Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
sched.c
Go to the documentation of this file.
1 /* sched.c - SPU scheduler.
2  *
3  * Copyright (C) IBM 2005
4  * Author: Mark Nutter <[email protected]>
5  *
6  * 2006-03-31 NUMA domains added.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #undef DEBUG
24 
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/vmalloc.h>
32 #include <linux/smp.h>
33 #include <linux/stddef.h>
34 #include <linux/unistd.h>
35 #include <linux/numa.h>
36 #include <linux/mutex.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/pid_namespace.h>
40 #include <linux/proc_fs.h>
41 #include <linux/seq_file.h>
42 
43 #include <asm/io.h>
44 #include <asm/mmu_context.h>
45 #include <asm/spu.h>
46 #include <asm/spu_csa.h>
47 #include <asm/spu_priv1.h>
48 #include "spufs.h"
49 #define CREATE_TRACE_POINTS
50 #include "sputrace.h"
51 
57 };
58 
59 static unsigned long spu_avenrun[3];
60 static struct spu_prio_array *spu_prio;
61 static struct task_struct *spusched_task;
62 static struct timer_list spusched_timer;
63 static struct timer_list spuloadavg_timer;
64 
65 /*
66  * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
67  */
68 #define NORMAL_PRIO 120
69 
70 /*
71  * Frequency of the spu scheduler tick. By default we do one SPU scheduler
72  * tick for every 10 CPU scheduler ticks.
73  */
74 #define SPUSCHED_TICK (10)
75 
76 /*
77  * These are the 'tuning knobs' of the scheduler:
78  *
79  * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
80  * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
81  */
82 #define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
83 #define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK))
84 
85 #define MAX_USER_PRIO (MAX_PRIO - MAX_RT_PRIO)
86 #define SCALE_PRIO(x, prio) \
87  max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
88 
89 /*
90  * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
91  * [800ms ... 100ms ... 5ms]
92  *
93  * The higher a thread's priority, the bigger timeslices
94  * it gets during one round of execution. But even the lowest
95  * priority thread gets MIN_TIMESLICE worth of execution time.
96  */
98 {
99  if (ctx->prio < NORMAL_PRIO)
100  ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
101  else
103 }
104 
105 /*
106  * Update scheduling information from the owning thread.
107  */
109 {
110  /*
111  * assert that the context is not on the runqueue, so it is safe
112  * to change its scheduling parameters.
113  */
114  BUG_ON(!list_empty(&ctx->rq));
115 
116  /*
117  * 32-Bit assignments are atomic on powerpc, and we don't care about
118  * memory ordering here because retrieving the controlling thread is
119  * per definition racy.
120  */
121  ctx->tid = current->pid;
122 
123  /*
124  * We do our own priority calculations, so we normally want
125  * ->static_prio to start with. Unfortunately this field
126  * contains junk for threads with a realtime scheduling
127  * policy so we have to look at ->prio in this case.
128  */
129  if (rt_prio(current->prio))
130  ctx->prio = current->prio;
131  else
132  ctx->prio = current->static_prio;
133  ctx->policy = current->policy;
134 
135  /*
136  * TO DO: the context may be loaded, so we may need to activate
137  * it again on a different node. But it shouldn't hurt anything
138  * to update its parameters, because we know that the scheduler
139  * is not actively looking at this field, since it is not on the
140  * runqueue. The context will be rescheduled on the proper node
141  * if it is timesliced or preempted.
142  */
143  cpumask_copy(&ctx->cpus_allowed, tsk_cpus_allowed(current));
144 
145  /* Save the current cpu id for spu interrupt routing. */
147 }
148 
150 {
151  int node;
152 
153  if (ctx->state == SPU_STATE_RUNNABLE) {
154  node = ctx->spu->node;
155 
156  /*
157  * Take list_mutex to sync with find_victim().
