Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
io.h
Go to the documentation of this file.
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License. See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994, 1995 Waldorf GmbH
7  * Copyright (C) 1994 - 2000, 06 Ralf Baechle
8  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9  * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved.
10  * Author: Maciej W. Rozycki <[email protected]>
11  */
12 #ifndef _ASM_IO_H
13 #define _ASM_IO_H
14 
15 #include <linux/compiler.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/irqflags.h>
19 
20 #include <asm/addrspace.h>
21 #include <asm/bug.h>
22 #include <asm/byteorder.h>
23 #include <asm/cpu.h>
24 #include <asm/cpu-features.h>
25 #include <asm-generic/iomap.h>
26 #include <asm/page.h>
27 #include <asm/pgtable-bits.h>
28 #include <asm/processor.h>
29 #include <asm/string.h>
30 
31 #include <ioremap.h>
32 #include <mangle-port.h>
33 
34 /*
35  * Slowdown I/O port space accesses for antique hardware.
36  */
37 #undef CONF_SLOWDOWN_IO
38 
39 /*
40  * Raw operations are never swapped in software. OTOH values that raw
41  * operations are working on may or may not have been swapped by the bus
42  * hardware. An example use would be for flash memory that's used for
43  * execute in place.
44  */
45 # define __raw_ioswabb(a, x) (x)
46 # define __raw_ioswabw(a, x) (x)
47 # define __raw_ioswabl(a, x) (x)
48 # define __raw_ioswabq(a, x) (x)
49 # define ____raw_ioswabq(a, x) (x)
50 
51 /* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
52 
53 #define IO_SPACE_LIMIT 0xffff
54 
55 /*
56  * On MIPS I/O ports are memory mapped, so we access them using normal
57  * load/store instructions. mips_io_port_base is the virtual address to
58  * which all ports are being mapped. For sake of efficiency some code
59  * assumes that this is an address that can be loaded with a single lui
60  * instruction, so the lower 16 bits must be zero. Should be true on
61  * on any sane architecture; generic code does not use this assumption.
62  */
63 extern const unsigned long mips_io_port_base;
64 
65 /*
66  * Gcc will generate code to load the value of mips_io_port_base after each
67  * function call which may be fairly wasteful in some cases. So we don't
68  * play quite by the book. We tell gcc mips_io_port_base is a long variable
69  * which solves the code generation issue. Now we need to violate the
70  * aliasing rules a little to make initialization possible and finally we
71  * will need the barrier() to fight side effects of the aliasing chat.
72  * This trickery will eventually collapse under gcc's optimizer. Oh well.
73  */
74 static inline void set_io_port_base(unsigned long base)
75 {
76  * (unsigned long *) &mips_io_port_base = base;
77  barrier();
78 }
79 
80 /*
81  * Thanks to James van Artsdalen for a better timing-fix than
82  * the two short jumps: using outb's to a nonexistent port seems
83  * to guarantee better timings even on fast machines.
84  *
85  * On the other hand, I'd like to be sure of a non-existent port:
86  * I feel a bit unsafe about using 0x80 (should be safe, though)
87  *
88  * Linus
89  *
90  */
91 
92 #define __SLOW_DOWN_IO \
93  __asm__ __volatile__( \
94  "sb\t$0,0x80(%0)" \
95  : : "r" (mips_io_port_base));
96 
97 #ifdef CONF_SLOWDOWN_IO
98 #ifdef REALLY_SLOW_IO
99 #define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; }
100 #else
101 #define SLOW_DOWN_IO __SLOW_DOWN_IO
102 #endif
103 #else
104 #define SLOW_DOWN_IO
105 #endif
106 
107 /*
108  * virt_to_phys - map virtual addresses to physical
109  * @address: address to remap
110  *
111  * The returned physical address is the physical (CPU) mapping for
112  * the memory address given. It is only valid to use this function on
113  * addresses directly mapped or allocated via kmalloc.
