Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ptrace.c
Go to the documentation of this file.
1 /*
2  * Ptrace user space interface.
3  *
4  * Copyright IBM Corp. 1999, 2010
5  * Author(s): Denis Joseph Barrow
6  * Martin Schwidefsky ([email protected])
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/mm.h>
12 #include <linux/smp.h>
13 #include <linux/errno.h>
14 #include <linux/ptrace.h>
15 #include <linux/user.h>
16 #include <linux/security.h>
17 #include <linux/audit.h>
18 #include <linux/signal.h>
19 #include <linux/elf.h>
20 #include <linux/regset.h>
21 #include <linux/tracehook.h>
22 #include <linux/seccomp.h>
23 #include <linux/compat.h>
24 #include <trace/syscall.h>
25 #include <asm/segment.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/pgalloc.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/switch_to.h>
32 #include "entry.h"
33 
34 #ifdef CONFIG_COMPAT
35 #include "compat_ptrace.h"
36 #endif
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/syscalls.h>
40 
48 };
49 
51 {
52  struct pt_regs *regs = task_pt_regs(task);
53  struct thread_struct *thread = &task->thread;
54  struct per_regs old, new;
55 
56 #ifdef CONFIG_64BIT
57  /* Take care of the enable/disable of transactional execution. */
58  if (MACHINE_HAS_TE) {
59  unsigned long cr0, cr0_new;
60 
61  __ctl_store(cr0, 0, 0);
62  /* set or clear transaction execution bits 8 and 9. */
63  if (task->thread.per_flags & PER_FLAG_NO_TE)
64  cr0_new = cr0 & ~(3UL << 54);
65  else
66  cr0_new = cr0 | (3UL << 54);
67  /* Only load control register 0 if necessary. */
68  if (cr0 != cr0_new)
69  __ctl_load(cr0_new, 0, 0);
70  }
71 #endif
72  /* Copy user specified PER registers */
73  new.control = thread->per_user.control;
74  new.start = thread->per_user.start;
75  new.end = thread->per_user.end;
76 
77  /* merge TIF_SINGLE_STEP into user specified PER registers. */
78  if (test_tsk_thread_flag(task, TIF_SINGLE_STEP)) {
79  new.control |= PER_EVENT_IFETCH;
80 #ifdef CONFIG_64BIT
81  new.control |= PER_CONTROL_SUSPENSION;
82  new.control |= PER_EVENT_TRANSACTION_END;
83 #endif
84  new.start = 0;
85  new.end = PSW_ADDR_INSN;
86  }
87 
88  /* Take care of the PER enablement bit in the PSW. */
89  if (!(new.control & PER_EVENT_MASK)) {
90  regs->psw.mask &= ~PSW_MASK_PER;
91  return;
92  }
93  regs->psw.mask |= PSW_MASK_PER;
94  __ctl_store(old, 9, 11);
95  if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
96  __ctl_load(new, 9, 11);
97 }
98 
100 {
101  set_tsk_thread_flag(task, TIF_SINGLE_STEP);
102  if (task == current)
103  update_per_regs(task);
104 }
105 
107 {
108  clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
109  if (task == current)
110  update_per_regs(task);
111 }
112 
113 /*
114  * Called by kernel/ptrace.c when detaching..
115  *
116  * Clear all debugging related fields.
117  */
119 {
120  memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
121  memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
122  clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
123  clear_tsk_thread_flag(task, TIF_PER_TRAP);
124  task->thread.per_flags = 0;
125 }
126 
127 #ifndef CONFIG_64BIT
128 # define __ADDR_MASK 3
129 #else
130 # define __ADDR_MASK 7
131 #endif
132 
133 static inline unsigned long __peek_user_per(struct task_struct *child,
134  addr_t addr)
135 {
136  struct per_struct_kernel *dummy = NULL;
137 
138  if (addr == (addr_t) &dummy->cr9)
139  /* Control bits of the active per set. */
140  return test_thread_flag(TIF_SINGLE_STEP) ?
141  PER_EVENT_IFETCH : child->thread.per_user.control;
142  else if (addr == (addr_t) &dummy->cr10)
143  /* Start address of the active per set. */
144  return test_thread_flag(TIF_SINGLE_STEP) ?
145  0 : child->thread.per_user.start;
146  else if (addr == (addr_t) &dummy->cr11)
147  /* End address of the active per set. */
148  return test_thread_flag(TIF_SINGLE_STEP) ?
149  PSW_ADDR_INSN : child->thread.per_user.end;
150  else if (addr == (addr_t) &dummy->bits)
151  /* Single-step bit. */
152  return test_thread_flag(TIF_SINGLE_STEP) ?
