Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
nvram.c
Go to the documentation of this file.
1 /*
2  * c 2001 PPC 64 Team, IBM Corp
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version
7  * 2 of the License, or (at your option) any later version.
8  *
9  * /dev/nvram driver for PPC64
10  *
11  * This perhaps should live in drivers/char
12  */
13 
14 
15 #include <linux/types.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/kmsg_dump.h>
21 #include <linux/ctype.h>
22 #include <linux/zlib.h>
23 #include <asm/uaccess.h>
24 #include <asm/nvram.h>
25 #include <asm/rtas.h>
26 #include <asm/prom.h>
27 #include <asm/machdep.h>
28 
29 /* Max bytes to read/write in one go */
30 #define NVRW_CNT 0x20
31 
32 static unsigned int nvram_size;
33 static int nvram_fetch, nvram_store;
34 static char nvram_buf[NVRW_CNT]; /* assume this is in the first 4GB */
35 static DEFINE_SPINLOCK(nvram_lock);
36 
37 struct err_log_info {
39  unsigned int seq_num;
40 };
41 
43  const char *name;
44  int req_size; /* desired size, in bytes */
45  int min_size; /* minimum acceptable size (0 means req_size) */
46  long size; /* size of data portion (excluding err_log_info) */
47  long index; /* offset of data portion of partition */
48 };
49 
50 static struct nvram_os_partition rtas_log_partition = {
51  .name = "ibm,rtas-log",
52  .req_size = 2079,
53  .min_size = 1055,
54  .index = -1
55 };
56 
57 static struct nvram_os_partition oops_log_partition = {
58  .name = "lnx,oops-log",
59  .req_size = 4000,
60  .min_size = 2000,
61  .index = -1
62 };
63 
64 static const char *pseries_nvram_os_partitions[] = {
65  "ibm,rtas-log",
66  "lnx,oops-log",
67  NULL
68 };
69 
70 static void oops_to_nvram(struct kmsg_dumper *dumper,
72 
73 static struct kmsg_dumper nvram_kmsg_dumper = {
74  .dump = oops_to_nvram
75 };
76 
77 /* See clobbering_unread_rtas_event() */
78 #define NVRAM_RTAS_READ_TIMEOUT 5 /* seconds */
79 static unsigned long last_unread_rtas_event; /* timestamp */
80 
81 /*
82  * For capturing and compressing an oops or panic report...
83 
84  * big_oops_buf[] holds the uncompressed text we're capturing.
85  *
86  * oops_buf[] holds the compressed text, preceded by a prefix.
87  * The prefix is just a u16 holding the length of the compressed* text.
88  * (*Or uncompressed, if compression fails.) oops_buf[] gets written
89  * to NVRAM.
90  *
91  * oops_len points to the prefix. oops_data points to the compressed text.
92  *
93  * +- oops_buf
94  * | +- oops_data
95  * v v
96  * +------------+-----------------------------------------------+
97  * | length | text |
98  * | (2 bytes) | (oops_data_sz bytes) |
99  * +------------+-----------------------------------------------+
100  * ^
101  * +- oops_len
102  *
103  * We preallocate these buffers during init to avoid kmalloc during oops/panic.
