Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
setup.c
Go to the documentation of this file.
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License. See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1995 Linus Torvalds
7  * Copyright (C) 1995 Waldorf Electronics
8  * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
9  * Copyright (C) 1996 Stoned Elipot
10  * Copyright (C) 1999 Silicon Graphics, Inc.
11  * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
12  */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/export.h>
16 #include <linux/screen_info.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/initrd.h>
20 #include <linux/root_dev.h>
21 #include <linux/highmem.h>
22 #include <linux/console.h>
23 #include <linux/pfn.h>
24 #include <linux/debugfs.h>
25 
26 #include <asm/addrspace.h>
27 #include <asm/bootinfo.h>
28 #include <asm/bugs.h>
29 #include <asm/cache.h>
30 #include <asm/cpu.h>
31 #include <asm/sections.h>
32 #include <asm/setup.h>
33 #include <asm/smp-ops.h>
34 #include <asm/prom.h>
35 
37 
39 
40 #ifdef CONFIG_VT
42 #endif
43 
44 /*
45  * Despite it's name this variable is even if we don't have PCI
46  */
47 unsigned int PCI_DMA_BUS_IS_PHYS;
48 
50 
51 /*
52  * Setup information
53  *
54  * These are initialized so they are in the .data section
55  */
57 
58 EXPORT_SYMBOL(mips_machtype);
59 
61 
64 
65 #ifdef CONFIG_CMDLINE_BOOL
66 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
67 #endif
68 
69 /*
70  * mips_io_port_base is the begin of the address space to which x86 style
71  * I/O ports are mapped.
72  */
73 const unsigned long mips_io_port_base = -1;
75 
76 static struct resource code_resource = { .name = "Kernel code", };
77 static struct resource data_resource = { .name = "Kernel data", };
78 
80 {
81  int x = boot_mem_map.nr_map;
82  int i;
83 
84  /* Sanity check */
85  if (start + size < start) {
86  pr_warning("Trying to add an invalid memory region, skipped\n");
87  return;
88  }
89 
90  /*
91  * Try to merge with existing entry, if any.
92  */
93  for (i = 0; i < boot_mem_map.nr_map; i++) {
94  struct boot_mem_map_entry *entry = boot_mem_map.map + i;
95  unsigned long top;
96 
97  if (entry->type != type)
98  continue;
99 
100  if (start + size < entry->addr)
101  continue; /* no overlap */
102 
103  if (entry->addr + entry->size < start)
104  continue; /* no overlap */
105 
106  top = max(entry->addr + entry->size, start + size);
107  entry->addr = min(entry->addr, start);
108  entry->size = top - entry->addr;
109 
110  return;
111  }
112 
114  pr_err("Ooops! Too many entries in the memory map!\n");
115  return;
116  }
117 
118  boot_mem_map.map[x].addr = start;
119  boot_mem_map.map[x].size = size;
120  boot_mem_map.map[x].type = type;
122 }
123 
124 static void __init print_memory_map(void)
125 {
126  int i;
127  const int field = 2 * sizeof(unsigned long);
128 
129  for (i = 0; i < boot_mem_map.nr_map; i++) {
130  printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
131  field, (unsigned long long) boot_mem_map.map[i].size,
132  field, (unsigned long long) boot_mem_map.map[i].addr);
133 
134  switch (boot_mem_map.map[i].type) {
135  case BOOT_MEM_RAM:
136  printk(KERN_CONT "(usable)\n");
137  break;
138  case BOOT_MEM_INIT_RAM:
139  printk(KERN_CONT "(usable after init)\n");
140  break;
141  case BOOT_MEM_ROM_DATA:
142  printk(KERN_CONT "(ROM data)\n");
143  break;
144  case BOOT_MEM_RESERVED:
145  printk(KERN_CONT "(reserved)\n");
146  break;
147  default:
148  printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
149  break;
150  }
151  }
152 }
153 
154 /*
155  * Manage initrd
156  */
157 #ifdef CONFIG_BLK_DEV_INITRD
158 
159 static int __init rd_start_early(char *p)
160 {
161  unsigned long start = memparse(p, &p);
162 
163 #ifdef CONFIG_64BIT
164  /* Guess if the sign extension was forgotten by bootloader */
165  if (start < XKPHYS)
166  start = (int)start;
167 #endif
169  initrd_end += start;
170  return 0;
171 }
172 early_param("rd_start", rd_start_early);
173 
174 static int __init rd_size_early(char *p)
175 {
176  initrd_end += memparse(p, &p);
177  return 0;
178 }
179 early_param("rd_size", rd_size_early);
180 
181 /* it returns the next free pfn after initrd */
182 static unsigned long __init init_initrd(void)
183 {
184  unsigned long end;
185 
186  /*
187  * Board specific code or command line parser should have
188  * already set up initrd_start and initrd_end. In these cases
189  * perfom sanity checks and use them if all looks good.
