Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
io.h
Go to the documentation of this file.
1 #ifndef __ASM_SH_IO_H
2 #define __ASM_SH_IO_H
3 
4 /*
5  * Convention:
6  * read{b,w,l,q}/write{b,w,l,q} are for PCI,
7  * while in{b,w,l}/out{b,w,l} are for ISA
8  *
9  * In addition we have 'pausing' versions: in{b,w,l}_p/out{b,w,l}_p
10  * and 'string' versions: ins{b,w,l}/outs{b,w,l}
11  *
12  * While read{b,w,l,q} and write{b,w,l,q} contain memory barriers
13  * automatically, there are also __raw versions, which do not.
14  */
15 #include <linux/errno.h>
16 #include <asm/cache.h>
17 #include <asm/addrspace.h>
18 #include <asm/machvec.h>
19 #include <asm/pgtable.h>
20 #include <asm-generic/iomap.h>
21 
22 #ifdef __KERNEL__
23 #define __IO_PREFIX generic
24 #include <asm/io_generic.h>
25 #include <asm/io_trapped.h>
26 #include <mach/mangle-port.h>
27 
28 #define __raw_writeb(v,a) (__chk_io_ptr(a), *(volatile u8 __force *)(a) = (v))
29 #define __raw_writew(v,a) (__chk_io_ptr(a), *(volatile u16 __force *)(a) = (v))
30 #define __raw_writel(v,a) (__chk_io_ptr(a), *(volatile u32 __force *)(a) = (v))
31 #define __raw_writeq(v,a) (__chk_io_ptr(a), *(volatile u64 __force *)(a) = (v))
32 
33 #define __raw_readb(a) (__chk_io_ptr(a), *(volatile u8 __force *)(a))
34 #define __raw_readw(a) (__chk_io_ptr(a), *(volatile u16 __force *)(a))
35 #define __raw_readl(a) (__chk_io_ptr(a), *(volatile u32 __force *)(a))
36 #define __raw_readq(a) (__chk_io_ptr(a), *(volatile u64 __force *)(a))
37 
38 #define readb_relaxed(c) ({ u8 __v = ioswabb(__raw_readb(c)); __v; })
39 #define readw_relaxed(c) ({ u16 __v = ioswabw(__raw_readw(c)); __v; })
40 #define readl_relaxed(c) ({ u32 __v = ioswabl(__raw_readl(c)); __v; })
41 #define readq_relaxed(c) ({ u64 __v = ioswabq(__raw_readq(c)); __v; })
42 
43 #define writeb_relaxed(v,c) ((void)__raw_writeb((__force u8)ioswabb(v),c))
44 #define writew_relaxed(v,c) ((void)__raw_writew((__force u16)ioswabw(v),c))
45 #define writel_relaxed(v,c) ((void)__raw_writel((__force u32)ioswabl(v),c))
46 #define writeq_relaxed(v,c) ((void)__raw_writeq((__force u64)ioswabq(v),c))
47 
48 #define readb(a) ({ u8 r_ = readb_relaxed(a); rmb(); r_; })
49 #define readw(a) ({ u16 r_ = readw_relaxed(a); rmb(); r_; })
50 #define readl(a) ({ u32 r_ = readl_relaxed(a); rmb(); r_; })
51 #define readq(a) ({ u64 r_ = readq_relaxed(a); rmb(); r_; })
52 