104  */
105 static size_t big_oops_buf_sz;
106 static char *big_oops_buf, *oops_buf;
107 static u16 *oops_len;
108 static char *oops_data;
109 static size_t oops_data_sz;
110 
111 /* Compression parameters */
112 #define COMPR_LEVEL 6
113 #define WINDOW_BITS 12
114 #define MEM_LEVEL 4
115 static struct z_stream_s stream;
116 
117 static ssize_t pSeries_nvram_read(char *buf, size_t count, loff_t *index)
118 {
119  unsigned int i;
120  unsigned long len;
121  int done;
122  unsigned long flags;
123  char *p = buf;
124 
125 
126  if (nvram_size == 0 || nvram_fetch == RTAS_UNKNOWN_SERVICE)
127  return -ENODEV;
128 
129  if (*index >= nvram_size)
130  return 0;
131 
132  i = *index;
133  if (i + count > nvram_size)
134  count = nvram_size - i;
135 
136  spin_lock_irqsave(&nvram_lock, flags);
137 
138  for (; count != 0; count -= len) {
139  len = count;
140  if (len > NVRW_CNT)
141  len = NVRW_CNT;
142 
143  if ((rtas_call(nvram_fetch, 3, 2, &done, i, __pa(nvram_buf),
144  len) != 0) || len != done) {
145  spin_unlock_irqrestore(&nvram_lock, flags);
146  return -EIO;
147  }
148 
149  memcpy(p, nvram_buf, len);
150 
151  p += len;
152  i += len;
153  }
154 
155  spin_unlock_irqrestore(&nvram_lock, flags);
156 
157  *index = i;
158  return p - buf;
159 }
160 
161 static ssize_t pSeries_nvram_write(char *buf, size_t count, loff_t *index)
162 {
163  unsigned int i;
164  unsigned long len;
165  int done;
166  unsigned long flags;
167  const char *p = buf;
168 
169  if (nvram_size == 0 || nvram_store == RTAS_UNKNOWN_SERVICE)
170  return -ENODEV;
171 
172  if (*index >= nvram_size)
173  return 0;
174 
175  i = *index;
176  if (i + count > nvram_size)
177  count = nvram_size - i;
178 
179  spin_lock_irqsave(&nvram_lock, flags);
180 
181  for (; count != 0; count -= len) {
182  len = count;
183  if (len > NVRW_CNT)
184  len = NVRW_CNT;
185 
186  memcpy(nvram_buf, p, len);
187 
188  if ((rtas_call(nvram_store, 3, 2, &done, i, __pa(nvram_buf),
189  len) != 0) || len != done) {
190  spin_unlock_irqrestore(&nvram_lock, flags);
191  return -EIO;
192  }
193 
194  p += len;
195  i += len;
196  }
197  spin_unlock_irqrestore(&nvram_lock, flags);
198 
199  *index = i;
200  return p - buf;
201 }
202 
203 static ssize_t pSeries_nvram_get_size(void)
204 {
205  return nvram_size ? nvram_size : -ENODEV;
206 }
207 
208 
209 /* nvram_write_os_partition, nvram_write_error_log
210  *
211  * We need to buffer the error logs into nvram to ensure that we have
212  * the failure information to decode. If we have a severe error there
213  * is no way to guarantee that the OS or the machine is in a state to
214  * get back to user land and write the error to disk. For example if
215  * the SCSI device driver causes a Machine Check by writing to a bad
216  * IO address, there is no way of guaranteeing that the device driver
217  * is in any state that is would also be able to write the error data
218  * captured to disk, thus we buffer it in NVRAM for analysis on the
219  * next boot.
220  *
221  * In NVRAM the partition containing the error log buffer will looks like:
222  * Header (in bytes):
223  * +-----------+----------+--------+------------+------------------+
224  * | signature | checksum | length | name | data |
225  * |0 |1 |2 3|4 15|16 length-1|
226  * +-----------+----------+--------+------------+------------------+
227  *
228  * The 'data' section would look like (in bytes):
229  * +--------------+------------+-----------------------------------+
230  * | event_logged | sequence # | error log |
231  * |0 3|4 7|8 error_log_size-1|
232  * +--------------+------------+-----------------------------------+