158  */
159  mutex_lock(&cbe_spu_info[node].list_mutex);
161  mutex_unlock(&cbe_spu_info[node].list_mutex);
162  } else {
164  }
165 }
166 
167 static int __node_allowed(struct spu_context *ctx, int node)
168 {
169  if (nr_cpus_node(node)) {
170  const struct cpumask *mask = cpumask_of_node(node);
171 
172  if (cpumask_intersects(mask, &ctx->cpus_allowed))
173  return 1;
174  }
175 
176  return 0;
177 }
178 
179 static int node_allowed(struct spu_context *ctx, int node)
180 {
181  int rval;
182 
183  spin_lock(&spu_prio->runq_lock);
184  rval = __node_allowed(ctx, node);
185  spin_unlock(&spu_prio->runq_lock);
186 
187  return rval;
188 }
189 
191 {
192  int node;
193 
194  /*
195  * Wake up the active spu_contexts.
196  *
197  * When the awakened processes see their "notify_active" flag is set,
198  * they will call spu_switch_notify().
199  */
200  for_each_online_node(node) {
201  struct spu *spu;
202 
203  mutex_lock(&cbe_spu_info[node].list_mutex);
204  list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
205  if (spu->alloc_state != SPU_FREE) {
206  struct spu_context *ctx = spu->ctx;
208  &ctx->sched_flags);
209  mb();
210  wake_up_all(&ctx->stop_wq);
211  }
212  }
213  mutex_unlock(&cbe_spu_info[node].list_mutex);
214  }
215 }
216 
222 static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
223 {
224  spu_context_trace(spu_bind_context__enter, ctx, spu);
225 
226  spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
227 
228  if (ctx->flags & SPU_CREATE_NOSCHED)
229  atomic_inc(&cbe_spu_info[spu->node].reserved_spus);
230 
231  ctx->stats.slb_flt_base = spu->stats.slb_flt;
232  ctx->stats.class2_intr_base = spu->stats.class2_intr;
233 
234  spu_associate_mm(spu, ctx->owner);
235 
236  spin_lock_irq(&spu->register_lock);
237  spu->ctx = ctx;
238  spu->flags = 0;
239  ctx->spu = spu;
240  ctx->ops = &spu_hw_ops;
241  spu->pid = current->pid;
242  spu->tgid = current->tgid;
243  spu->ibox_callback = spufs_ibox_callback;
244  spu->wbox_callback = spufs_wbox_callback;
245  spu->stop_callback = spufs_stop_callback;
246  spu->mfc_callback = spufs_mfc_callback;
247  spin_unlock_irq(&spu->register_lock);
248 
249  spu_unmap_mappings(ctx);
250 
252  spu_restore(&ctx->csa, spu);
253  spu->timestamp = jiffies;
254  spu_switch_notify(spu, ctx);
255  ctx->state = SPU_STATE_RUNNABLE;
256 
257  spuctx_switch_state(ctx, SPU_UTIL_USER);
258 }
259 
260 /*
261  * Must be used with the list_mutex held.
262  */
263 static inline int sched_spu(struct spu *spu)
264 {
265  BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));
266 
267  return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
268 }
269 
270 static void aff_merge_remaining_ctxs(struct spu_gang *gang)
271 {
272  struct spu_context *ctx;
273 
275  if (list_empty(&ctx->aff_list))
276  list_add(&ctx->aff_list, &gang->aff_list_head);
277  }
278  gang->aff_flags |= AFF_MERGED;
279 }
280 
281 static void aff_set_offsets(struct spu_gang *gang)
282 {
283  struct spu_context *ctx;
284  int offset;
285 
286  offset = -1;
287  list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
288  aff_list) {
289  if (&ctx->aff_list == &gang->aff_list_head)
290  break;
291  ctx->aff_offset = offset--;
292  }
293 
294  offset = 0;
295  list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
296  if (&ctx->aff_list == &gang->aff_list_head)
297  break;
298  ctx->aff_offset = offset++;
299  }
300 
301  gang->aff_flags |= AFF_OFFSETS_SET;
302 }
303 
304 static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
305  int group_size, int lowest_offset)
306 {
307  struct spu *spu;
308  int node, n;
309 
310  /*
311  * TODO: A better algorithm could be used to find a good spu to be
312  * used as reference location for the ctxs chain.
313  */
315  for (n = 0; n < MAX_NUMNODES; n++, node++) {
316  /*
317  * "available_spus" counts how many spus are not potentially
318  * going to be used by other affinity gangs whose reference
319  * context is already in place. Although this code seeks to
320  * avoid having affinity gangs with a summed amount of
321  * contexts bigger than the amount of spus in the node,
322  * this may happen sporadically. In this case, available_spus
323  * becomes negative, which is harmless.