53 #define writeb(v,a) ({ wmb(); writeb_relaxed((v),(a)); })
54 #define writew(v,a) ({ wmb(); writew_relaxed((v),(a)); })
55 #define writel(v,a) ({ wmb(); writel_relaxed((v),(a)); })
56 #define writeq(v,a) ({ wmb(); writeq_relaxed((v),(a)); })
57 
58 #define readsb(p,d,l) __raw_readsb(p,d,l)
59 #define readsw(p,d,l) __raw_readsw(p,d,l)
60 #define readsl(p,d,l) __raw_readsl(p,d,l)
61 
62 #define writesb(p,d,l) __raw_writesb(p,d,l)
63 #define writesw(p,d,l) __raw_writesw(p,d,l)
64 #define writesl(p,d,l) __raw_writesl(p,d,l)
65 
66 #define __BUILD_UNCACHED_IO(bwlq, type) \
67 static inline type read##bwlq##_uncached(unsigned long addr) \
68 { \
69  type ret; \
70  jump_to_uncached(); \
71  ret = __raw_read##bwlq(addr); \
72  back_to_cached(); \
73  return ret; \
74 } \
75  \
76 static inline void write##bwlq##_uncached(type v, unsigned long addr) \
77 { \
78  jump_to_uncached(); \
79  __raw_write##bwlq(v, addr); \
80  back_to_cached(); \
81 }
82 
83 __BUILD_UNCACHED_IO(b, u8)
84 __BUILD_UNCACHED_IO(w, u16)
85 __BUILD_UNCACHED_IO(l, u32)
86 __BUILD_UNCACHED_IO(q, u64)
87 
88 #define __BUILD_MEMORY_STRING(pfx, bwlq, type) \
89  \
90 static inline void \
91 pfx##writes##bwlq(volatile void __iomem *mem, const void *addr, \
92  unsigned int count) \
93 { \
94  const volatile type *__addr = addr; \
95  \
96  while (count--) { \
97  __raw_write##bwlq(*__addr, mem); \
98  __addr++; \
99  } \
100 } \
101  \
102 static inline void pfx##reads##bwlq(volatile void __iomem *mem, \
103  void *addr, unsigned int count) \
104 { \
105  volatile type *__addr = addr; \
106  \
107  while (count--) { \
108  *__addr = __raw_read##bwlq(mem); \
109  __addr++; \
110  } \
111 }
112 
113 __BUILD_MEMORY_STRING(__raw_, b, u8)
114 __BUILD_MEMORY_STRING(__raw_, w, u16)
115 
116 #ifdef CONFIG_SUPERH32
117 void __raw_writesl(void __iomem *addr, const void *data, int longlen);
118 void __raw_readsl(const void __iomem *addr, void *data, int longlen);
119 #else
120 __BUILD_MEMORY_STRING(__raw_, l, u32)
121 #endif
122 
123 __BUILD_MEMORY_STRING(__raw_, q, u64)
124 
125 #ifdef CONFIG_HAS_IOPORT
126 
127 /*
128  * Slowdown I/O port space accesses for antique hardware.
129  */
130 #undef CONF_SLOWDOWN_IO
131 
132 /*
133  * On SuperH I/O ports are memory mapped, so we access them using normal
134  * load/store instructions. sh_io_port_base is the virtual address to
135  * which all ports are being mapped.
136  */
137 extern unsigned long sh_io_port_base;
138 
139 static inline void __set_io_port_base(unsigned long pbase)
140 {
141  *(unsigned long *)&sh_io_port_base = pbase;
142  barrier();
143 }
144 
145 #ifdef CONFIG_GENERIC_IOMAP
146 #define __ioport_map ioport_map
147 #else
148 extern void __iomem *__ioport_map(unsigned long addr, unsigned int size);
149 #endif
150 
151 #ifdef CONF_SLOWDOWN_IO
152 #define SLOW_DOWN_IO __raw_readw(sh_io_port_base)
153 #else
154 #define SLOW_DOWN_IO
155 #endif
156 
157 #define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow) \
158  \
159 static inline void pfx##out##bwlq##p(type val, unsigned long port) \
160 { \
161  volatile type *__addr; \
162  \
163  __addr = __ioport_map(port, sizeof(type)); \
164  *__addr = val; \
165  slow; \
166 } \
167  \
168 static inline type pfx##in##bwlq##p(unsigned long port) \
169 { \
170  volatile type *__addr; \
171  type __val; \
172  \
173  __addr = __ioport_map(port, sizeof(type)); \
174  __val = *__addr; \
175  slow; \
176  \
177  return __val; \
178 }
179 
180 #define __BUILD_IOPORT_PFX(bus, bwlq, type) \
181  __BUILD_IOPORT_SINGLE(bus, bwlq, type, ,) \
182  __BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO)
183 
184 #define BUILDIO_IOPORT(bwlq, type) \
185  __BUILD_IOPORT_PFX(, bwlq, type)
186 
191 
192 #define __BUILD_IOPORT_STRING(bwlq, type) \
193  \
194 static inline void outs##bwlq(unsigned long port, const void *addr, \
195  unsigned int count) \
196 { \
197  const volatile type *__addr = addr; \
198  \
199  while (count--) { \
200  out##bwlq(*__addr, port); \
201  __addr++; \
202  } \
203 } \
204  \
205 static inline void ins##bwlq(unsigned long port, void *addr, \
206  unsigned int count) \
207 { \
208  volatile type *__addr = addr; \
209  \
210  while (count--) { \
211  *__addr = in##bwlq(port); \
212  __addr++; \
213  } \
214 }
215 
220 
221 #else /* !CONFIG_HAS_IOPORT */
222 
223 #include <asm/io_noioport.h>
224 
225 #endif
226 
227 
228 #define IO_SPACE_LIMIT 0xffffffff
229 
230 /* synco on SH-4A, otherwise a nop */
231 #define mmiowb() wmb()
232 
233 /* We really want to try and get these to memcpy etc */
234 void memcpy_fromio(void *, const volatile void __iomem *, unsigned long);
235 void memcpy_toio(volatile void __iomem *, const void *, unsigned long);
236 void memset_io(volatile void __iomem *, int, unsigned long);
237 
238 /* Quad-word real-mode I/O, don't ask.. */
239 unsigned long long peek_real_address_q(unsigned long long addr);
240 unsigned long long poke_real_address_q(unsigned long long addr,
241  unsigned long long val);
242 
243 #if !defined(CONFIG_MMU)
244 #define virt_to_phys(address) ((unsigned long)(address))
245 #define phys_to_virt(address) ((void *)(address))
246 #else
247 #define virt_to_phys(address) (__pa(address))
248 #define phys_to_virt(address) (__va(address))
249 #endif
250 
251 /*
252  * On 32-bit SH, we traditionally have the whole physical address space
253  * mapped at all times (as MIPS does), so "ioremap()" and "iounmap()" do
254  * not need to do anything but place the address in the proper segment.
255  * This is true for P1 and P2 addresses, as well as some P3 ones.
256  * However, most of the P3 addresses and newer cores using extended
257  * addressing need to map through page tables, so the ioremap()
258  * implementation becomes a bit more complicated.
259  *
260  * See arch/sh/mm/ioremap.c for additional notes on this.
261  *
262  * We cheat a bit and always return uncachable areas until we've fixed
263  * the drivers to handle caching properly.
264  *
265  * On the SH-5 the concept of segmentation in the 1:1 PXSEG sense simply
266  * doesn't exist, so everything must go through page tables.
267  */
268 #ifdef CONFIG_MMU
269 void __iomem *__ioremap_caller(phys_addr_t offset, unsigned long size,
270  pgprot_t prot, void *caller);
271 void __iounmap(void __iomem *addr);
272 
273 static inline void __iomem *
274 __ioremap(phys_addr_t offset, unsigned long size, pgprot_t prot)
275 {
276  return __ioremap_caller(offset, size, prot, __builtin_return_address(0));
277 }
278 
279 static inline void __iomem *
280 __ioremap_29bit(phys_addr_t offset, unsigned long size, pgprot_t prot)
281 {
282 #ifdef CONFIG_29BIT
283  phys_addr_t last_addr = offset + size - 1;
284 
285  /*
286  * For P1 and P2 space this is trivial, as everything is already
287  * mapped. Uncached access for P1 addresses are done through P2.
288  * In the P3 case or for addresses outside of the 29-bit space,
289  * mapping must be done by the PMB or by using page tables.
290  */
291  if (likely(PXSEG(offset) < P3SEG && PXSEG(last_addr) < P3SEG)) {
292  u64 flags = pgprot_val(prot);
293 
294  /*
295  * Anything using the legacy PTEA space attributes needs
296  * to be kicked down to page table mappings.
297  */
298  if (unlikely(flags & _PAGE_PCC_MASK))
299  return NULL;
300  if (unlikely(flags & _PAGE_CACHABLE))
301  return (void __iomem *)P1SEGADDR(offset);
302 
303  return (void __iomem *)P2SEGADDR(offset);
304  }
305 
306  /* P4 above the store queues are always mapped. */
307  if (unlikely(offset >= P3_ADDR_MAX))
308  return (void __iomem *)P4SEGADDR(offset);
309 #endif
310 
311  return NULL;
312 }
313 
314 static inline void __iomem *
315 __ioremap_mode(phys_addr_t offset, unsigned long size, pgprot_t prot)
316 {
317  void __iomem *ret;
318 
319  ret = __ioremap_trapped(offset, size);
320  if (ret)
321  return ret;
322 
323  ret = __ioremap_29bit(offset, size, prot);
324  if (ret)
325  return ret;
326 
327  return __ioremap(offset, size, prot);
328 }
329 #else
330 #define __ioremap(offset, size, prot) ((void __iomem *)(offset))
331 #define __ioremap_mode(offset, size, prot) ((void __iomem *)(offset))
332 #define __iounmap(addr) do { } while (0)
333 #endif /* CONFIG_MMU */
334 
335 static inline void __iomem *ioremap(phys_addr_t offset, unsigned long size)
336 {
337  return __ioremap_mode(offset, size, PAGE_KERNEL_NOCACHE);
338 }
339 
340 static inline void __iomem *
341 ioremap_cache(phys_addr_t offset, unsigned long size)
342 {
343  return __ioremap_mode(offset, size, PAGE_KERNEL);
344 }
345 
346 #ifdef CONFIG_HAVE_IOREMAP_PROT
347 static inline void __iomem *
348 ioremap_prot(phys_addr_t offset, unsigned long size, unsigned long flags)
349 {
350  return __ioremap_mode(offset, size, __pgprot(flags));
351 }
352 #endif
353 
354 #ifdef CONFIG_IOREMAP_FIXED
355 extern void __iomem *ioremap_fixed(phys_addr_t, unsigned long, pgprot_t);
356 extern int iounmap_fixed(void __iomem *);
357 extern void ioremap_fixed_init(void);
358 #else
359 static inline void __iomem *
360 ioremap_fixed(phys_addr_t phys_addr, unsigned long size, pgprot_t prot)
361 {
362  BUG();
363  return NULL;
364 }
365 
366 static inline void ioremap_fixed_init(void) { }
367 static inline int iounmap_fixed(void __iomem *addr) { return -EINVAL; }
368 #endif
369 
370 #define ioremap_nocache ioremap
371 #define iounmap __iounmap
372 
373 /*
374  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
375  * access
376  */
377 #define xlate_dev_mem_ptr(p) __va(p)
378 
379 /*
380  * Convert a virtual cached pointer to an uncached pointer
381  */
382 #define xlate_dev_kmem_ptr(p) p
383 
384 #define ARCH_HAS_VALID_PHYS_ADDR_RANGE
385 int valid_phys_addr_range(unsigned long addr, size_t size);
386 int valid_mmap_phys_addr_range(unsigned long pfn, size_t size);
387 
388 #endif /* __KERNEL__ */
389 
390 #endif /* __ASM_SH_IO_H */