153  (1UL << (BITS_PER_LONG - 1)) : 0;
154  else if (addr == (addr_t) &dummy->starting_addr)
155  /* Start address of the user specified per set. */
156  return child->thread.per_user.start;
157  else if (addr == (addr_t) &dummy->ending_addr)
158  /* End address of the user specified per set. */
159  return child->thread.per_user.end;
160  else if (addr == (addr_t) &dummy->perc_atmid)
161  /* PER code, ATMID and AI of the last PER trap */
162  return (unsigned long)
163  child->thread.per_event.cause << (BITS_PER_LONG - 16);
164  else if (addr == (addr_t) &dummy->address)
165  /* Address of the last PER trap */
166  return child->thread.per_event.address;
167  else if (addr == (addr_t) &dummy->access_id)
168  /* Access id of the last PER trap */
169  return (unsigned long)
170  child->thread.per_event.paid << (BITS_PER_LONG - 8);
171  return 0;
172 }
173 
174 /*
175  * Read the word at offset addr from the user area of a process. The
176  * trouble here is that the information is littered over different
177  * locations. The process registers are found on the kernel stack,
178  * the floating point stuff and the trace settings are stored in
179  * the task structure. In addition the different structures in
180  * struct user contain pad bytes that should be read as zeroes.
181  * Lovely...
182  */
183 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
184 {
185  struct user *dummy = NULL;
186  addr_t offset, tmp;
187 
188  if (addr < (addr_t) &dummy->regs.acrs) {
189  /*
190  * psw and gprs are stored on the stack
191  */
192  tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
193  if (addr == (addr_t) &dummy->regs.psw.mask)
194  /* Return a clean psw mask. */
195  tmp = psw_user_bits | (tmp & PSW_MASK_USER);
196 
197  } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
198  /*
199  * access registers are stored in the thread structure
200  */
201  offset = addr - (addr_t) &dummy->regs.acrs;
202 #ifdef CONFIG_64BIT
203  /*
204  * Very special case: old & broken 64 bit gdb reading
205  * from acrs[15]. Result is a 64 bit value. Read the
206  * 32 bit acrs[15] value and shift it by 32. Sick...
207  */
208  if (addr == (addr_t) &dummy->regs.acrs[15])
209  tmp = ((unsigned long) child->thread.acrs[15]) << 32;
210  else
211 #endif
212  tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
213 
214  } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
215  /*
216  * orig_gpr2 is stored on the kernel stack
217  */
218  tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
219 
220  } else if (addr < (addr_t) &dummy->regs.fp_regs) {
221  /*
222  * prevent reads of padding hole between
223  * orig_gpr2 and fp_regs on s390.
224  */
225  tmp = 0;
226 
227  } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
228  /*
229  * floating point regs. are stored in the thread structure
230  */
231  offset = addr - (addr_t) &dummy->regs.fp_regs;
232  tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
233  if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
234  tmp &= (unsigned long) FPC_VALID_MASK
235  << (BITS_PER_LONG - 32);
236 
237  } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
238  /*
239  * Handle access to the per_info structure.
240  */
241  addr -= (addr_t) &dummy->regs.per_info;
242  tmp = __peek_user_per(child, addr);
243 
244  } else
245  tmp = 0;
246 
247  return tmp;
248 }
249 
250 static int
251 peek_user(struct task_struct *child, addr_t addr, addr_t data)
252 {
253  addr_t tmp, mask;
254 
255  /*
256  * Stupid gdb peeks/pokes the access registers in 64 bit with
257  * an alignment of 4. Programmers from hell...
258  */
259  mask = __ADDR_MASK;
260 #ifdef CONFIG_64BIT
261  if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
262  addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
263  mask = 3;
264 #endif
265  if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
266  return -EIO;
267 
268  tmp = __peek_user(child, addr);
269  return put_user(tmp, (addr_t __user *) data);
270 }
271 
272 static inline void __poke_user_per(struct task_struct *child,
273  addr_t addr, addr_t data)
274 {
275  struct per_struct_kernel *dummy = NULL;
276 
277  /*
278  * There are only three fields in the per_info struct that the
279  * debugger user can write to.
280  * 1) cr9: the debugger wants to set a new PER event mask
281  * 2) starting_addr: the debugger wants to set a new starting
282  * address to use with the PER event mask.
283  * 3) ending_addr: the debugger wants to set a new ending
284  * address to use with the PER event mask.
285  * The user specified PER event mask and the start and end
286  * addresses are used only if single stepping is not in effect.
287  * Writes to any other field in per_info are ignored.
288  */
289  if (addr == (addr_t) &dummy->cr9)
290  /* PER event mask of the user specified per set. */
291  child->thread.per_user.control =
292  data & (PER_EVENT_MASK | PER_CONTROL_MASK);
293  else if (addr == (addr_t) &dummy->starting_addr)
294  /* Starting address of the user specified per set. */
295  child->thread.per_user.start = data;
296  else if (addr == (addr_t) &dummy->ending_addr)
297  /* Ending address of the user specified per set. */
298  child->thread.per_user.end = data;
299 }
300 
301 /*
302  * Write a word to the user area of a process at location addr. This
303  * operation does have an additional problem compared to peek_user.
304  * Stores to the program status word and on the floating point
305  * control register needs to get checked for validity.
306  */
307 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
308 {
309  struct user *dummy = NULL;
310  addr_t offset;
311 
312  if (addr < (addr_t) &dummy->regs.acrs) {
313  /*
314  * psw and gprs are stored on the stack
315  */
316  if (addr == (addr_t) &dummy->regs.psw.mask &&
317  ((data & ~PSW_MASK_USER) != psw_user_bits ||
318  ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))))
319  /* Invalid psw mask. */
320  return -EINVAL;
321  *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
322 
323  } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
324  /*
325  * access registers are stored in the thread structure
326  */
327  offset = addr - (addr_t) &dummy->regs.acrs;
328 #ifdef CONFIG_64BIT
329  /*
330  * Very special case: old & broken 64 bit gdb writing
331  * to acrs[15] with a 64 bit value. Ignore the lower
332  * half of the value and write the upper 32 bit to
333  * acrs[15]. Sick...