324  */
325  int available_spus;
326 
327  node = (node < MAX_NUMNODES) ? node : 0;
328  if (!node_allowed(ctx, node))
329  continue;
330 
331  available_spus = 0;
332  mutex_lock(&cbe_spu_info[node].list_mutex);
333  list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
334  if (spu->ctx && spu->ctx->gang && !spu->ctx->aff_offset
335  && spu->ctx->gang->aff_ref_spu)
336  available_spus -= spu->ctx->gang->contexts;
337  available_spus++;
338  }
339  if (available_spus < ctx->gang->contexts) {
340  mutex_unlock(&cbe_spu_info[node].list_mutex);
341  continue;
342  }
343 
344  list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
345  if ((!mem_aff || spu->has_mem_affinity) &&
346  sched_spu(spu)) {
347  mutex_unlock(&cbe_spu_info[node].list_mutex);
348  return spu;
349  }
350  }
351  mutex_unlock(&cbe_spu_info[node].list_mutex);
352  }
353  return NULL;
354 }
355 
356 static void aff_set_ref_point_location(struct spu_gang *gang)
357 {
358  int mem_aff, gs, lowest_offset;
359  struct spu_context *ctx;
360  struct spu *tmp;
361 
362  mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
363  lowest_offset = 0;
364  gs = 0;
365 
366  list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
367  gs++;
368 
369  list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
370  aff_list) {
371  if (&ctx->aff_list == &gang->aff_list_head)
372  break;
373  lowest_offset = ctx->aff_offset;
374  }
375 
376  gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
377  lowest_offset);
378 }
379 
380 static struct spu *ctx_location(struct spu *ref, int offset, int node)
381 {
382  struct spu *spu;
383 
384  spu = NULL;
385  if (offset >= 0) {
386  list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
387  BUG_ON(spu->node != node);
388  if (offset == 0)
389  break;
390  if (sched_spu(spu))
391  offset--;
392  }
393  } else {
394  list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
395  BUG_ON(spu->node != node);
396  if (offset == 0)
397  break;
398  if (sched_spu(spu))
399  offset++;
400  }
401  }
402 
403  return spu;
404 }
405 
406 /*
407  * affinity_check is called each time a context is going to be scheduled.
408  * It returns the spu ptr on which the context must run.
409  */
410 static int has_affinity(struct spu_context *ctx)
411 {
412  struct spu_gang *gang = ctx->gang;
413 
414  if (list_empty(&ctx->aff_list))
415  return 0;
416 
417  if (atomic_read(&ctx->gang->aff_sched_count) == 0)
418  ctx->gang->aff_ref_spu = NULL;
419 
420  if (!gang->aff_ref_spu) {
421  if (!(gang->aff_flags & AFF_MERGED))
422  aff_merge_remaining_ctxs(gang);
423  if (!(gang->aff_flags & AFF_OFFSETS_SET))
424  aff_set_offsets(gang);
425  aff_set_ref_point_location(gang);
426  }
427 
428  return gang->aff_ref_spu != NULL;
429 }
430 
436 static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
437 {
438  u32 status;
439 
440  spu_context_trace(spu_unbind_context__enter, ctx, spu);
441 
442  spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
443 
444  if (spu->ctx->flags & SPU_CREATE_NOSCHED)
445  atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
446 
447  if (ctx->gang)
448  /*
449  * If ctx->gang->aff_sched_count is positive, SPU affinity is
450  * being considered in this gang. Using atomic_dec_if_positive
451  * allow us to skip an explicit check for affinity in this gang
452  */
453  atomic_dec_if_positive(&ctx->gang->aff_sched_count);
454 
455  spu_switch_notify(spu, NULL);
456  spu_unmap_mappings(ctx);
457  spu_save(&ctx->csa, spu);
459 
460  spin_lock_irq(&spu->register_lock);
461  spu->timestamp = jiffies;
462  ctx->state = SPU_STATE_SAVED;
463  spu->ibox_callback = NULL;
464  spu->wbox_callback = NULL;
465  spu->stop_callback = NULL;
466  spu->mfc_callback = NULL;
467  spu->pid = 0;
468  spu->tgid = 0;
469  ctx->ops = &spu_backing_ops;
470  spu->flags = 0;
471  spu->ctx = NULL;
472  spin_unlock_irq(&spu->register_lock);
473 
474  spu_associate_mm(spu, NULL);
475 
476  ctx->stats.slb_flt +=
477  (spu->stats.slb_flt - ctx->stats.slb_flt_base);
478  ctx->stats.class2_intr +=
479  (spu->stats.class2_intr - ctx->stats.class2_intr_base);
480 
481  /* This maps the underlying spu state to idle */
482  spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
483  ctx->spu = NULL;
484 
485  if (spu_stopped(ctx, &status))
486  wake_up_all(&ctx->stop_wq);
487 }
488 
493 static void __spu_add_to_rq(struct spu_context *ctx)
494 {
495  /*
496  * Unfortunately this code path can be called from multiple threads
497  * on behalf of a single context due to the way the problem state
498  * mmap support works.
