit);
328  } else
329  res = __mips_test_and_set_bit_lock(nr, addr);
330 
331  smp_llsc_mb();
332 
333  return res != 0;
334 }
335 /*
336  * test_and_clear_bit - Clear a bit and return its old value
337  * @nr: Bit to clear
338  * @addr: Address to count from
339  *
340  * This operation is atomic and cannot be reordered.
341  * It also implies a memory barrier.
342  */
343 static inline int test_and_clear_bit(unsigned long nr,
344  volatile unsigned long *addr)
345 {
346  int bit = nr & SZLONG_MASK;
347  unsigned long res;
348 
350 
352  unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
353  unsigned long temp;
354 
355  __asm__ __volatile__(
356  " .set mips3 \n"
357  "1: " __LL "%0, %1 # test_and_clear_bit \n"
358  " or %2, %0, %3 \n"
359  " xor %2, %3 \n"
360  " " __SC "%2, %1 \n"
361  " beqzl %2, 1b \n"
362  " and %2, %0, %3 \n"
363  " .set mips0 \n"
364  : "=&r" (temp), "+m" (*m), "=&r" (res)
365  : "r" (1UL << bit)
366  : "memory");
367 #ifdef CONFIG_CPU_MIPSR2
368  } else if (kernel_uses_llsc && __builtin_constant_p(nr)) {
369  unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
370  unsigned long temp;
371 
372  do {
373  __asm__ __volatile__(
374  " " __LL "%0, %1 # test_and_clear_bit \n"
375  " " __EXT "%2, %0, %3, 1 \n"
376  " " __INS "%0, $0, %3, 1 \n"
377  " " __SC "%0, %1 \n"
378  : "=&r" (temp), "+m" (*m), "=&r" (res)
379  : "ir" (bit)
380  : "memory");
381  } while (unlikely(!temp));
382 #endif
383  } else if (kernel_uses_llsc) {
384  unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
385  unsigned long temp;
386 
387  do {
388  __asm__ __volatile__(
389  " .set mips3 \n"
390  " " __LL "%0, %1 # test_and_clear_bit \n"
391  " or %2, %0, %3 \n"
392  " xor %2, %3 \n"
393  " " __SC "%2, %1 \n"
394  " .set mips0 \n"
395  : "=&r" (temp), "+m" (*m), "=&r" (res)
396  : "r" (1UL << bit)
397  : "memory");
398  } while (unlikely(!res));
399 
400  res = temp & (1UL << bit);
401  } else
402  res = __mips_test_and_clear_bit(nr, addr);
403 
404  smp_llsc_mb();
405 
406  return res != 0;
407 }
408 
409 /*
410  * test_and_change_bit - Change a bit and return its old value
411  * @nr: Bit to change
412  * @addr: Address to count from
413  *
414  * This operation is atomic and cannot be reordered.
415  * It also implies a memory barrier.
416  */
417 static inline int test_and_change_bit(unsigned long nr,
418  volatile unsigned long *addr)
419 {
420  int bit = nr & SZLONG_MASK;
421  unsigned long res;
422 
424 
426  unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
427  unsigned long temp;
428 
429  __asm__ __volatile__(
430  " .set mips3 \n"
431  "1: " __LL "%0, %1 # test_and_change_bit \n"
432  " xor %2, %0, %3 \n"
433  " " __SC "%2, %1 \n"
434  " beqzl %2, 1b \n"
435  " and %2, %0, %3 \n"
436  " .set mips0 \n"
437  : "=&r" (temp), "+m" (*m), "=&r" (res)
438  : "r" (1UL << bit)
439  : "memory");
440  } else if (kernel_uses_llsc) {
441  unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
442  unsigned long temp;
443 
444  do {
445  __asm__ __volatile__(
446  " .set mips3 \n"
447  " " __LL "%0, %1 # test_and_change_bit \n"
448  " xor %2, %0, %3 \n"
449  " " __SC "\t%2, %1 \n"
450  " .set mips0 \n"
451  : "=&r" (temp), "+m" (*m), "=&r" (res)
452  : "r" (1UL << bit)
453  : "memory");
454  } while (unlikely(!res));
455 
456  res = temp & (1UL << bit);
457  } else
458  res = __mips_test_and_change_bit(nr, addr);
459 
460  smp_llsc_mb();
461 
462  return res != 0;
463 }
464 
466 
467 /*
468  * __clear_bit_unlock - Clears a bit in memory
469  * @nr: Bit to clear
470  * @addr: Address to start counting from
471  *
472  * __clear_bit() is non-atomic and implies release semantics before the memory
473  * operation. It can be used for an unlock if no other CPUs can concurrently
474  * modify other bits in the word.