114  *
115  * This function does not give bus mappings for DMA transfers. In
116  * almost all conceivable cases a device driver should not be using
117  * this function
118  */
119 static inline unsigned long virt_to_phys(volatile const void *address)
120 {
121  return (unsigned long)address - PAGE_OFFSET + PHYS_OFFSET;
122 }
123 
124 /*
125  * phys_to_virt - map physical address to virtual
126  * @address: address to remap
127  *
128  * The returned virtual address is a current CPU mapping for
129  * the memory address given. It is only valid to use this function on
130  * addresses that have a kernel mapping
131  *
132  * This function does not handle bus mappings for DMA transfers. In
133  * almost all conceivable cases a device driver should not be using
134  * this function
135  */
136 static inline void * phys_to_virt(unsigned long address)
137 {
138  return (void *)(address + PAGE_OFFSET - PHYS_OFFSET);
139 }
140 
141 /*
142  * ISA I/O bus memory addresses are 1:1 with the physical address.
143  */
144 static inline unsigned long isa_virt_to_bus(volatile void * address)
145 {
146  return (unsigned long)address - PAGE_OFFSET;
147 }
148 
149 static inline void * isa_bus_to_virt(unsigned long address)
150 {
151  return (void *)(address + PAGE_OFFSET);
152 }
153 
154 #define isa_page_to_bus page_to_phys
155 
156 /*
157  * However PCI ones are not necessarily 1:1 and therefore these interfaces
158  * are forbidden in portable PCI drivers.
159  *
160  * Allow them for x86 for legacy drivers, though.
161  */
162 #define virt_to_bus virt_to_phys
163 #define bus_to_virt phys_to_virt
164 
165 /*
166  * Change "struct page" to physical address.
167  */
168 #define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
169 
170 extern void __iomem * __ioremap(phys_t offset, phys_t size, unsigned long flags);
171 extern void __iounmap(const volatile void __iomem *addr);
172 
173 static inline void __iomem * __ioremap_mode(phys_t offset, unsigned long size,
174  unsigned long flags)
175 {
176  void __iomem *addr = plat_ioremap(offset, size, flags);
177 
178  if (addr)
179  return addr;
180 
181 #define __IS_LOW512(addr) (!((phys_t)(addr) & (phys_t) ~0x1fffffffULL))
182 
184  u64 base = UNCAC_BASE;
185 
186  /*
187  * R10000 supports a 2 bit uncached attribute therefore
188  * UNCAC_BASE may not equal IO_BASE.
189  */
190  if (flags == _CACHE_UNCACHED)
191  base = (u64) IO_BASE;
192  return (void __iomem *) (unsigned long) (base + offset);
193  } else if (__builtin_constant_p(offset) &&
194  __builtin_constant_p(size) && __builtin_constant_p(flags)) {
195  phys_t phys_addr, last_addr;
196 
197  phys_addr = fixup_bigphys_addr(offset, size);
198 
199  /* Don't allow wraparound or zero size. */
200  last_addr = phys_addr + size - 1;
201  if (!size || last_addr < phys_addr)
202  return NULL;
203 
204  /*
205  * Map uncached objects in the low 512MB of address
206  * space using KSEG1.
207  */
208  if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) &&
209  flags == _CACHE_UNCACHED)
210  return (void __iomem *)
211  (unsigned long)CKSEG1ADDR(phys_addr);
212  }
213 
214  return __ioremap(offset, size, flags);
215 
216 #undef __IS_LOW512
217 }
218 
219 /*
220  * ioremap - map bus memory into CPU space
221  * @offset: bus address of the memory
222  * @size: size of the resource to map
223  *
224  * ioremap performs a platform specific sequence of operations to
225  * make bus memory CPU accessible via the readb/readw/readl/writeb/
226  * writew/writel functions and the other mmio helpers. The returned
227  * address is not guaranteed to be usable directly as a virtual
228  * address.
229  */
230 #define ioremap(offset, size) \
231  __ioremap_mode((offset), (size), _CACHE_UNCACHED)
232 
233 /*
234  * ioremap_nocache - map bus memory into CPU space
235  * @offset: bus address of the memory
236  * @size: size of the resource to map
237  *
238  * ioremap_nocache performs a platform specific sequence of operations to
239  * make bus memory CPU accessible via the readb/readw/readl/writeb/
240  * writew/writel functions and the other mmio helpers. The returned
241  * address is not guaranteed to be usable directly as a virtual
242  * address.