499  *
500  * Fortunately we need to wake up all these threads at the same time
501  * and can simply skip the runqueue addition for every but the first
502  * thread getting into this codepath.
503  *
504  * It's still quite hacky, and long-term we should proxy all other
505  * threads through the owner thread so that spu_run is in control
506  * of all the scheduling activity for a given context.
507  */
508  if (list_empty(&ctx->rq)) {
509  list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
510  set_bit(ctx->prio, spu_prio->bitmap);
511  if (!spu_prio->nr_waiting++)
512  mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
513  }
514 }
515 
516 static void spu_add_to_rq(struct spu_context *ctx)
517 {
518  spin_lock(&spu_prio->runq_lock);
519  __spu_add_to_rq(ctx);
520  spin_unlock(&spu_prio->runq_lock);
521 }
522 
523 static void __spu_del_from_rq(struct spu_context *ctx)
524 {
525  int prio = ctx->prio;
526 
527  if (!list_empty(&ctx->rq)) {
528  if (!--spu_prio->nr_waiting)
529  del_timer(&spusched_timer);
530  list_del_init(&ctx->rq);
531 
532  if (list_empty(&spu_prio->runq[prio]))
533  clear_bit(prio, spu_prio->bitmap);
534  }
535 }
536 
537 void spu_del_from_rq(struct spu_context *ctx)
538 {
539  spin_lock(&spu_prio->runq_lock);
540  __spu_del_from_rq(ctx);
541  spin_unlock(&spu_prio->runq_lock);
542 }
543 
544 static void spu_prio_wait(struct spu_context *ctx)
545 {
546  DEFINE_WAIT(wait);
547 
548  /*
549  * The caller must explicitly wait for a context to be loaded
550  * if the nosched flag is set. If NOSCHED is not set, the caller
551  * queues the context and waits for an spu event or error.
552  */
553  BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));
554 
555  spin_lock(&spu_prio->runq_lock);
557  if (!signal_pending(current)) {
558  __spu_add_to_rq(ctx);
559  spin_unlock(&spu_prio->runq_lock);
560  mutex_unlock(&ctx->state_mutex);
561  schedule();
562  mutex_lock(&ctx->state_mutex);
563  spin_lock(&spu_prio->runq_lock);
564  __spu_del_from_rq(ctx);
565  }
566  spin_unlock(&spu_prio->runq_lock);
568  remove_wait_queue(&ctx->stop_wq, &wait);
569 }
570 
571 static struct spu *spu_get_idle(struct spu_context *ctx)
572 {
573  struct spu *spu, *aff_ref_spu;
574  int node, n;
575 
576  spu_context_nospu_trace(spu_get_idle__enter, ctx);
577 
578  if (ctx->gang) {
579  mutex_lock(&ctx->gang->aff_mutex);
580  if (has_affinity(ctx)) {
581  aff_ref_spu = ctx->gang->aff_ref_spu;
582  atomic_inc(&ctx->gang->aff_sched_count);
583  mutex_unlock(&ctx->gang->aff_mutex);
584  node = aff_ref_spu->node;
585 
586  mutex_lock(&cbe_spu_info[node].list_mutex);
587  spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
588  if (spu && spu->alloc_state == SPU_FREE)
589  goto found;
590  mutex_unlock(&cbe_spu_info[node].list_mutex);
591 
592  atomic_dec(&ctx->gang->aff_sched_count);
593  goto not_found;
594  }
595  mutex_unlock(&ctx->gang->aff_mutex);
596  }
598  for (n = 0; n < MAX_NUMNODES; n++, node++) {
599  node = (node < MAX_NUMNODES) ? node : 0;
600  if (!node_allowed(ctx, node))
601  continue;
602 
603  mutex_lock(&cbe_spu_info[node].list_mutex);
604  list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
605  if (spu->alloc_state == SPU_FREE)
606  goto found;
607  }
608  mutex_unlock(&cbe_spu_info[node].list_mutex);
609  }
610 
611  not_found:
612  spu_context_nospu_trace(spu_get_idle__not_found, ctx);
613  return NULL;
614 
615  found:
616  spu->alloc_state = SPU_USED;
617  mutex_unlock(&cbe_spu_info[node].list_mutex);
618  spu_context_trace(spu_get_idle__found, ctx, spu);
619  spu_init_channels(spu);
620  return spu;
621 }
622 
629 static struct spu *find_victim(struct spu_context *ctx)
630 {
631  struct spu_context *victim = NULL;
632  struct spu *spu;
633  int node, n;
634 
635  spu_context_nospu_trace(spu_find_victim__enter, ctx);
636 
637  /*
638  * Look for a possible preemption candidate on the local node first.
639  * If there is no candidate look at the other nodes. This isn't
640  * exactly fair, but so far the whole spu scheduler tries to keep
641  * a strong node affinity. We might want to fine-tune this in
642  * the future.
643  */
644  restart:
646  for (n = 0; n < MAX_NUMNODES; n++, node++) {
647  node = (node < MAX_NUMNODES) ? node : 0;
648  if (!node_allowed(ctx, node))
649  continue;
650 
651  mutex_lock(&cbe_spu_info[node].list_mutex);
652  list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
653  struct spu_context *tmp = spu->ctx;
654 
655  if (tmp && tmp->prio > ctx->prio &&
656  !(tmp->flags & SPU_CREATE_NOSCHED) &&
657  (!victim || tmp->prio > victim->prio)) {
658  victim = spu->ctx;
659  }
660  }
661  if (victim)
662  get_spu_context(victim);
663  mutex_unlock(&cbe_spu_info[node].list_mutex);
664 
665  if (victim) {
666  /*
667  * This nests ctx->state_mutex, but we always lock
668  * higher priority contexts before lower priority
669  * ones, so this is safe until we introduce
670  * priority inheritance schemes.
671  *
672  * XXX if the highest priority context is locked,
673  * this can loop a long time. Might be better to
674  * look at another context or give up after X retries.
675  */
676  if (!mutex_trylock(&victim->state_mutex)) {
677  put_spu_context(victim);
678  victim = NULL;
679  goto restart;
680  }
681 
682  spu = victim->spu;
683  if (!spu || victim->prio <= ctx->prio) {
684  /*
685  * This race can happen because we've dropped
686  * the active list mutex. Not a problem, just
687  * restart the search.