334  */
335  if (addr == (addr_t) &dummy->regs.acrs[15])
336  child->thread.acrs[15] = (unsigned int) (data >> 32);
337  else
338 #endif
339  *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
340 
341  } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
342  /*
343  * orig_gpr2 is stored on the kernel stack
344  */
345  task_pt_regs(child)->orig_gpr2 = data;
346 
347  } else if (addr < (addr_t) &dummy->regs.fp_regs) {
348  /*
349  * prevent writes of padding hole between
350  * orig_gpr2 and fp_regs on s390.
351  */
352  return 0;
353 
354  } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
355  /*
356  * floating point regs. are stored in the thread structure
357  */
358  if (addr == (addr_t) &dummy->regs.fp_regs.fpc &&
359  (data & ~((unsigned long) FPC_VALID_MASK
360  << (BITS_PER_LONG - 32))) != 0)
361  return -EINVAL;
362  offset = addr - (addr_t) &dummy->regs.fp_regs;
363  *(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
364 
365  } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
366  /*
367  * Handle access to the per_info structure.
368  */
369  addr -= (addr_t) &dummy->regs.per_info;
370  __poke_user_per(child, addr, data);
371 
372  }
373 
374  return 0;
375 }
376 
377 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
378 {
379  addr_t mask;
380 
381  /*
382  * Stupid gdb peeks/pokes the access registers in 64 bit with
383  * an alignment of 4. Programmers from hell indeed...
384  */
385  mask = __ADDR_MASK;
386 #ifdef CONFIG_64BIT
387  if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
388  addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
389  mask = 3;
390 #endif
391  if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
392  return -EIO;
393 
394  return __poke_user(child, addr, data);
395 }
396 
397 long arch_ptrace(struct task_struct *child, long request,
398  unsigned long addr, unsigned long data)
399 {
400  ptrace_area parea;
401  int copied, ret;
402 
403  switch (request) {
404  case PTRACE_PEEKUSR:
405  /* read the word at location addr in the USER area. */
406  return peek_user(child, addr, data);
407 
408  case PTRACE_POKEUSR:
409  /* write the word at location addr in the USER area */
410  return poke_user(child, addr, data);
411 
412  case PTRACE_PEEKUSR_AREA:
413  case PTRACE_POKEUSR_AREA:
414  if (copy_from_user(&parea, (void __force __user *) addr,
415  sizeof(parea)))
416  return -EFAULT;
417  addr = parea.kernel_addr;
418  data = parea.process_addr;
419  copied = 0;
420  while (copied < parea.len) {
421  if (request == PTRACE_PEEKUSR_AREA)
422  ret = peek_user(child, addr, data);
423  else {
424  addr_t utmp;
425  if (get_user(utmp,
426  (addr_t __force __user *) data))
427  return -EFAULT;
428  ret = poke_user(child, addr, utmp);
429  }
430  if (ret)
431  return ret;
432  addr += sizeof(unsigned long);
433  data += sizeof(unsigned long);
434  copied += sizeof(unsigned long);
435  }
436  return 0;
438  put_user(task_thread_info(child)->last_break,
439  (unsigned long __user *) data);
440  return 0;
441  case PTRACE_ENABLE_TE:
442  if (!MACHINE_HAS_TE)
443  return -EIO;
444  child->thread.per_flags &= ~PER_FLAG_NO_TE;
445  return 0;
446  case PTRACE_DISABLE_TE:
447  if (!MACHINE_HAS_TE)
448  return -EIO;
449  child->thread.per_flags |= PER_FLAG_NO_TE;
450  return 0;
451  default:
452  /* Removing high order bit from addr (only for 31 bit). */
453  addr &= PSW_ADDR_INSN;
454  return ptrace_request(child, request, addr, data);
455  }
456 }
457 
458 #ifdef CONFIG_COMPAT
459 /*
460  * Now the fun part starts... a 31 bit program running in the
461  * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
462  * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
463  * to handle, the difference to the 64 bit versions of the requests
464  * is that the access is done in multiples of 4 byte instead of
465  * 8 bytes (sizeof(unsigned long) on 31/64 bit).
466  * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
467  * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
468  * is a 31 bit program too, the content of struct user can be
469  * emulated. A 31 bit program peeking into the struct user of
470  * a 64 bit program is a no-no.
471  */
472 
473 /*
474  * Same as peek_user_per but for a 31 bit program.
475  */
476 static inline __u32 __peek_user_per_compat(struct task_struct *child,
477  addr_t addr)
478 {
479  struct compat_per_struct_kernel *dummy32 = NULL;
480 
481  if (addr == (addr_t) &dummy32->cr9)
482  /* Control bits of the active per set. */
483  return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
484  PER_EVENT_IFETCH : child->thread.per_user.control;
485  else if (addr == (addr_t) &dummy32->cr10)
486  /* Start address of the active per set. */
487  return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
488  0 : child->thread.per_user.start;
489  else if (addr == (addr_t) &dummy32->cr11)
490  /* End address of the active per set. */
491  return test_thread_flag(TIF_SINGLE_STEP) ?
