Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ftrace.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2008 Matt Fleming <[email protected]>
3  * Copyright (C) 2008 Paul Mundt <[email protected]>
4  *
5  * Code for replacing ftrace calls with jumps.
6  *
7  * Copyright (C) 2007-2008 Steven Rostedt <[email protected]>
8  *
9  * Thanks goes to Ingo Molnar, for suggesting the idea.
10  * Mathieu Desnoyers, for suggesting postponing the modifications.
11  * Arjan van de Ven, for keeping me straight, and explaining to me
12  * the dangers of modifying code on the run.
13  */
14 #include <linux/uaccess.h>
15 #include <linux/ftrace.h>
16 #include <linux/string.h>
17 #include <linux/init.h>
18 #include <linux/io.h>
19 #include <linux/kernel.h>
20 #include <asm/ftrace.h>
21 #include <asm/cacheflush.h>
22 #include <asm/unistd.h>
23 #include <trace/syscall.h>
24 
25 #ifdef CONFIG_DYNAMIC_FTRACE
26 static unsigned char ftrace_replaced_code[MCOUNT_INSN_SIZE];
27 
28 static unsigned char ftrace_nop[4];
29 /*
30  * If we're trying to nop out a call to a function, we instead
31  * place a call to the address after the memory table.
32  *
33  * 8c011060 <a>:
34  * 8c011060: 02 d1 mov.l 8c01106c <a+0xc>,r1
35  * 8c011062: 22 4f sts.l pr,@-r15
36  * 8c011064: 02 c7 mova 8c011070 <a+0x10>,r0
37  * 8c011066: 2b 41 jmp @r1
38  * 8c011068: 2a 40 lds r0,pr
39  * 8c01106a: 09 00 nop
40  * 8c01106c: 68 24 .word 0x2468 <--- ip
41  * 8c01106e: 1d 8c .word 0x8c1d
42  * 8c011070: 26 4f lds.l @r15+,pr <--- ip + MCOUNT_INSN_SIZE
43  *
44  * We write 0x8c011070 to 0x8c01106c so that on entry to a() we branch
45  * past the _mcount call and continue executing code like normal.
46  */
47 static unsigned char *ftrace_nop_replace(unsigned long ip)
48 {
49  __raw_writel(ip + MCOUNT_INSN_SIZE, ftrace_nop);
50  return ftrace_nop;
51 }
52 
53 static unsigned char *ftrace_call_replace(unsigned long ip, unsigned long addr)
54 {
55  /* Place the address in the memory table. */
56  __raw_writel(addr, ftrace_replaced_code);
57 
58  /*
59  * No locking needed, this must be called via kstop_machine
60  * which in essence is like running on a uniprocessor machine.
61  */
62  return ftrace_replaced_code;
63 }
64 
65 /*
66  * Modifying code must take extra care. On an SMP machine, if
67  * the code being modified is also being executed on another CPU
68  * that CPU will have undefined results and possibly take a GPF.
69  * We use kstop_machine to stop other CPUS from exectuing code.
70  * But this does not stop NMIs from happening. We still need
71  * to protect against that. We separate out the modification of
72  * the code to take care of this.
73  *
74  * Two buffers are added: An IP buffer and a "code" buffer.
75  *
76  * 1) Put the instruction pointer into the IP buffer
77  * and the new code into the "code" buffer.
78  * 2) Wait for any running NMIs to finish and set a flag that says
79  * we are modifying code, it is done in an atomic operation.
80  * 3) Write the code
81  * 4) clear the flag.
82  * 5) Wait for any running NMIs to finish.
83  *
84  * If an NMI is executed, the first thing it does is to call
85  * "ftrace_nmi_enter". This will check if the flag is set to write
86  * and if it is, it will write what is in the IP and "code" buffers.
87  *
88  * The trick is, it does not matter if everyone is writing the same
89  * content to the code location. Also, if a CPU is executing code
90  * it is OK to write to that code location if the contents being written
91  * are the same as what exists.
92  */
93 #define MOD_CODE_WRITE_FLAG (1 << 31) /* set when NMI should do the write */
94 static atomic_t nmi_running = ATOMIC_INIT(0);
95 static int mod_code_status; /* holds return value of text write */
96 static void *mod_code_ip; /* holds the IP to write to */
97 static void *mod_code_newcode; /* holds the text to write to the IP */
98 
99 static unsigned nmi_wait_count;
100 static atomic_t nmi_update_count = ATOMIC_INIT(0);
101 
102 int ftrace_arch_read_dyn_info(char *buf, int size)
103 {
104  int r;
105 
106  r = snprintf(buf, size, "%u %u",
107  nmi_wait_count,
108  atomic_read(&nmi_update_count));
109  return r;
110 }
111 
112 static void clear_mod_flag(void)
113 {
114  int old = atomic_read(&nmi_running);
115 
116  for (;;) {
117  int new = old & ~MOD_CODE_WRITE_FLAG;
118 
119  if (old == new)
120  break;
121 
122  old = atomic_cmpxchg(&nmi_running, old, new);
123  }
124 }
125 
126 static void ftrace_mod_code(void)
127 {
128  /*
129  * Yes, more than one CPU process can be writing to mod_code_status.