233  *
234  * event_logged: 0 if event has not been logged to syslog, 1 if it has
235  * sequence #: The unique sequence # for each event. (until it wraps)
236  * error log: The error log from event_scan
237  */
239  int length, unsigned int err_type, unsigned int error_log_cnt)
240 {
241  int rc;
242  loff_t tmp_index;
243  struct err_log_info info;
244 
245  if (part->index == -1) {
246  return -ESPIPE;
247  }
248 
249  if (length > part->size) {
250  length = part->size;
251  }
252 
253  info.error_type = err_type;
254  info.seq_num = error_log_cnt;
255 
256  tmp_index = part->index;
257 
258  rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info), &tmp_index);
259  if (rc <= 0) {
260  pr_err("%s: Failed nvram_write (%d)\n", __FUNCTION__, rc);
261  return rc;
262  }
263 
264  rc = ppc_md.nvram_write(buff, length, &tmp_index);
265  if (rc <= 0) {
266  pr_err("%s: Failed nvram_write (%d)\n", __FUNCTION__, rc);
267  return rc;
268  }
269 
270  return 0;
271 }
272 
273 int nvram_write_error_log(char * buff, int length,
274  unsigned int err_type, unsigned int error_log_cnt)
275 {
276  int rc = nvram_write_os_partition(&rtas_log_partition, buff, length,
277  err_type, error_log_cnt);
278  if (!rc)
279  last_unread_rtas_event = get_seconds();
280  return rc;
281 }
282 
283 /* nvram_read_error_log
284  *
285  * Reads nvram for error log for at most 'length'
286  */
287 int nvram_read_error_log(char * buff, int length,
288  unsigned int * err_type, unsigned int * error_log_cnt)
289 {
290  int rc;
291  loff_t tmp_index;
292  struct err_log_info info;
293 
294  if (rtas_log_partition.index == -1)
295  return -1;
296 
297  if (length > rtas_log_partition.size)
298  length = rtas_log_partition.size;
299 
300  tmp_index = rtas_log_partition.index;
301 
302  rc = ppc_md.nvram_read((char *)&info, sizeof(struct err_log_info), &tmp_index);
303  if (rc <= 0) {
304  printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
305  return rc;
306  }
307 
308  rc = ppc_md.nvram_read(buff, length, &tmp_index);
309  if (rc <= 0) {
310  printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
311  return rc;
312  }
313 
314  *error_log_cnt = info.seq_num;
315  *err_type = info.error_type;
316 
317  return 0;
318 }
319 
320 /* This doesn't actually zero anything, but it sets the event_logged
321  * word to tell that this event is safely in syslog.
322  */
324 {
325  loff_t tmp_index;
326  int clear_word = ERR_FLAG_ALREADY_LOGGED;
327  int rc;
328 
329  if (rtas_log_partition.index == -1)
330  return -1;
331 
332  tmp_index = rtas_log_partition.index;
333 
334  rc = ppc_md.nvram_write((char *)&clear_word, sizeof(int), &tmp_index);
335  if (rc <= 0) {
336  printk(KERN_ERR "nvram_clear_error_log: Failed nvram_write (%d)\n", rc);
337  return rc;
338  }
339  last_unread_rtas_event = 0;
340 
341  return 0;
342 }
343 
344 /* pseries_nvram_init_os_partition
345  *
346  * This sets up a partition with an "OS" signature.
347  *
348  * The general strategy is the following:
349  * 1.) If a partition with the indicated name already exists...
350  * - If it's large enough, use it.
351  * - Otherwise, recycle it and keep going.
352  * 2.) Search for a free partition that is large enough.
353  * 3.) If there's not a free partition large enough, recycle any obsolete
354  * OS partitions and try again.
355  * 4.) Will first try getting a chunk that will satisfy the requested size.
356  * 5.) If a chunk of the requested size cannot be allocated, then try finding
357  * a chunk that will satisfy the minum needed.
358  *
359  * Returns 0 on success, else -1.
360  */
361 static int __init pseries_nvram_init_os_partition(struct nvram_os_partition
362  *part)
363 {
364  loff_t p;
365  int size;
366 
367  /* Scan nvram for partitions */
369 
370  /* Look for ours */
371  p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size);
372 
373  /* Found one but too small, remove it */
374  if (p && size < part->min_size) {
375  pr_info("nvram: Found too small %s partition,"
376  " removing it...\n", part->name);
378  p = 0;
379  }
380 
381  /* Create one if we didn't find */
382  if (!p) {
384  part->req_size, part->min_size);
385  if (p == -ENOSPC) {
386  pr_info("nvram: No room to create %s partition, "
387  "deleting any obsolete OS partitions...\n",
388  part->name);
390  pseries_nvram_os_partitions);
392  part->req_size, part->min_size);
393  }
394  }
395 
396  if (p <= 0) {
397  pr_err("nvram: Failed to find or create %s"
398  " partition, err %d\n", part->name, (int)p);
399  return -1;
400  }
401 
402  part->index = p;
403  part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info);
404 
405  return 0;
406 }
407 
408 static void __init nvram_init_oops_partition(int rtas_partition_exists)
409 {
410  int rc;
411 
412  rc = pseries_nvram_init_os_partition(&oops_log_partition);
413  if (rc != 0) {
414  if (!rtas_partition_exists)
415  return;
416  pr_notice("nvram: Using %s partition to log both"
417  " RTAS errors and oops/panic reports\n",
418  rtas_log_partition.name);
419  memcpy(&oops_log_partition, &rtas_log_partition,
420  sizeof(rtas_log_partition));
421  }
422  oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL);
423  if (!oops_buf) {
424  pr_err("nvram: No memory for %s partition\n",
425  oops_log_partition.name);
426  return;
427  }
428  oops_len = (u16*) oops_buf;
429  oops_data = oops_buf + sizeof(u16);
430  oops_data_sz = oops_log_partition.size - sizeof(u16);
431 
432  /*
433  * Figure compression (preceded by elimination of each line's <n>
434  * severity prefix) will reduce the oops/panic report to at most
435  * 45% of its original size.
436  */
437  big_oops_buf_sz = (oops_data_sz * 100) / 45;
438  big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL);
439  if (big_oops_buf) {
440  stream.workspace = kmalloc(zlib_deflate_workspacesize(
442  if (!stream.workspace) {
443  pr_err("nvram: No memory for compression workspace; "
444  "skipping compression of %s partition data\n",
445  oops_log_partition.name);
446  kfree(big_oops_buf);
447  big_oops_buf = NULL;
448  }
449  } else {
450  pr_err("No memory for uncompressed %s data; "
451  "skipping compression\n", oops_log_partition.name);
452  stream.workspace = NULL;
453  }
454 
455  rc = kmsg_dump_register(&nvram_kmsg_dumper);
456  if (rc != 0) {
457  pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc);
458  kfree(oops_buf);
459  kfree(big_oops_buf);
460  kfree(stream.workspace);
461  }
462 }
463 
464 static int __init pseries_nvram_init_log_partitions(void)
465 {
466  int rc;
467 
468  rc = pseries_nvram_init_os_partition(&rtas_log_partition);
469  nvram_init_oops_partition(rc == 0);
470  return 0;
471 }
472 machine_arch_initcall(pseries, pseries_nvram_init_log_partitions);
473 
475 {
476  struct device_node *nvram;
477  const unsigned int *nbytes_p;
478  unsigned int proplen;
479 
480  nvram = of_find_node_by_type(NULL, "nvram");
481  if (nvram == NULL)
482  return -ENODEV;
483 
484  nbytes_p = of_get_property(nvram, "#bytes", &proplen);
485  if (nbytes_p == NULL || proplen != sizeof(unsigned int)) {
486  of_node_put(nvram);
487  return -EIO;
488  }
489 
490  nvram_size = *nbytes_p;
491 
492  nvram_fetch = rtas_token("nvram-fetch");
493  nvram_store = rtas_token("nvram-store");
494  printk(KERN_INFO "PPC64 nvram contains %d bytes\n", nvram_size);
495  of_node_put(nvram);
496 
497  ppc_md.nvram_read = pSeries_nvram_read;
498  ppc_md.nvram_write = pSeries_nvram_write;
499  ppc_md.nvram_size = pSeries_nvram_get_size;
500 
501  return 0;
502 }
503 
504 /*
505  * Are we using the ibm,rtas-log for oops/panic reports? And if so,
506  * would logging this oops/panic overwrite an RTAS event that rtas_errd
507  * hasn't had a chance to read and process? Return 1 if so, else 0.
508  *
509  * We assume that if rtas_errd hasn't read the RTAS event in
510  * NVRAM_RTAS_READ_TIMEOUT seconds, it's probably not going to.