475  */
476 static inline void __clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
477 {
478  smp_mb();
479  __clear_bit(nr, addr);
480 }
481 
482 /*
483  * Return the bit position (0..63) of the most significant 1 bit in a word
484  * Returns -1 if no 1 bit exists
485  */
486 static inline unsigned long __fls(unsigned long word)
487 {
488  int num;
489 
490  if (BITS_PER_LONG == 32 &&
491  __builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
492  __asm__(
493  " .set push \n"
494  " .set mips32 \n"
495  " clz %0, %1 \n"
496  " .set pop \n"
497  : "=r" (num)
498  : "r" (word));
499 
500  return 31 - num;
501  }
502 
503  if (BITS_PER_LONG == 64 &&
504  __builtin_constant_p(cpu_has_mips64) && cpu_has_mips64) {
505  __asm__(
506  " .set push \n"
507  " .set mips64 \n"
508  " dclz %0, %1 \n"
509  " .set pop \n"
510  : "=r" (num)
511  : "r" (word));
512 
513  return 63 - num;
514  }
515 
516  num = BITS_PER_LONG - 1;
517 
518 #if BITS_PER_LONG == 64
519  if (!(word & (~0ul << 32))) {
520  num -= 32;
521  word <<= 32;
522  }
523 #endif
524  if (!(word & (~0ul << (BITS_PER_LONG-16)))) {
525  num -= 16;
526  word <<= 16;
527  }
528  if (!(word & (~0ul << (BITS_PER_LONG-8)))) {
529  num -= 8;
530  word <<= 8;
531  }
532  if (!(word & (~0ul << (BITS_PER_LONG-4)))) {
533  num -= 4;
534  word <<= 4;
535  }
536  if (!(word & (~0ul << (BITS_PER_LONG-2)))) {
537  num -= 2;
538  word <<= 2;
539  }
540  if (!(word & (~0ul << (BITS_PER_LONG-1))))
541  num -= 1;
542  return num;
543 }
544 
545 /*
546  * __ffs - find first bit in word.
547  * @word: The word to search
548  *
549  * Returns 0..SZLONG-1
550  * Undefined if no bit exists, so code should check against 0 first.
551  */
552 static inline unsigned long __ffs(unsigned long word)
553 {
554  return __fls(word & -word);
555 }
556 
557 /*
558  * fls - find last bit set.
559  * @word: The word to search
560  *
561  * This is defined the same way as ffs.
562  * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
563  */
564 static inline int fls(int x)
565 {
566  int r;
567 
568  if (__builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
569  __asm__("clz %0, %1" : "=r" (x) : "r" (x));
570 
571  return 32 - x;
572  }
573 
574  r = 32;
575  if (!x)
576  return 0;
577  if (!(x & 0xffff0000u)) {
578  x <<= 16;
579  r -= 16;
580  }
581  if (!(x & 0xff000000u)) {
582  x <<= 8;
583  r -= 8;
584  }
585  if (!(x & 0xf0000000u)) {
586  x <<= 4;
587  r -= 4;
588  }
589  if (!(x & 0xc0000000u)) {
590  x <<= 2;
591  r -= 2;
592  }
593  if (!(x & 0x80000000u)) {
594  x <<= 1;
595  r -= 1;
596  }
597  return r;
598 }
599 
601 
602 /*
603  * ffs - find first bit set.
604  * @word: The word to search
605  *
606  * This is defined the same way as
607  * the libc and compiler builtin ffs routines, therefore
608  * differs in spirit from the above ffz (man ffs).
609  */
610 static inline int ffs(int word)
611 {
612  if (!word)
613  return 0;
614 
615  return fls(word & -word);
616 }
617 
618 #include <asm-generic/bitops/ffz.h>
619 #include <asm-generic/bitops/find.h>
620 
621 #ifdef __KERNEL__
622 
624 
625 #include <asm/arch_hweight.h>
627 
628 #include <asm-generic/bitops/le.h>
630 
631 #endif /* __KERNEL__ */
632 
633 #endif /* _ASM_BITOPS_H */