688  */
689  mutex_unlock(&victim->state_mutex);
690  put_spu_context(victim);
691  victim = NULL;
692  goto restart;
693  }
694 
695  spu_context_trace(__spu_deactivate__unload, ctx, spu);
696 
697  mutex_lock(&cbe_spu_info[node].list_mutex);
698  cbe_spu_info[node].nr_active--;
699  spu_unbind_context(spu, victim);
700  mutex_unlock(&cbe_spu_info[node].list_mutex);
701 
702  victim->stats.invol_ctx_switch++;
703  spu->stats.invol_ctx_switch++;
704  if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags))
705  spu_add_to_rq(victim);
706 
707  mutex_unlock(&victim->state_mutex);
708  put_spu_context(victim);
709 
710  return spu;
711  }
712  }
713 
714  return NULL;
715 }
716 
717 static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
718 {
719  int node = spu->node;
720  int success = 0;
721 
722  spu_set_timeslice(ctx);
723 
724  mutex_lock(&cbe_spu_info[node].list_mutex);
725  if (spu->ctx == NULL) {
726  spu_bind_context(spu, ctx);
727  cbe_spu_info[node].nr_active++;
728  spu->alloc_state = SPU_USED;
729  success = 1;
730  }
731  mutex_unlock(&cbe_spu_info[node].list_mutex);
732 
733  if (success)
734  wake_up_all(&ctx->run_wq);
735  else
736  spu_add_to_rq(ctx);
737 }
738 
739 static void spu_schedule(struct spu *spu, struct spu_context *ctx)
740 {
741  /* not a candidate for interruptible because it's called either
742  from the scheduler thread or from spu_deactivate */
743  mutex_lock(&ctx->state_mutex);
744  if (ctx->state == SPU_STATE_SAVED)
745  __spu_schedule(spu, ctx);
746  spu_release(ctx);
747 }
748 
762 static void spu_unschedule(struct spu *spu, struct spu_context *ctx,
763  int free_spu)
764 {
765  int node = spu->node;
766 
767  mutex_lock(&cbe_spu_info[node].list_mutex);
768  cbe_spu_info[node].nr_active--;
769  if (free_spu)
770  spu->alloc_state = SPU_FREE;
771  spu_unbind_context(spu, ctx);
772  ctx->stats.invol_ctx_switch++;
773  spu->stats.invol_ctx_switch++;
774  mutex_unlock(&cbe_spu_info[node].list_mutex);
775 }
776 
786 int spu_activate(struct spu_context *ctx, unsigned long flags)
787 {
788  struct spu *spu;
789 
790  /*
791  * If there are multiple threads waiting for a single context
792  * only one actually binds the context while the others will
793  * only be able to acquire the state_mutex once the context
794  * already is in runnable state.
795  */
796  if (ctx->spu)
797  return 0;
798 
799 spu_activate_top:
800  if (signal_pending(current))
801  return -ERESTARTSYS;
802 
803  spu = spu_get_idle(ctx);
804  /*
805  * If this is a realtime thread we try to get it running by
806  * preempting a lower priority thread.
807  */
808  if (!spu && rt_prio(ctx->prio))
809  spu = find_victim(ctx);
810  if (spu) {
811  unsigned long runcntl;
812 
813  runcntl = ctx->ops->runcntl_read(ctx);
814  __spu_schedule(spu, ctx);
815  if (runcntl & SPU_RUNCNTL_RUNNABLE)
816  spuctx_switch_state(ctx, SPU_UTIL_USER);
817 
818  return 0;
819  }
820 
821  if (ctx->flags & SPU_CREATE_NOSCHED) {
822  spu_prio_wait(ctx);
823  goto spu_activate_top;
824  }
825 
826  spu_add_to_rq(ctx);
827 
828  return 0;
829 }
830 
837 static struct spu_context *grab_runnable_context(int prio, int node)
838 {
839  struct spu_context *ctx;
840  int best;
841 
842  spin_lock(&spu_prio->runq_lock);
843  best = find_first_bit(spu_prio->bitmap, prio);
844  while (best < prio) {
845  struct list_head *rq = &spu_prio->runq[best];
846 
847  list_for_each_entry(ctx, rq, rq) {
848  /* XXX(hch): check for affinity here as well */
849  if (__node_allowed(ctx, node)) {
850  __spu_del_from_rq(ctx);
851  goto found;
852  }
853  }
854  best++;
855  }
856  ctx = NULL;
857  found:
858  spin_unlock(&spu_prio->runq_lock);
859  return ctx;
860 }
861 
862 static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
863 {
864  struct spu *spu = ctx->spu;
865  struct spu_context *new = NULL;
866 
867  if (spu) {
868  new = grab_runnable_context(max_prio, spu->node);
869  if (new || force) {
870  spu_unschedule(spu, ctx, new == NULL);
871  if (new) {
872  if (new->flags & SPU_CREATE_NOSCHED)
873  wake_up(&new->stop_wq);
874  else {
875  spu_release(ctx);
876  spu_schedule(spu, new);
877  /* this one can't easily be made
878  interruptible */
879  mutex_lock(&ctx->state_mutex);
880  }
881  }
882  }
883  }
884 
885  return new != NULL;
886 }
887 
895 void spu_deactivate(struct spu_context *ctx)
896 {
897  spu_context_nospu_trace(spu_deactivate__enter, ctx);
898  __spu_deactivate(ctx, 1, MAX_PRIO);
899 }
900 
909 void spu_yield(struct spu_context *ctx)
910 {
911  spu_context_nospu_trace(spu_yield__enter, ctx);
912  if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
913  mutex_lock(&ctx->state_mutex);
914  __spu_deactivate(ctx, 0, MAX_PRIO);
915  mutex_unlock(&ctx->state_mutex);
916  }
917 }
918 
919 static noinline void spusched_tick(struct spu_context *ctx)
920 {
921  struct spu_context *new = NULL;
922  struct spu *spu = NULL;
923 
924  if (spu_acquire(ctx))
925  BUG(); /* a kernel thread never has signals pending */
926 
927  if (ctx->state != SPU_STATE_RUNNABLE)
928  goto out;
929  if (ctx->flags & SPU_CREATE_NOSCHED)
930  goto out;
931  if (ctx->policy == SCHED_FIFO)
932  goto out;
933 
934  if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
935  goto out;
936 
937  spu = ctx->spu;
938 
939  spu_context_trace(spusched_tick__preempt, ctx, spu);
940 
941  new = grab_runnable_context(ctx->prio + 1, spu->node);
942  if (new) {
943  spu_unschedule(spu, ctx, 0);
945  spu_add_to_rq(ctx);
946  } else {
947  spu_context_nospu_trace(spusched_tick__newslice, ctx);
948  if (!ctx->time_slice)
949  ctx->time_slice++;
950  }
951 out:
952  spu_release(ctx);
953 
954  if (new)
955  spu_schedule(spu, new);
956 }
957 
967 static unsigned long count_active_contexts(void)
968 {
969  int nr_active = 0, node;
970 
971  for (node = 0; node < MAX_NUMNODES; node++)
972  nr_active += cbe_spu_info[node].nr_active;
973  nr_active += spu_prio->nr_waiting;
974 
975  return nr_active;
976 }
977 
984 static void spu_calc_load(void)
985 {
986  unsigned long active_tasks; /* fixed-point */
987 
988  active_tasks = count_active_contexts() * FIXED_1;
989  CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
990  CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
991  CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
992 }
993 
994 static void spusched_wake(unsigned long data)
995 {
996  mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
997  wake_up_process(spusched_task);
998 }
999 
1000 static void spuloadavg_wake(unsigned long data)
1001 {
1002  mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ);
1003  spu_calc_load();
1004 }
1005 
1006 static int spusched_thread(void *unused)
1007 {
1008  struct spu *spu;
1009  int node;
1010 
1011  while (!kthread_should_stop()) {
1013  schedule();
1014  for (node = 0; node < MAX_NUMNODES; node++) {
1015  struct mutex *mtx = &cbe_spu_info[node].list_mutex;
1016 
1017  mutex_lock(mtx);
1018  list_for_each_entry(spu, &cbe_spu_info[node].spus,
1019  cbe_list) {
1020  struct spu_context *ctx = spu->ctx;
1021 
1022  if (ctx) {
1023  get_spu_context(ctx);
1024  mutex_unlock(mtx);
1025  spusched_tick(ctx);
1026  mutex_lock(mtx);
1027  put_spu_context(ctx);
1028  }
1029  }
1030  mutex_unlock(mtx);
1031  }
1032  }
1033 
1034  return 0;
1035 }
1036 
1038  enum spu_utilization_state new_state)
1039 {
1040  unsigned long long curtime;
1041  signed long long delta;
1042  struct timespec ts;
1043  struct spu *spu;
1044  enum spu_utilization_state old_state;
1045  int node;
1046 
1047  ktime_get_ts(&ts);
1048  curtime = timespec_to_ns(&ts);
1049  delta = curtime - ctx->stats.tstamp;
1050 
1051  WARN_ON(!mutex_is_locked(&ctx->state_mutex));
1052  WARN_ON(delta < 0);
1053 
1054  spu = ctx->spu;
1055  old_state = ctx->stats.util_state;
1056  ctx->stats.util_state = new_state;
1057  ctx->stats.tstamp = curtime;
1058 
1059  /*
1060  * Update the physical SPU utilization statistics.
1061  */
1062  if (spu) {
1063  ctx->stats.times[old_state] += delta;
1064  spu->stats.times[old_state] += delta;
1065  spu->stats.util_state = new_state;
1066  spu->stats.tstamp = curtime;
1067  node = spu->node;
1068  if (old_state == SPU_UTIL_USER)
1069  atomic_dec(&cbe_spu_info[node].busy_spus);
1070  if (new_state == SPU_UTIL_USER)
1071  atomic_inc(&cbe_spu_info[node].busy_spus);
1072  }
1073 }
1074 
1075 #define LOAD_INT(x) ((x) >> FSHIFT)
1076 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
1077 
1078 static int show_spu_loadavg(struct seq_file *s, void *private)
1079 {
1080  int a, b, c;
1081 
1082  a = spu_avenrun[0] + (FIXED_1/200);
1083  b = spu_avenrun[1] + (FIXED_1/200);
1084  c = spu_avenrun[2] + (FIXED_1/200);
1085 
1086  /*
1087  * Note that last_pid doesn't really make much sense for the
1088  * SPU loadavg (it even seems very odd on the CPU side...),
1089  * but we include it here to have a 100% compatible interface.
1090  */
1091  seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
1092  LOAD_INT(a), LOAD_FRAC(a),
1093  LOAD_INT(b), LOAD_FRAC(b),
1094  LOAD_INT(c), LOAD_FRAC(c),
1095  count_active_contexts(),
1097  current->nsproxy->pid_ns->last_pid);
1098  return 0;
1099 }
1100 
1101 static int spu_loadavg_open(struct inode *inode, struct file *file)
1102 {
1103  return single_open(file, show_spu_loadavg, NULL);
1104 }
1105 
1106 static const struct file_operations spu_loadavg_fops = {
1107  .open = spu_loadavg_open,
1108  .read = seq_read,
1109  .llseek = seq_lseek,
1110  .release = single_release,
1111 };
1112 
1114 {
1115  struct proc_dir_entry *entry;
1116  int err = -ENOMEM, i;
1117 
1118  spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
1119  if (!spu_prio)
1120  goto out;
1121 
1122  for (i = 0; i < MAX_PRIO; i++) {
1123  INIT_LIST_HEAD(&spu_prio->runq[i]);
1124  __clear_bit(i, spu_prio->bitmap);
1125  }
1126  spin_lock_init(&spu_prio->runq_lock);
1127 
1128  setup_timer(&spusched_timer, spusched_wake, 0);
1129  setup_timer(&spuloadavg_timer, spuloadavg_wake, 0);
1130 
1131  spusched_task = kthread_run(spusched_thread, NULL, "spusched");
1132  if (IS_ERR(spusched_task)) {
1133  err = PTR_ERR(spusched_task);
1134  goto out_free_spu_prio;
1135  }
1136 
1137  mod_timer(&spuloadavg_timer, 0);
1138 
1139  entry = proc_create("spu_loadavg", 0, NULL, &spu_loadavg_fops);
1140  if (!entry)
1141  goto out_stop_kthread;
1142 
1143  pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
1145  return 0;
1146 
1147  out_stop_kthread:
1148  kthread_stop(spusched_task);
1149  out_free_spu_prio:
1150  kfree(spu_prio);
1151  out:
1152  return err;
1153 }
1154 
1155 void spu_sched_exit(void)
1156 {
1157  struct spu *spu;
1158  int node;
1159 
1160  remove_proc_entry("spu_loadavg", NULL);
1161 
1162  del_timer_sync(&spusched_timer);
1163  del_timer_sync(&spuloadavg_timer);
1164  kthread_stop(spusched_task);
1165 
1166  for (node = 0; node < MAX_NUMNODES; node++) {
1167  mutex_lock(&cbe_spu_info[node].list_mutex);
1168  list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
1169  if (spu->alloc_state != SPU_FREE)
1170  spu->alloc_state = SPU_FREE;
1171  mutex_unlock(&cbe_spu_info[node].list_mutex);
1172  }
1173  kfree(spu_prio);
1174 }