190  */
192  goto disable;
193 
194  if (initrd_start & ~PAGE_MASK) {
195  pr_err("initrd start must be page aligned\n");
196  goto disable;
197  }
198  if (initrd_start < PAGE_OFFSET) {
199  pr_err("initrd start < PAGE_OFFSET\n");
200  goto disable;
201  }
202 
203  /*
204  * Sanitize initrd addresses. For example firmware
205  * can't guess if they need to pass them through
206  * 64-bits values if the kernel has been built in pure
207  * 32-bit. We need also to switch from KSEG0 to XKPHYS
208  * addresses now, so the code can now safely use __pa().
209  */
210  end = __pa(initrd_end);
211  initrd_end = (unsigned long)__va(end);
212  initrd_start = (unsigned long)__va(__pa(initrd_start));
213 
215  return PFN_UP(end);
216 disable:
217  initrd_start = 0;
218  initrd_end = 0;
219  return 0;
220 }
221 
222 static void __init finalize_initrd(void)
223 {
224  unsigned long size = initrd_end - initrd_start;
225 
226  if (size == 0) {
227  printk(KERN_INFO "Initrd not found or empty");
228  goto disable;
229  }
231  printk(KERN_ERR "Initrd extends beyond end of memory");
232  goto disable;
233  }
234 
235  reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
237 
238  pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
239  initrd_start, size);
240  return;
241 disable:
242  printk(KERN_CONT " - disabling initrd\n");
243  initrd_start = 0;
244  initrd_end = 0;
245 }
246 
247 #else /* !CONFIG_BLK_DEV_INITRD */
248 
249 static unsigned long __init init_initrd(void)
250 {
251  return 0;
252 }
253 
254 #define finalize_initrd() do {} while (0)
255 
256 #endif
257 
258 /*
259  * Initialize the bootmem allocator. It also setup initrd related data
260  * if needed.
261  */
262 #ifdef CONFIG_SGI_IP27
263 
264 static void __init bootmem_init(void)
265 {
266  init_initrd();
267  finalize_initrd();
268 }
269 
270 #else /* !CONFIG_SGI_IP27 */
271 
272 static void __init bootmem_init(void)
273 {
274  unsigned long reserved_end;
275  unsigned long mapstart = ~0UL;
276  unsigned long bootmap_size;
277  int i;
278 
279  /*
280  * Init any data related to initrd. It's a nop if INITRD is
281  * not selected. Once that done we can determine the low bound
282  * of usable memory.
283  */
284  reserved_end = max(init_initrd(),
285  (unsigned long) PFN_UP(__pa_symbol(&_end)));
286 
287  /*
288  * max_low_pfn is not a number of pages. The number of pages
289  * of the system is given by 'max_low_pfn - min_low_pfn'.
290  */
291  min_low_pfn = ~0UL;
292  max_low_pfn = 0;
293 
294  /*
295  * Find the highest page frame number we have available.
296  */
297  for (i = 0; i < boot_mem_map.nr_map; i++) {
298  unsigned long start, end;
299 
300  if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
301  continue;
302 
303  start = PFN_UP(boot_mem_map.map[i].addr);
304  end = PFN_DOWN(boot_mem_map.map[i].addr
305  + boot_mem_map.map[i].size);
306 
307  if (end > max_low_pfn)
308  max_low_pfn = end;
309  if (start < min_low_pfn)
310  min_low_pfn = start;
311  if (end <= reserved_end)
312  continue;
313  if (start >= mapstart)
314  continue;
315  mapstart = max(reserved_end, start);
316  }
317 
318  if (min_low_pfn >= max_low_pfn)
319  panic("Incorrect memory mapping !!!");
321  pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
322  (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
324  } else if (min_low_pfn < ARCH_PFN_OFFSET) {
325  pr_info("%lu free pages won't be used\n",
327  }
329 
330  /*
331  * Determine low and high memory ranges
332  */
335 #ifdef CONFIG_HIGHMEM
338 #endif
340  }
341 
342  /*
343  * Initialize the boot-time allocator with low memory only.
344  */
345  bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
347 
348 
349  for (i = 0; i < boot_mem_map.nr_map; i++) {
350  unsigned long start, end;
351 
352  start = PFN_UP(boot_mem_map.map[i].addr);
353  end = PFN_DOWN(boot_mem_map.map[i].addr
354  + boot_mem_map.map[i].size);
355 
356  if (start <= min_low_pfn)
357  start = min_low_pfn;
358  if (start >= end)
359  continue;
360 
361 #ifndef CONFIG_HIGHMEM
362  if (end > max_low_pfn)
363  end = max_low_pfn;
364 
365  /*
366  * ... finally, is the area going away?
367  */
368  if (end <= start)
369  continue;
370 #endif
371 
372  memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
373  }
374 
375  /*
376  * Register fully available low RAM pages with the bootmem allocator.
377  */
378  for (i = 0; i < boot_mem_map.nr_map; i++) {
379  unsigned long start, end, size;
380 
381  start = PFN_UP(boot_mem_map.map[i].addr);
382  end = PFN_DOWN(boot_mem_map.map[i].addr
383  + boot_mem_map.map[i].size);
384 
385  /*
386  * Reserve usable memory.
387  */
388  switch (boot_mem_map.map[i].type) {
389  case BOOT_MEM_RAM:
390  break;
391  case BOOT_MEM_INIT_RAM:
392  memory_present(0, start, end);
393  continue;
394  default:
395  /* Not usable memory */
396  continue;
397  }
398 
399  /*
400  * We are rounding up the start address of usable memory
401  * and at the end of the usable range downwards.
402  */
403  if (start >= max_low_pfn)
404  continue;
405  if (start < reserved_end)
406  start = reserved_end;
407  if (end > max_low_pfn)
408  end = max_low_pfn;
409 
410  /*
411  * ... finally, is the area going away?
412  */
413  if (end <= start)
414  continue;
415  size = end - start;
416 
417  /* Register lowmem ranges */
418  free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
419  memory_present(0, start, end);
420  }
421 
422  /*
423  * Reserve the bootmap memory.
424  */
425  reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
426 
427  /*
428  * Reserve initrd memory if needed.
429  */
430  finalize_initrd();
431 }
432 
433 #endif /* CONFIG_SGI_IP27 */
434 
435 /*
436  * arch_mem_init - initialize memory management subsystem
437  *
438  * o plat_mem_setup() detects the memory configuration and will record detected
439  * memory areas using add_memory_region.
440  *
441  * At this stage the memory configuration of the system is known to the
442  * kernel but generic memory management system is still entirely uninitialized.
443  *
444  * o bootmem_init()
445  * o sparse_init()
446  * o paging_init()
447  *
448  * At this stage the bootmem allocator is ready to use.
449  *
450  * NOTE: historically plat_mem_setup did the entire platform initialization.
451  * This was rather impractical because it meant plat_mem_setup had to
452  * get away without any kind of memory allocator. To keep old code from
453  * breaking plat_setup was just renamed to plat_setup and a second platform
454  * initialization hook for anything else was introduced.
455  */
456 
457 static int usermem __initdata;
458 
459 static int __init early_parse_mem(char *p)
460 {
461  unsigned long start, size;
462 
463  /*
464  * If a user specifies memory size, we
465  * blow away any automatically generated
466  * size.
467  */
468  if (usermem == 0) {
469  boot_mem_map.nr_map = 0;
470  usermem = 1;
471  }
472  start = 0;
473  size = memparse(p, &p);
474  if (*p == '@')
475  start = memparse(p + 1, &p);
476 
477  add_memory_region(start, size, BOOT_MEM_RAM);
478  return 0;
479 }
480 early_param("mem", early_parse_mem);
481 
482 static void __init arch_mem_init(char **cmdline_p)
483 {
484  phys_t init_mem, init_end, init_size;
485 
486  extern void plat_mem_setup(void);
487 
488  /* call board setup routine */
489  plat_mem_setup();
490 
491  init_mem = PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT;
492  init_end = PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT;
493  init_size = init_end - init_mem;
494  if (init_size) {
495  /* Make sure it is in the boot_mem_map */
496  int i, found;
497  found = 0;
498  for (i = 0; i < boot_mem_map.nr_map; i++) {
499  if (init_mem >= boot_mem_map.map[i].addr &&
500  init_mem < (boot_mem_map.map[i].addr +
501  boot_mem_map.map[i].size)) {
502  found = 1;
503  break;
504  }
505  }
506  if (!found)
507  add_memory_region(init_mem, init_size,
509  }
510 
511  pr_info("Determined physical RAM map:\n");
512  print_memory_map();
513 
514 #ifdef CONFIG_CMDLINE_BOOL
515 #ifdef CONFIG_CMDLINE_OVERRIDE
516  strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
517 #else
518  if (builtin_cmdline[0]) {
520  strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE);
521  }
523 #endif
524 #else
526 #endif
528 
529  *cmdline_p = command_line;
530 
532 
533  if (usermem) {
534  pr_info("User-defined physical RAM map:\n");
535  print_memory_map();
536  }
537 
538  bootmem_init();
540  sparse_init();
542  paging_init();
543 }
544 
545 static void __init resource_init(void)
546 {
547  int i;
548 
549  if (UNCAC_BASE != IO_BASE)
550  return;
551 
552  code_resource.start = __pa_symbol(&_text);
553  code_resource.end = __pa_symbol(&_etext) - 1;
554  data_resource.start = __pa_symbol(&_etext);
555  data_resource.end = __pa_symbol(&_edata) - 1;
556 
557  /*
558  * Request address space for all standard RAM.
559  */
560  for (i = 0; i < boot_mem_map.nr_map; i++) {
561  struct resource *res;
562  unsigned long start, end;
563 
564  start = boot_mem_map.map[i].addr;
565  end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
566  if (start >= HIGHMEM_START)
567  continue;
568  if (end >= HIGHMEM_START)
569  end = HIGHMEM_START - 1;
570 
571  res = alloc_bootmem(sizeof(struct resource));
572  switch (boot_mem_map.map[i].type) {
573  case BOOT_MEM_RAM:
574  case BOOT_MEM_INIT_RAM:
575  case BOOT_MEM_ROM_DATA:
576  res->name = "System RAM";
577  break;
578  case BOOT_MEM_RESERVED:
579  default:
580  res->name = "reserved";
581  }
582 
583  res->start = start;
584  res->end = end;
585 
588 
589  /*
590  * We don't know which RAM region contains kernel data,
591  * so we try it repeatedly and let the resource manager
592  * test it.
593  */
594  request_resource(res, &code_resource);
595  request_resource(res, &data_resource);
596  }
597 }
598 
599 void __init setup_arch(char **cmdline_p)
600 {
601  cpu_probe();
602  prom_init();
603 
604 #ifdef CONFIG_EARLY_PRINTK
606 #endif
607  cpu_report();
608  check_bugs_early();
609 
610 #if defined(CONFIG_VT)
611 #if defined(CONFIG_VGA_CONSOLE)
612  conswitchp = &vga_con;
613 #elif defined(CONFIG_DUMMY_CONSOLE)
615 #endif
616 #endif
617 
618  arch_mem_init(cmdline_p);
619 
620  resource_init();
621  plat_smp_setup();
622 
623  cpu_cache_init();
624 }
625 
626 unsigned long kernelsp[NR_CPUS];
627 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
628 
629 #ifdef CONFIG_DEBUG_FS
630 struct dentry *mips_debugfs_dir;
631 static int __init debugfs_mips(void)
632 {
633  struct dentry *d;
634 
635  d = debugfs_create_dir("mips", NULL);
636  if (!d)
637  return -ENOMEM;
638  mips_debugfs_dir = d;
639  return 0;
640 }
641 arch_initcall(debugfs_mips);
642 #endif