243  *
244  * This version of ioremap ensures that the memory is marked uncachable
245  * on the CPU as well as honouring existing caching rules from things like
246  * the PCI bus. Note that there are other caches and buffers on many
247  * busses. In particular driver authors should read up on PCI writes
248  *
249  * It's useful if some control registers are in such an area and
250  * write combining or read caching is not desirable:
251  */
252 #define ioremap_nocache(offset, size) \
253  __ioremap_mode((offset), (size), _CACHE_UNCACHED)
254 
255 /*
256  * ioremap_cachable - map bus memory into CPU space
257  * @offset: bus address of the memory
258  * @size: size of the resource to map
259  *
260  * ioremap_nocache performs a platform specific sequence of operations to
261  * make bus memory CPU accessible via the readb/readw/readl/writeb/
262  * writew/writel functions and the other mmio helpers. The returned
263  * address is not guaranteed to be usable directly as a virtual
264  * address.
265  *
266  * This version of ioremap ensures that the memory is marked cachable by
267  * the CPU. Also enables full write-combining. Useful for some
268  * memory-like regions on I/O busses.
269  */
270 #define ioremap_cachable(offset, size) \
271  __ioremap_mode((offset), (size), _page_cachable_default)
272 
273 /*
274  * These two are MIPS specific ioremap variant. ioremap_cacheable_cow
275  * requests a cachable mapping, ioremap_uncached_accelerated requests a
276  * mapping using the uncached accelerated mode which isn't supported on
277  * all processors.
278  */
279 #define ioremap_cacheable_cow(offset, size) \
280  __ioremap_mode((offset), (size), _CACHE_CACHABLE_COW)
281 #define ioremap_uncached_accelerated(offset, size) \
282  __ioremap_mode((offset), (size), _CACHE_UNCACHED_ACCELERATED)
283 
284 static inline void iounmap(const volatile void __iomem *addr)
285 {
286  if (plat_iounmap(addr))
287  return;
288 
289 #define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1)
290 
292  (__builtin_constant_p(addr) && __IS_KSEG1(addr)))
293  return;
294 
295  __iounmap(addr);
296 
297 #undef __IS_KSEG1
298 }
299 
300 #ifdef CONFIG_CPU_CAVIUM_OCTEON
301 #define war_octeon_io_reorder_wmb() wmb()
302 #else
303 #define war_octeon_io_reorder_wmb() do { } while (0)
304 #endif
305 
306 #define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq) \
307  \
308 static inline void pfx##write##bwlq(type val, \
309  volatile void __iomem *mem) \
310 { \
311  volatile type *__mem; \
312  type __val; \
313  \
314  war_octeon_io_reorder_wmb(); \
315  \
316  __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
317  \
318  __val = pfx##ioswab##bwlq(__mem, val); \
319  \
320  if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
321  *__mem = __val; \
322  else if (cpu_has_64bits) { \
323  unsigned long __flags; \
324  type __tmp; \
325  \
326  if (irq) \
327  local_irq_save(__flags); \
328  __asm__ __volatile__( \
329  ".set mips3" "\t\t# __writeq""\n\t" \
330  "dsll32 %L0, %L0, 0" "\n\t" \
331  "dsrl32 %L0, %L0, 0" "\n\t" \
332  "dsll32 %M0, %M0, 0" "\n\t" \
333  "or %L0, %L0, %M0" "\n\t" \
334  "sd %L0, %2" "\n\t" \
335  ".set mips0" "\n" \
336  : "=r" (__tmp) \
337  : "0" (__val), "m" (*__mem)); \
338  if (irq) \
339  local_irq_restore(__flags); \
340  } else \
341  BUG(); \
342 } \
343  \
344 static inline type pfx##read##bwlq(const volatile void __iomem *mem) \
345 { \
346  volatile type *__mem; \
347  type __val; \
348  \
349  __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
350  \
351  if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
352  __val = *__mem; \
353  else if (cpu_has_64bits) { \
354  unsigned long __flags; \
355  \
356  if (irq) \
357  local_irq_save(__flags); \
358  __asm__ __volatile__( \
359  ".set mips3" "\t\t# __readq" "\n\t" \
360  "ld %L0, %1" "\n\t" \