492  PSW32_ADDR_INSN : child->thread.per_user.end;
493  else if (addr == (addr_t) &dummy32->bits)
494  /* Single-step bit. */
495  return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
496  0x80000000 : 0;
497  else if (addr == (addr_t) &dummy32->starting_addr)
498  /* Start address of the user specified per set. */
499  return (__u32) child->thread.per_user.start;
500  else if (addr == (addr_t) &dummy32->ending_addr)
501  /* End address of the user specified per set. */
502  return (__u32) child->thread.per_user.end;
503  else if (addr == (addr_t) &dummy32->perc_atmid)
504  /* PER code, ATMID and AI of the last PER trap */
505  return (__u32) child->thread.per_event.cause << 16;
506  else if (addr == (addr_t) &dummy32->address)
507  /* Address of the last PER trap */
508  return (__u32) child->thread.per_event.address;
509  else if (addr == (addr_t) &dummy32->access_id)
510  /* Access id of the last PER trap */
511  return (__u32) child->thread.per_event.paid << 24;
512  return 0;
513 }
514 
515 /*
516  * Same as peek_user but for a 31 bit program.
517  */
518 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
519 {
520  struct compat_user *dummy32 = NULL;
521  addr_t offset;
522  __u32 tmp;
523 
524  if (addr < (addr_t) &dummy32->regs.acrs) {
525  struct pt_regs *regs = task_pt_regs(child);
526  /*
527  * psw and gprs are stored on the stack
528  */
529  if (addr == (addr_t) &dummy32->regs.psw.mask) {
530  /* Fake a 31 bit psw mask. */
531  tmp = (__u32)(regs->psw.mask >> 32);
532  tmp = psw32_user_bits | (tmp & PSW32_MASK_USER);
533  } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
534  /* Fake a 31 bit psw address. */
535  tmp = (__u32) regs->psw.addr |
536  (__u32)(regs->psw.mask & PSW_MASK_BA);
537  } else {
538  /* gpr 0-15 */
539  tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
540  }
541  } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
542  /*
543  * access registers are stored in the thread structure
544  */
545  offset = addr - (addr_t) &dummy32->regs.acrs;
546  tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
547 
548  } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
549  /*
550  * orig_gpr2 is stored on the kernel stack
551  */
552  tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
553 
554  } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
555  /*
556  * prevent reads of padding hole between
557  * orig_gpr2 and fp_regs on s390.
558  */
559  tmp = 0;
560 
561  } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
562  /*
563  * floating point regs. are stored in the thread structure
564  */
565  offset = addr - (addr_t) &dummy32->regs.fp_regs;
566  tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
567 
568  } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
569  /*
570  * Handle access to the per_info structure.
571  */
572  addr -= (addr_t) &dummy32->regs.per_info;
573  tmp = __peek_user_per_compat(child, addr);
574 
575  } else
576  tmp = 0;
577 
578  return tmp;
579 }
580 
581 static int peek_user_compat(struct task_struct *child,
582  addr_t addr, addr_t data)
583 {
584  __u32 tmp;
585 
586  if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
587  return -EIO;
588 
589  tmp = __peek_user_compat(child, addr);
590  return put_user(tmp, (__u32 __user *) data);
591 }
592 
593 /*
594  * Same as poke_user_per but for a 31 bit program.
595  */
596 static inline void __poke_user_per_compat(struct task_struct *child,
597  addr_t addr, __u32 data)
598 {
599  struct compat_per_struct_kernel *dummy32 = NULL;
600 
601  if (addr == (addr_t) &dummy32->cr9)
602  /* PER event mask of the user specified per set. */
603  child->thread.per_user.control =
604  data & (PER_EVENT_MASK | PER_CONTROL_MASK);
605  else if (addr == (addr_t) &dummy32->starting_addr)
606  /* Starting address of the user specified per set. */
607  child->thread.per_user.start = data;
608  else if (addr == (addr_t) &dummy32->ending_addr)
609  /* Ending address of the user specified per set. */
610  child->thread.per_user.end = data;
611 }
612 
613 /*
614  * Same as poke_user but for a 31 bit program.
615  */
616 static int __poke_user_compat(struct task_struct *child,
617  addr_t addr, addr_t data)
618 {
619  struct compat_user *dummy32 = NULL;
620  __u32 tmp = (__u32) data;
621  addr_t offset;
622 
623  if (addr < (addr_t) &dummy32->regs.acrs) {
624  struct pt_regs *regs = task_pt_regs(child);
625  /*
626  * psw, gprs, acrs and orig_gpr2 are stored on the stack
627  */
628  if (addr == (addr_t) &dummy32->regs.psw.mask) {
629  /* Build a 64 bit psw mask from 31 bit mask. */
630  if ((tmp & ~PSW32_MASK_USER) != psw32_user_bits)
631  /* Invalid psw mask. */
632  return -EINVAL;
633  regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
634  (regs->psw.mask & PSW_MASK_BA) |
635  (__u64)(tmp & PSW32_MASK_USER) << 32;
636  } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
637  /* Build a 64 bit psw address from 31 bit address. */
638  regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
639  /* Transfer 31 bit amode bit to psw mask. */
640  regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
641  (__u64)(tmp & PSW32_ADDR_AMODE);
642  } else {
643  /* gpr 0-15 */
644  *(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
645  }
646  } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
647  /*
648  * access registers are stored in the thread structure
649  */
650  offset = addr - (addr_t) &dummy32->regs.acrs;
651  *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
652 
653  } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
654  /*
655  * orig_gpr2 is stored on the kernel stack
656  */
657  *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
658 
659  } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
660  /*
661  * prevent writess of padding hole between
662  * orig_gpr2 and fp_regs on s390.
663  */
664  return 0;
665 
666  } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
667  /*
668  * floating point regs. are stored in the thread structure
669  */
670  if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
671  (tmp & ~FPC_VALID_MASK) != 0)
672  /* Invalid floating point control. */
673  return -EINVAL;
674  offset = addr - (addr_t) &dummy32->regs.fp_regs;
675  *(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
676 
677  } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
678  /*
679  * Handle access to the per_info structure.
680  */
681  addr -= (addr_t) &dummy32->regs.per_info;
682  __poke_user_per_compat(child, addr, data);
683  }
684 
685  return 0;
686 }
687 
688 static int poke_user_compat(struct task_struct *child,
689  addr_t addr, addr_t data)
690 {
691  if (!is_compat_task() || (addr & 3) ||
692  addr > sizeof(struct compat_user) - 3)
693  return -EIO;
694 
695  return __poke_user_compat(child, addr, data);
696 }
697 
700 {
701  unsigned long addr = caddr;
702  unsigned long data = cdata;
703  compat_ptrace_area parea;
704  int copied, ret;
705 
706  switch (request) {
707  case PTRACE_PEEKUSR:
708  /* read the word at location addr in the USER area. */
709  return peek_user_compat(child, addr, data);
710 
711  case PTRACE_POKEUSR:
712  /* write the word at location addr in the USER area */
713  return poke_user_compat(child, addr, data);
714 
715  case PTRACE_PEEKUSR_AREA:
716  case PTRACE_POKEUSR_AREA:
717  if (copy_from_user(&parea, (void __force __user *) addr,
718  sizeof(parea)))
719  return -EFAULT;
720  addr = parea.kernel_addr;
721  data = parea.process_addr;
722  copied = 0;
723  while (copied < parea.len) {
724  if (request == PTRACE_PEEKUSR_AREA)
725  ret = peek_user_compat(child, addr, data);
726  else {
727  __u32 utmp;
728  if (get_user(utmp,
729  (__u32 __force __user *) data))
730  return -EFAULT;
731  ret = poke_user_compat(child, addr, utmp);
732  }
733  if (ret)
734  return ret;
735  addr += sizeof(unsigned int);
736  data += sizeof(unsigned int);
737  copied += sizeof(unsigned int);
738  }
739  return 0;
741  put_user(task_thread_info(child)->last_break,
742  (unsigned int __user *) data);
743  return 0;
744  }
745  return compat_ptrace_request(child, request, addr, data);
746 }
747 #endif
748 
750 {
751  long ret = 0;
752 
753  /* Do the secure computing check first. */
754  if (secure_computing(regs->gprs[2])) {
755  /* seccomp failures shouldn't expose any additional code. */
756  ret = -1;
757  goto out;
758  }
759 
760  /*
761  * The sysc_tracesys code in entry.S stored the system
762  * call number to gprs[2].
763  */
764  if (test_thread_flag(TIF_SYSCALL_TRACE) &&
765  (tracehook_report_syscall_entry(regs) ||
766  regs->gprs[2] >= NR_syscalls)) {
767  /*
768  * Tracing decided this syscall should not happen or the
769  * debugger stored an invalid system call number. Skip
770  * the system call and the system call restart handling.
771  */
772  clear_thread_flag(TIF_SYSCALL);
773  ret = -1;
774  }
775 
776  if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
777  trace_sys_enter(regs, regs->gprs[2]);
778 
779  audit_syscall_entry(is_compat_task() ?
781  regs->gprs[2], regs->orig_gpr2,
782  regs->gprs[3], regs->gprs[4],
783  regs->gprs[5]);
784 out:
785  return ret ?: regs->gprs[2];
786 }
787 
789 {
790  audit_syscall_exit(regs);
791 
792  if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
793  trace_sys_exit(regs, regs->gprs[2]);
794 
795  if (test_thread_flag(TIF_SYSCALL_TRACE))
796  tracehook_report_syscall_exit(regs, 0);
797 }
798 
799 /*
800  * user_regset definitions.
801  */
802 
803 static int s390_regs_get(struct task_struct *target,
804  const struct user_regset *regset,
805  unsigned int pos, unsigned int count,
806  void *kbuf, void __user *ubuf)
807 {
808  if (target == current)
809  save_access_regs(target->thread.acrs);
810 
811  if (kbuf) {
812  unsigned long *k = kbuf;
813  while (count > 0) {
814  *k++ = __peek_user(target, pos);
815  count -= sizeof(*k);
816  pos += sizeof(*k);
817  }
818  } else {
819  unsigned long __user *u = ubuf;
820  while (count > 0) {
821  if (__put_user(__peek_user(target, pos), u++))
822  return -EFAULT;
823  count -= sizeof(*u);
824  pos += sizeof(*u);
825  }
826  }
827  return 0;
828 }
829 
830 static int s390_regs_set(struct task_struct *target,
831  const struct user_regset *regset,
832  unsigned int pos, unsigned int count,
833  const void *kbuf, const void __user *ubuf)
834 {
835  int rc = 0;
836 
837  if (target == current)
838  save_access_regs(target->thread.acrs);
839 
840  if (kbuf) {
841  const unsigned long *k = kbuf;
842  while (count > 0 && !rc) {
843  rc = __poke_user(target, pos, *k++);
844  count -= sizeof(*k);
845  pos += sizeof(*k);
846  }
847  } else {
848  const unsigned long __user *u = ubuf;
849  while (count > 0 && !rc) {
850  unsigned long word;
851  rc = __get_user(word, u++);
852  if (rc)
853  break;
854  rc = __poke_user(target, pos, word);
855  count -= sizeof(*u);
856  pos += sizeof(*u);
857  }
858  }
859 
860  if (rc == 0 && target == current)
861  restore_access_regs(target->thread.acrs);
862 
863  return rc;
864 }
865 
866 static int s390_fpregs_get(struct task_struct *target,
867  const struct user_regset *regset, unsigned int pos,
868  unsigned int count, void *kbuf, void __user *ubuf)
869 {
870  if (target == current)
871  save_fp_regs(&target->thread.fp_regs);
872 
873  return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
874  &target->thread.fp_regs, 0, -1);
875 }
876 
877 static int s390_fpregs_set(struct task_struct *target,
878  const struct user_regset *regset, unsigned int pos,
879  unsigned int count, const void *kbuf,
880  const void __user *ubuf)
881 {
882  int rc = 0;
883 
884  if (target == current)
885  save_fp_regs(&target->thread.fp_regs);
886 
887  /* If setting FPC, must validate it first. */
888  if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
889  u32 fpc[2] = { target->thread.fp_regs.fpc, 0 };
890  rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpc,
891  0, offsetof(s390_fp_regs, fprs));
892  if (rc)
893  return rc;
894  if ((fpc[0] & ~FPC_VALID_MASK) != 0 || fpc[1] != 0)
895  return -EINVAL;
896  target->thread.fp_regs.fpc = fpc[0];
897  }
898 
899  if (rc == 0 && count > 0)
900  rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
901  target->thread.fp_regs.fprs,
902  offsetof(s390_fp_regs, fprs), -1);
903 
904  if (rc == 0 && target == current)
905  restore_fp_regs(&target->thread.fp_regs);
906 
907  return rc;
908 }
909 
910 #ifdef CONFIG_64BIT
911 
912 static int s390_last_break_get(struct task_struct *target,
913  const struct user_regset *regset,
914  unsigned int pos, unsigned int count,
915  void *kbuf, void __user *ubuf)
916 {
917  if (count > 0) {
918  if (kbuf) {
919  unsigned long *k = kbuf;
920  *k = task_thread_info(target)->last_break;
921  } else {
922  unsigned long __user *u = ubuf;
923  if (__put_user(task_thread_info(target)->last_break, u))
924  return -EFAULT;
925  }
926  }
927  return 0;
928 }
929 
930 static int s390_last_break_set(struct task_struct *target,
931  const struct user_regset *regset,
932  unsigned int pos, unsigned int count,
933  const void *kbuf, const void __user *ubuf)
934 {
935  return 0;
936 }
937 
938 static int s390_tdb_get(struct task_struct *target,
939  const struct user_regset *regset,
940  unsigned int pos, unsigned int count,
941  void *kbuf, void __user *ubuf)
942 {
943  struct pt_regs *regs = task_pt_regs(target);
944  unsigned char *data;
945 
946  if (!(regs->int_code & 0x200))
947  return -ENODATA;
948  data = target->thread.trap_tdb;
949  return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
950 }
951 
952 static int s390_tdb_set(struct task_struct *target,
953  const struct user_regset *regset,
954  unsigned int pos, unsigned int count,
955  const void *kbuf, const void __user *ubuf)
956 {
957  return 0;
958 }
959 
960 #endif
961 
962 static int s390_system_call_get(struct task_struct *target,
963  const struct user_regset *regset,
964  unsigned int pos, unsigned int count,
965  void *kbuf, void __user *ubuf)
966 {
967  unsigned int *data = &task_thread_info(target)->system_call;
968  return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
969  data, 0, sizeof(unsigned int));
970 }
971 
972 static int s390_system_call_set(struct task_struct *target,
973  const struct user_regset *regset,
974  unsigned int pos, unsigned int count,
975  const void *kbuf, const void __user *ubuf)
976 {
977  unsigned int *data = &task_thread_info(target)->system_call;
978  return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
979  data, 0, sizeof(unsigned int));
980 }
981 
982 static const struct user_regset s390_regsets[] = {
983  [REGSET_GENERAL] = {
984  .core_note_type = NT_PRSTATUS,
985  .n = sizeof(s390_regs) / sizeof(long),
986  .size = sizeof(long),
987  .align = sizeof(long),
988  .get = s390_regs_get,
989  .set = s390_regs_set,
990  },
991  [REGSET_FP] = {
992  .core_note_type = NT_PRFPREG,
993  .n = sizeof(s390_fp_regs) / sizeof(long),
994  .size = sizeof(long),
995  .align = sizeof(long),
996  .get = s390_fpregs_get,
997  .set = s390_fpregs_set,
998  },
999 #ifdef CONFIG_64BIT
1000  [REGSET_LAST_BREAK] = {
1001  .core_note_type = NT_S390_LAST_BREAK,
1002  .n = 1,
1003  .size = sizeof(long),
1004  .align = sizeof(long),
1005  .get = s390_last_break_get,
1006  .set = s390_last_break_set,
1007  },
1008  [REGSET_TDB] = {
1009  .core_note_type = NT_S390_TDB,
1010  .n = 1,
1011  .size = 256,
1012  .align = 1,
1013  .get = s390_tdb_get,
1014  .set = s390_tdb_set,
1015  },
1016 #endif
1017  [REGSET_SYSTEM_CALL] = {
1018  .core_note_type = NT_S390_SYSTEM_CALL,
1019  .n = 1,
1020  .size = sizeof(unsigned int),
1021  .align = sizeof(unsigned int),
1022  .get = s390_system_call_get,
1023  .set = s390_system_call_set,
1024  },
1025 };
1026 
1027 static const struct user_regset_view user_s390_view = {
1028  .name = UTS_MACHINE,
1029  .e_machine = EM_S390,
1030  .regsets = s390_regsets,
1031  .n = ARRAY_SIZE(s390_regsets)
1032 };
1033 
1034 #ifdef CONFIG_COMPAT
1035 static int s390_compat_regs_get(struct task_struct *target,
1036  const struct user_regset *regset,
1037  unsigned int pos, unsigned int count,
1038  void *kbuf, void __user *ubuf)
1039 {
1040  if (target == current)
1041  save_access_regs(target->thread.acrs);
1042 
1043  if (kbuf) {
1044  compat_ulong_t *k = kbuf;
1045  while (count > 0) {
1046  *k++ = __peek_user_compat(target, pos);
1047  count -= sizeof(*k);
1048  pos += sizeof(*k);
1049  }
1050  } else {
1051  compat_ulong_t __user *u = ubuf;
1052  while (count > 0) {
1053  if (__put_user(__peek_user_compat(target, pos), u++))
1054  return -EFAULT;
1055  count -= sizeof(*u);
1056  pos += sizeof(*u);
1057  }
1058  }
1059  return 0;
1060 }
1061 
1062 static int s390_compat_regs_set(struct task_struct *target,
1063  const struct user_regset *regset,
1064  unsigned int pos, unsigned int count,
1065  const void *kbuf, const void __user *ubuf)
1066 {
1067  int rc = 0;
1068 
1069  if (target == current)
1070  save_access_regs(target->thread.acrs);
1071 
1072  if (kbuf) {
1073  const compat_ulong_t *k = kbuf;
1074  while (count > 0 && !rc) {
1075  rc = __poke_user_compat(target, pos, *k++);
1076  count -= sizeof(*k);
1077  pos += sizeof(*k);
1078  }
1079  } else {
1080  const compat_ulong_t __user *u = ubuf;
1081  while (count > 0 && !rc) {
1083  rc = __get_user(word, u++);
1084  if (rc)
1085  break;
1086  rc = __poke_user_compat(target, pos, word);
1087  count -= sizeof(*u);
1088  pos += sizeof(*u);
1089  }
1090  }
1091 
1092  if (rc == 0 && target == current)
1093  restore_access_regs(target->thread.acrs);
1094 
1095  return rc;
1096 }
1097 
1098 static int s390_compat_regs_high_get(struct task_struct *target,
1099  const struct user_regset *regset,
1100  unsigned int pos, unsigned int count,
1101  void *kbuf, void __user *ubuf)
1102 {
1103  compat_ulong_t *gprs_high;
1104 
1105  gprs_high = (compat_ulong_t *)
1106  &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1107  if (kbuf) {
1108  compat_ulong_t *k = kbuf;
1109  while (count > 0) {
1110  *k++ = *gprs_high;
1111  gprs_high += 2;
1112  count -= sizeof(*k);
1113  }
1114  } else {
1115  compat_ulong_t __user *u = ubuf;
1116  while (count > 0) {
1117  if (__put_user(*gprs_high, u++))
1118  return -EFAULT;
1119  gprs_high += 2;
1120  count -= sizeof(*u);
1121  }
1122  }
1123  return 0;
1124 }
1125 
1126 static int s390_compat_regs_high_set(struct task_struct *target,
1127  const struct user_regset *regset,
1128  unsigned int pos, unsigned int count,
1129  const void *kbuf, const void __user *ubuf)
1130 {