511  */
512 static int clobbering_unread_rtas_event(void)
513 {
514  return (oops_log_partition.index == rtas_log_partition.index
515  && last_unread_rtas_event
516  && get_seconds() - last_unread_rtas_event <=
518 }
519 
520 /* Derived from logfs_compress() */
521 static int nvram_compress(const void *in, void *out, size_t inlen,
522  size_t outlen)
523 {
524  int err, ret;
525 
526  ret = -EIO;
529  if (err != Z_OK)
530  goto error;
531 
532  stream.next_in = in;
533  stream.avail_in = inlen;
534  stream.total_in = 0;
535  stream.next_out = out;
536  stream.avail_out = outlen;
537  stream.total_out = 0;
538 
539  err = zlib_deflate(&stream, Z_FINISH);
540  if (err != Z_STREAM_END)
541  goto error;
542 
543  err = zlib_deflateEnd(&stream);
544  if (err != Z_OK)
545  goto error;
546 
547  if (stream.total_out >= stream.total_in)
548  goto error;
549 
550  ret = stream.total_out;
551 error:
552  return ret;
553 }
554 
555 /* Compress the text from big_oops_buf into oops_buf. */
556 static int zip_oops(size_t text_len)
557 {
558  int zipped_len = nvram_compress(big_oops_buf, oops_data, text_len,
559  oops_data_sz);
560  if (zipped_len < 0) {
561  pr_err("nvram: compression failed; returned %d\n", zipped_len);
562  pr_err("nvram: logging uncompressed oops/panic report\n");
563  return -1;
564  }
565  *oops_len = (u16) zipped_len;
566  return 0;
567 }
568 
569 /*
570  * This is our kmsg_dump callback, called after an oops or panic report
571  * has been written to the printk buffer. We want to capture as much
572  * of the printk buffer as possible. First, capture as much as we can
573  * that we think will compress sufficiently to fit in the lnx,oops-log
574  * partition. If that's too much, go back and capture uncompressed text.
575  */
576 static void oops_to_nvram(struct kmsg_dumper *dumper,
578 {
579  static unsigned int oops_count = 0;
580  static bool panicking = false;
581  static DEFINE_SPINLOCK(lock);
582  unsigned long flags;
583  size_t text_len;
584  unsigned int err_type = ERR_TYPE_KERNEL_PANIC_GZ;
585  int rc = -1;
586 
587  switch (reason) {
588  case KMSG_DUMP_RESTART:
589  case KMSG_DUMP_HALT:
590  case KMSG_DUMP_POWEROFF:
591  /* These are almost always orderly shutdowns. */
592  return;
593  case KMSG_DUMP_OOPS:
594  break;
595  case KMSG_DUMP_PANIC:
596  panicking = true;
597  break;
598  case KMSG_DUMP_EMERG:
599  if (panicking)
600  /* Panic report already captured. */
601  return;
602  break;
603  default:
604  pr_err("%s: ignoring unrecognized KMSG_DUMP_* reason %d\n",
605  __FUNCTION__, (int) reason);
606  return;
607  }
608 
609  if (clobbering_unread_rtas_event())
610  return;
611 
612  if (!spin_trylock_irqsave(&lock, flags))
613  return;
614 
615  if (big_oops_buf) {
616  kmsg_dump_get_buffer(dumper, false,
617  big_oops_buf, big_oops_buf_sz, &text_len);
618  rc = zip_oops(text_len);
619  }
620  if (rc != 0) {
621  kmsg_dump_rewind(dumper);
622  kmsg_dump_get_buffer(dumper, true,
623  oops_data, oops_data_sz, &text_len);
624  err_type = ERR_TYPE_KERNEL_PANIC;
625  *oops_len = (u16) text_len;
626  }
627 
628  (void) nvram_write_os_partition(&oops_log_partition, oops_buf,
629  (int) (sizeof(*oops_len) + *oops_len), err_type, ++oops_count);
630 
631  spin_unlock_irqrestore(&lock, flags);
632 }