361  "dsra32 %M0, %L0, 0" "\n\t" \
362  "sll %L0, %L0, 0" "\n\t" \
363  ".set mips0" "\n" \
364  : "=r" (__val) \
365  : "m" (*__mem)); \
366  if (irq) \
367  local_irq_restore(__flags); \
368  } else { \
369  __val = 0; \
370  BUG(); \
371  } \
372  \
373  return pfx##ioswab##bwlq(__mem, __val); \
374 }
375 
376 #define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow) \
377  \
378 static inline void pfx##out##bwlq##p(type val, unsigned long port) \
379 { \
380  volatile type *__addr; \
381  type __val; \
382  \
383  war_octeon_io_reorder_wmb(); \
384  \
385  __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
386  \
387  __val = pfx##ioswab##bwlq(__addr, val); \
388  \
389  /* Really, we want this to be atomic */ \
390  BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
391  \
392  *__addr = __val; \
393  slow; \
394 } \
395  \
396 static inline type pfx##in##bwlq##p(unsigned long port) \
397 { \
398  volatile type *__addr; \
399  type __val; \
400  \
401  __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
402  \
403  BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
404  \
405  __val = *__addr; \
406  slow; \
407  \
408  return pfx##ioswab##bwlq(__addr, __val); \
409 }
410 
411 #define __BUILD_MEMORY_PFX(bus, bwlq, type) \
412  \
413 __BUILD_MEMORY_SINGLE(bus, bwlq, type, 1)
414 
415 #define BUILDIO_MEM(bwlq, type) \
416  \
417 __BUILD_MEMORY_PFX(__raw_, bwlq, type) \
418 __BUILD_MEMORY_PFX(, bwlq, type) \
419 __BUILD_MEMORY_PFX(__mem_, bwlq, type) \
420 
421 BUILDIO_MEM(b, u8)
422 BUILDIO_MEM(w, u16)
423 BUILDIO_MEM(l, u32)
424 BUILDIO_MEM(q, u64)
425 
426 #define __BUILD_IOPORT_PFX(bus, bwlq, type) \
427  __BUILD_IOPORT_SINGLE(bus, bwlq, type, ,) \
428  __BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO)
429 
430 #define BUILDIO_IOPORT(bwlq, type) \
431  __BUILD_IOPORT_PFX(, bwlq, type) \
432  __BUILD_IOPORT_PFX(__mem_, bwlq, type)
433 
437 #ifdef CONFIG_64BIT
439 #endif
440 
441 #define __BUILDIO(bwlq, type) \
442  \
443 __BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 0)
444 
445 __BUILDIO(q, u64)
446 
447 #define readb_relaxed readb
448 #define readw_relaxed readw
449 #define readl_relaxed readl
450 #define readq_relaxed readq
451 
452 #define readb_be(addr) \
453  __raw_readb((__force unsigned *)(addr))
454 #define readw_be(addr) \
455  be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
456 #define readl_be(addr) \
457  be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
458 #define readq_be(addr) \
459  be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
460 
461 #define writeb_be(val, addr) \
462  __raw_writeb((val), (__force unsigned *)(addr))
463 #define writew_be(val, addr) \
464  __raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
465 #define writel_be(val, addr) \
466  __raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
467 #define writeq_be(val, addr) \
468  __raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
469 
470 /*
471  * Some code tests for these symbols
472  */
473 #define readq readq
474 #define writeq writeq
475 
476 #define __BUILD_MEMORY_STRING(bwlq, type) \
477  \
478 static inline void writes##bwlq(volatile void __iomem *mem, \
479  const void *addr, unsigned int count) \
480 { \
481  const volatile type *__addr = addr; \
482  \
483  while (count--) { \
484  __mem_write##bwlq(*__addr, mem); \
485  __addr++; \
486  } \
487 } \
488  \
489 static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \
490  unsigned int count) \
491 { \
492  volatile type *__addr = addr; \
493  \
494  while (count--) { \
495  *__addr = __mem_read##bwlq(mem); \
496  __addr++; \
497  } \
498 }
499 
500 #define __BUILD_IOPORT_STRING(bwlq, type) \
501  \
502 static inline void outs##bwlq(unsigned long port, const void *addr, \
503  unsigned int count) \
504 { \
505  const volatile type *__addr = addr; \
506  \
507  while (count--) { \
508  __mem_out##bwlq(*__addr, port); \
509  __addr++; \
510  } \
511 } \
512  \
513 static inline void ins##bwlq(unsigned long port, void *addr, \
514  unsigned int count) \
515 { \
516  volatile type *__addr = addr; \
517  \
518  while (count--) { \
519  *__addr = __mem_in##bwlq(port); \
520  __addr++; \
521  } \
522 }
523 
524 #define BUILDSTRING(bwlq, type) \
525  \
526 __BUILD_MEMORY_STRING(bwlq, type) \
527 __BUILD_IOPORT_STRING(bwlq, type)
528 
529 BUILDSTRING(b, u8)
530 BUILDSTRING(w, u16)
531 BUILDSTRING(l, u32)
532 #ifdef CONFIG_64BIT
533 BUILDSTRING(q, u64)
534 #endif
535 
536 
537 #ifdef CONFIG_CPU_CAVIUM_OCTEON
538 #define mmiowb() wmb()
539 #else
540 /* Depends on MIPS II instruction set */
541 #define mmiowb() asm volatile ("sync" ::: "memory")
542 #endif
543 
544 static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
545 {
546  memset((void __force *) addr, val, count);
547 }
548 static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
549 {
550  memcpy(dst, (void __force *) src, count);
551 }
552 static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
553 {
554  memcpy((void __force *) dst, src, count);
555 }
556 
557 /*
558  * The caches on some architectures aren't dma-coherent and have need to
559  * handle this in software. There are three types of operations that
560  * can be applied to dma buffers.
561  *
562  * - dma_cache_wback_inv(start, size) makes caches and coherent by
563  * writing the content of the caches back to memory, if necessary.
564  * The function also invalidates the affected part of the caches as
565  * necessary before DMA transfers from outside to memory.
566  * - dma_cache_wback(start, size) makes caches and coherent by
567  * writing the content of the caches back to memory, if necessary.
568  * The function also invalidates the affected part of the caches as
569  * necessary before DMA transfers from outside to memory.
570  * - dma_cache_inv(start, size) invalidates the affected parts of the
571  * caches. Dirty lines of the caches may be written back or simply
572  * be discarded. This operation is necessary before dma operations
573  * to the memory.
574  *
575  * This API used to be exported; it now is for arch code internal use only.
576  */
577 #ifdef CONFIG_DMA_NONCOHERENT
578 
579 extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
580 extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
581 extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
582 
583 #define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start, size)
584 #define dma_cache_wback(start, size) _dma_cache_wback(start, size)
585 #define dma_cache_inv(start, size) _dma_cache_inv(start, size)
586 
587 #else /* Sane hardware */
588 
589 #define dma_cache_wback_inv(start,size) \
590  do { (void) (start); (void) (size); } while (0)
591 #define dma_cache_wback(start,size) \
592  do { (void) (start); (void) (size); } while (0)
593 #define dma_cache_inv(start,size) \
594  do { (void) (start); (void) (size); } while (0)
595 
596 #endif /* CONFIG_DMA_NONCOHERENT */
597 
598 /*
599  * Read a 32-bit register that requires a 64-bit read cycle on the bus.
600  * Avoid interrupt mucking, just adjust the address for 4-byte access.
601  * Assume the addresses are 8-byte aligned.
602  */
603 #ifdef __MIPSEB__
604 #define __CSR_32_ADJUST 4
605 #else
606 #define __CSR_32_ADJUST 0
607 #endif
608 
609 #define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
610 #define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
611 
612 /*
613  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
614  * access
615  */
616 #define xlate_dev_mem_ptr(p) __va(p)
617 
618 /*
619  * Convert a virtual cached pointer to an uncached pointer
620  */
621 #define xlate_dev_kmem_ptr(p) p
622 
623 #endif /* _ASM_IO_H */