1131  compat_ulong_t *gprs_high;
1132  int rc = 0;
1133 
1134  gprs_high = (compat_ulong_t *)
1135  &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1136  if (kbuf) {
1137  const compat_ulong_t *k = kbuf;
1138  while (count > 0) {
1139  *gprs_high = *k++;
1140  *gprs_high += 2;
1141  count -= sizeof(*k);
1142  }
1143  } else {
1144  const compat_ulong_t __user *u = ubuf;
1145  while (count > 0 && !rc) {
1146  unsigned long word;
1147  rc = __get_user(word, u++);
1148  if (rc)
1149  break;
1150  *gprs_high = word;
1151  *gprs_high += 2;
1152  count -= sizeof(*u);
1153  }
1154  }
1155 
1156  return rc;
1157 }
1158 
1159 static int s390_compat_last_break_get(struct task_struct *target,
1160  const struct user_regset *regset,
1161  unsigned int pos, unsigned int count,
1162  void *kbuf, void __user *ubuf)
1163 {
1164  compat_ulong_t last_break;
1165 
1166  if (count > 0) {
1167  last_break = task_thread_info(target)->last_break;
1168  if (kbuf) {
1169  unsigned long *k = kbuf;
1170  *k = last_break;
1171  } else {
1172  unsigned long __user *u = ubuf;
1173  if (__put_user(last_break, u))
1174  return -EFAULT;
1175  }
1176  }
1177  return 0;
1178 }
1179 
1180 static int s390_compat_last_break_set(struct task_struct *target,
1181  const struct user_regset *regset,
1182  unsigned int pos, unsigned int count,
1183  const void *kbuf, const void __user *ubuf)
1184 {
1185  return 0;
1186 }
1187 
1188 static const struct user_regset s390_compat_regsets[] = {
1189  [REGSET_GENERAL] = {
1191  .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1192  .size = sizeof(compat_long_t),
1193  .align = sizeof(compat_long_t),
1194  .get = s390_compat_regs_get,
1195  .set = s390_compat_regs_set,
1196  },
1197  [REGSET_FP] = {
1198  .core_note_type = NT_PRFPREG,
1199  .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1200  .size = sizeof(compat_long_t),
1201  .align = sizeof(compat_long_t),
1202  .get = s390_fpregs_get,
1203  .set = s390_fpregs_set,
1204  },
1205  [REGSET_LAST_BREAK] = {
1206  .core_note_type = NT_S390_LAST_BREAK,
1207  .n = 1,
1208  .size = sizeof(long),
1209  .align = sizeof(long),
1210  .get = s390_compat_last_break_get,
1211  .set = s390_compat_last_break_set,
1212  },
1213  [REGSET_TDB] = {
1214  .core_note_type = NT_S390_TDB,
1215  .n = 1,
1216  .size = 256,
1217  .align = 1,
1218  .get = s390_tdb_get,
1219  .set = s390_tdb_set,
1220  },
1221  [REGSET_SYSTEM_CALL] = {
1222  .core_note_type = NT_S390_SYSTEM_CALL,
1223  .n = 1,
1224  .size = sizeof(compat_uint_t),
1225  .align = sizeof(compat_uint_t),
1226  .get = s390_system_call_get,
1227  .set = s390_system_call_set,
1228  },
1230  .core_note_type = NT_S390_HIGH_GPRS,
1231  .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1232  .size = sizeof(compat_long_t),
1233  .align = sizeof(compat_long_t),
1234  .get = s390_compat_regs_high_get,
1235  .set = s390_compat_regs_high_set,
1236  },
1237 };
1238 
1239 static const struct user_regset_view user_s390_compat_view = {
1240  .name = "s390",
1241  .e_machine = EM_S390,
1242  .regsets = s390_compat_regsets,
1243  .n = ARRAY_SIZE(s390_compat_regsets)
1244 };
1245 #endif
1246 
1248 {
1249 #ifdef CONFIG_COMPAT
1250  if (test_tsk_thread_flag(task, TIF_31BIT))
1251  return &user_s390_compat_view;
1252 #endif
1253  return &user_s390_view;
1254 }
1255 
1256 static const char *gpr_names[NUM_GPRS] = {
1257  "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1258  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1259 };
1260 
1261 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1262 {
1263  if (offset >= NUM_GPRS)
1264  return 0;
1265  return regs->gprs[offset];
1266 }
1267 
1269 {
1270  unsigned long offset;
1271 
1272  if (!name || *name != 'r')
1273  return -EINVAL;
1274  if (strict_strtoul(name + 1, 10, &offset))
1275  return -EINVAL;
1276  if (offset >= NUM_GPRS)
1277  return -EINVAL;
1278  return offset;
1279 }
1280 
1281 const char *regs_query_register_name(unsigned int offset)
1282 {
1283  if (offset >= NUM_GPRS)
1284  return NULL;
1285  return gpr_names[offset];
1286 }
1287 
1288 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1289 {
1290  unsigned long ksp = kernel_stack_pointer(regs);
1291 
1292  return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1293 }
1294 
1304 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1305 {
1306  unsigned long addr;
1307 
1308  addr = kernel_stack_pointer(regs) + n * sizeof(long);
1309  if (!regs_within_kernel_stack(regs, addr))
1310  return 0;
1311  return *(unsigned long *)addr;
1312 }