130  * (and the code itself)
131  * But if one were to fail, then they all should, and if one were
132  * to succeed, then they all should.
133  */
134  mod_code_status = probe_kernel_write(mod_code_ip, mod_code_newcode,
136 
137  /* if we fail, then kill any new writers */
138  if (mod_code_status)
139  clear_mod_flag();
140 }
141 
142 void ftrace_nmi_enter(void)
143 {
144  if (atomic_inc_return(&nmi_running) & MOD_CODE_WRITE_FLAG) {
145  smp_rmb();
146  ftrace_mod_code();
147  atomic_inc(&nmi_update_count);
148  }
149  /* Must have previous changes seen before executions */
150  smp_mb();
151 }
152 
153 void ftrace_nmi_exit(void)
154 {
155  /* Finish all executions before clearing nmi_running */
156  smp_mb();
157  atomic_dec(&nmi_running);
158 }
159 
160 static void wait_for_nmi_and_set_mod_flag(void)
161 {
162  if (!atomic_cmpxchg(&nmi_running, 0, MOD_CODE_WRITE_FLAG))
163  return;
164 
165  do {
166  cpu_relax();
167  } while (atomic_cmpxchg(&nmi_running, 0, MOD_CODE_WRITE_FLAG));
168 
169  nmi_wait_count++;
170 }
171 
172 static void wait_for_nmi(void)
173 {
174  if (!atomic_read(&nmi_running))
175  return;
176 
177  do {
178  cpu_relax();
179  } while (atomic_read(&nmi_running));
180 
181  nmi_wait_count++;
182 }
183 
184 static int
185 do_ftrace_mod_code(unsigned long ip, void *new_code)
186 {
187  mod_code_ip = (void *)ip;
188  mod_code_newcode = new_code;
189 
190  /* The buffers need to be visible before we let NMIs write them */
191  smp_mb();
192 
193  wait_for_nmi_and_set_mod_flag();
194 
195  /* Make sure all running NMIs have finished before we write the code */
196  smp_mb();
197 
198  ftrace_mod_code();
199 
200  /* Make sure the write happens before clearing the bit */
201  smp_mb();
202 
203  clear_mod_flag();
204  wait_for_nmi();
205 
206  return mod_code_status;
207 }
208 
209 static int ftrace_modify_code(unsigned long ip, unsigned char *old_code,
210  unsigned char *new_code)
211 {
212  unsigned char replaced[MCOUNT_INSN_SIZE];
213 
214  /*
215  * Note: Due to modules and __init, code can
216  * disappear and change, we need to protect against faulting
217  * as well as code changing. We do this by using the
218  * probe_kernel_* functions.
219  *
220  * No real locking needed, this code is run through
221  * kstop_machine, or before SMP starts.
222  */
223 
224  /* read the text we want to modify */
225  if (probe_kernel_read(replaced, (void *)ip, MCOUNT_INSN_SIZE))
226  return -EFAULT;
227 
228  /* Make sure it is what we expect it to be */
229  if (memcmp(replaced, old_code, MCOUNT_INSN_SIZE) != 0)
230  return -EINVAL;
231 
232  /* replace the text with the new text */
233  if (do_ftrace_mod_code(ip, new_code))
234  return -EPERM;
235 
237 
238  return 0;
239 }
240 
241 int ftrace_update_ftrace_func(ftrace_func_t func)
242 {
243  unsigned long ip = (unsigned long)(&ftrace_call) + MCOUNT_INSN_OFFSET;
244  unsigned char old[MCOUNT_INSN_SIZE], *new;
245 
246  memcpy(old, (unsigned char *)ip, MCOUNT_INSN_SIZE);
247  new = ftrace_call_replace(ip, (unsigned long)func);
248 
249  return ftrace_modify_code(ip, old, new);
250 }
251 
252 int ftrace_make_nop(struct module *mod,
253  struct dyn_ftrace *rec, unsigned long addr)
254 {
255  unsigned char *new, *old;
256  unsigned long ip = rec->ip;
257 
258  old = ftrace_call_replace(ip, addr);
259  new = ftrace_nop_replace(ip);
260 
261  return ftrace_modify_code(rec->ip, old, new);
262 }
263 
264 int ftrace_make_call(struct dyn_ftrace *rec, unsigned long addr)
265 {
266  unsigned char *new, *old;
267  unsigned long ip = rec->ip;
268 
269  old = ftrace_nop_replace(ip);
270  new = ftrace_call_replace(ip, addr);
271 
272  return ftrace_modify_code(rec->ip, old, new);
273 }
274 
276 {
277  /* The return code is retured via data */
278  __raw_writel(0, (unsigned long)data);
279 
280  return 0;
281 }
282 #endif /* CONFIG_DYNAMIC_FTRACE */
283 
284 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
285 #ifdef CONFIG_DYNAMIC_FTRACE
286 extern void ftrace_graph_call(void);
287 
288 static int ftrace_mod(unsigned long ip, unsigned long old_addr,
289  unsigned long new_addr)
290 {
291  unsigned char code[MCOUNT_INSN_SIZE];
292 
293  if (probe_kernel_read(code, (void *)ip, MCOUNT_INSN_SIZE))
294  return -EFAULT;
295 
296  if (old_addr != __raw_readl((unsigned long *)code))
297  return -EINVAL;
298 
299  __raw_writel(new_addr, ip);
300  return 0;
301 }
302 
303 int ftrace_enable_ftrace_graph_caller(void)
304 {
305  unsigned long ip, old_addr, new_addr;
306 
307  ip = (unsigned long)(&ftrace_graph_call) + GRAPH_INSN_OFFSET;
308  old_addr = (unsigned long)(&skip_trace);
309  new_addr = (unsigned long)(&ftrace_graph_caller);
310 
311  return ftrace_mod(ip, old_addr, new_addr);
312 }
313 
314 int ftrace_disable_ftrace_graph_caller(void)
315 {
316  unsigned long ip, old_addr, new_addr;
317 
318  ip = (unsigned long)(&ftrace_graph_call) + GRAPH_INSN_OFFSET;
319  old_addr = (unsigned long)(&ftrace_graph_caller);
320  new_addr = (unsigned long)(&skip_trace);
321 
322  return ftrace_mod(ip, old_addr, new_addr);
323 }
324 #endif /* CONFIG_DYNAMIC_FTRACE */
325 
326 /*
327  * Hook the return address and push it in the stack of return addrs
328  * in the current thread info.
329  *
330  * This is the main routine for the function graph tracer. The function
331  * graph tracer essentially works like this:
332  *
333  * parent is the stack address containing self_addr's return address.
334  * We pull the real return address out of parent and store it in
335  * current's ret_stack. Then, we replace the return address on the stack
336  * with the address of return_to_handler. self_addr is the function that
337  * called mcount.
338  *
339  * When self_addr returns, it will jump to return_to_handler which calls
340  * ftrace_return_to_handler. ftrace_return_to_handler will pull the real
341  * return address off of current's ret_stack and jump to it.
342  */
343 void prepare_ftrace_return(unsigned long *parent, unsigned long self_addr)
344 {
345  unsigned long old;
346  int faulted, err;
347  struct ftrace_graph_ent trace;
348  unsigned long return_hooker = (unsigned long)&return_to_handler;
349 
350  if (unlikely(atomic_read(&current->tracing_graph_pause)))
351  return;
352 
353  /*
354  * Protect against fault, even if it shouldn't
355  * happen. This tool is too much intrusive to
356  * ignore such a protection.
357  */
358  __asm__ __volatile__(
359  "1: \n\t"
360  "mov.l @%2, %0 \n\t"
361  "2: \n\t"
362  "mov.l %3, @%2 \n\t"
363  "mov #0, %1 \n\t"
364  "3: \n\t"
365  ".section .fixup, \"ax\" \n\t"
366  "4: \n\t"
367  "mov.l 5f, %0 \n\t"
368  "jmp @%0 \n\t"
369  " mov #1, %1 \n\t"
370  ".balign 4 \n\t"
371  "5: .long 3b \n\t"
372  ".previous \n\t"
373  ".section __ex_table,\"a\" \n\t"
374  ".long 1b, 4b \n\t"
375  ".long 2b, 4b \n\t"
376  ".previous \n\t"
377  : "=&r" (old), "=r" (faulted)
378  : "r" (parent), "r" (return_hooker)
379  );
380 
381  if (unlikely(faulted)) {
382  ftrace_graph_stop();
383  WARN_ON(1);
384  return;
385  }
386 
387  err = ftrace_push_return_trace(old, self_addr, &trace.depth, 0);
388  if (err == -EBUSY) {
389  __raw_writel(old, parent);
390  return;
391  }
392 
393  trace.func = self_addr;
394 
395  /* Only trace if the calling function expects to */
396  if (!ftrace_graph_entry(&trace)) {
397  current->curr_ret_stack--;
398  __raw_writel(old, parent);
399  }
400 }
401 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */