Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
cpumap.c
Go to the documentation of this file.
1 /* cpumap.c: used for optimizing CPU assignment
2  *
3  * Copyright (C) 2009 Hong H. Pham <[email protected]>
4  */
5 
6 #include <linux/export.h>
7 #include <linux/slab.h>
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/cpumask.h>
11 #include <linux/spinlock.h>
12 #include <asm/cpudata.h>
13 #include "cpumap.h"
14 
15 
16 enum {
22 };
23 
24 enum {
26  /* Increment rover every time level is visited */
28  /* Increment parent's rover every time rover wraps around */
30 };
31 
32 struct cpuinfo_node {
33  int id;
34  int level;
35  int num_cpus; /* Number of CPUs in this hierarchy */
37  int child_start; /* Array index of the first child node */
38  int child_end; /* Array index of the last child node */
39  int rover; /* Child node iterator */
40 };
41 
42 struct cpuinfo_level {
43  int start_index; /* Index of first node of a level in a cpuinfo tree */
44  int end_index; /* Index of last node of a level in a cpuinfo tree */
45  int num_nodes; /* Number of nodes in a level in a cpuinfo tree */
46 };
47 
48 struct cpuinfo_tree {
50 
51  /* Offsets into nodes[] for each level of the tree */
53  struct cpuinfo_node nodes[0];
54 };
55 
56 
57 static struct cpuinfo_tree *cpuinfo_tree;
58 
59 static u16 cpu_distribution_map[NR_CPUS];
60 static DEFINE_SPINLOCK(cpu_map_lock);
61 
62 
63 /* Niagara optimized cpuinfo tree traversal. */
64 static const int niagara_iterate_method[] = {
66 
67  /* Strands (or virtual CPUs) within a core may not run concurrently
68  * on the Niagara, as instruction pipeline(s) are shared. Distribute
69  * work to strands in different cores first for better concurrency.
70  * Go to next NUMA node when all cores are used.
71  */
73 
74  /* Strands are grouped together by proc_id in cpuinfo_sparc, i.e.
75  * a proc_id represents an instruction pipeline. Distribute work to
76  * strands in different proc_id groups if the core has multiple
77  * instruction pipelines (e.g. the Niagara 2/2+ has two).
78  */
80 
81  /* Pick the next strand in the proc_id group. */
83 };
84 
85 /* Generic cpuinfo tree traversal. Distribute work round robin across NUMA
86  * nodes.
87  */
88 static const int generic_iterate_method[] = {
93 };
94 
95 
96 static int cpuinfo_id(int cpu, int level)
97 {
98  int id;
99 
100  switch (level) {
101  case CPUINFO_LVL_ROOT:
102  id = 0;
103  break;
104  case CPUINFO_LVL_NODE:
105  id = cpu_to_node(cpu);
106  break;
107  case CPUINFO_LVL_CORE:
108  id = cpu_data(cpu).core_id;
109  break;
110  case CPUINFO_LVL_PROC:
111  id = cpu_data(cpu).proc_id;
112  break;
113  default:
114  id = -EINVAL;
115  }
116  return id;
117 }
118 
119 /*
120  * Enumerate the CPU information in __cpu_data to determine the start index,
121  * end index, and number of nodes for each level in the cpuinfo tree. The
122  * total number of cpuinfo nodes required to build the tree is returned.
123  */
124 static int enumerate_cpuinfo_nodes(struct cpuinfo_level *tree_level)
125 {
126  int prev_id[CPUINFO_LVL_MAX];
127  int i, n, num_nodes;
128 
129  for (i = CPUINFO_LVL_ROOT; i < CPUINFO_LVL_MAX; i++) {
130  struct cpuinfo_level *lv = &tree_level[i];
131 
132  prev_id[i] = -1;
133  lv->start_index = lv->end_index = lv->num_nodes = 0;
134  }
135 
136  num_nodes = 1; /* Include the root node */
137 
138  for (i = 0; i < num_possible_cpus(); i++) {
139  if (!cpu_online(i))
140  continue;
141 
142  n = cpuinfo_id(i, CPUINFO_LVL_NODE);
143  if (n > prev_id[CPUINFO_LVL_NODE]) {
144  tree_level[CPUINFO_LVL_NODE].num_nodes++;
145  prev_id[CPUINFO_LVL_NODE] = n;
146  num_nodes++;
147  }
148  n = cpuinfo_id(i, CPUINFO_LVL_CORE);
149  if (n > prev_id[CPUINFO_LVL_CORE]) {
150  tree_level[CPUINFO_LVL_CORE].num_nodes++;
151  prev_id[CPUINFO_LVL_CORE] = n;
152  num_nodes++;
153  }
154  n = cpuinfo_id(i, CPUINFO_LVL_PROC);
155  if (n > prev_id[CPUINFO_LVL_PROC]) {
156  tree_level[CPUINFO_LVL_PROC].num_nodes++;
157  prev_id[CPUINFO_LVL_PROC] = n;
158  num_nodes++;
159  }
160  }
161 
162  tree_level[CPUINFO_LVL_ROOT].num_nodes = 1;
163 
164  n = tree_level[CPUINFO_LVL_NODE].num_nodes;
165  tree_level[CPUINFO_LVL_NODE].start_index = 1;
166  tree_level[CPUINFO_LVL_NODE].end_index = n;
167 
168  n++;
169  tree_level[CPUINFO_LVL_CORE].start_index = n;
170  n += tree_level[CPUINFO_LVL_CORE].num_nodes;
171  tree_level[CPUINFO_LVL_CORE].end_index = n - 1;
172 
173  tree_level[CPUINFO_LVL_PROC].start_index = n;
174  n += tree_level[CPUINFO_LVL_PROC].num_nodes;
175  tree_level[CPUINFO_LVL_PROC].end_index = n - 1;
176 
177  return num_nodes;
178 }
179 
180 /* Build a tree representation of the CPU hierarchy using the per CPU
181  * information in __cpu_data. Entries in __cpu_data[0..NR_CPUS] are
182  * assumed to be sorted in ascending order based on node, core_id, and
183  * proc_id (in order of significance).
184  */
185 static struct cpuinfo_tree *build_cpuinfo_tree(void)
186 {
187  struct cpuinfo_tree *new_tree;
188  struct cpuinfo_node *node;
189  struct cpuinfo_level tmp_level[CPUINFO_LVL_MAX];
190  int num_cpus[CPUINFO_LVL_MAX];
191  int level_rover[CPUINFO_LVL_MAX];
192  int prev_id[CPUINFO_LVL_MAX];
193  int n, id, cpu, prev_cpu, last_cpu, level;
194 
195  n = enumerate_cpuinfo_nodes(tmp_level);
196 
197  new_tree = kzalloc(sizeof(struct cpuinfo_tree) +
198  (sizeof(struct cpuinfo_node) * n), GFP_ATOMIC);
199  if (!new_tree)
200  return NULL;
201 
202  new_tree->total_nodes = n;
203  memcpy(&new_tree->level, tmp_level, sizeof(tmp_level));
204 
205  prev_cpu = cpu = cpumask_first(cpu_online_mask);
206 
207  /* Initialize all levels in the tree with the first CPU */
208  for (level = CPUINFO_LVL_PROC; level >= CPUINFO_LVL_ROOT; level--) {
209  n = new_tree->level[level].start_index;
210 
211  level_rover[level] = n;
212  node = &new_tree->nodes[n];
213 
214  id = cpuinfo_id(cpu, level);
215  if (unlikely(id < 0)) {
216  kfree(new_tree);
217  return NULL;
218  }
219  node->id = id;
220  node->level = level;
221  node->num_cpus = 1;
222 
223  node->parent_index = (level > CPUINFO_LVL_ROOT)
224  ? new_tree->level[level - 1].start_index : -1;
225 
226  node->child_start = node->child_end = node->rover =
227  (level == CPUINFO_LVL_PROC)
228  ? cpu : new_tree->level[level + 1].start_index;
229 
230  prev_id[level] = node->id;
231  num_cpus[level] = 1;
232  }
233 
234  for (last_cpu = (num_possible_cpus() - 1); last_cpu >= 0; last_cpu--) {
235  if (cpu_online(last_cpu))
236  break;
237  }
238 
239  while (++cpu <= last_cpu) {
240  if (!cpu_online(cpu))
241  continue;
242 
243  for (level = CPUINFO_LVL_PROC; level >= CPUINFO_LVL_ROOT;
244  level--) {
245  id = cpuinfo_id(cpu, level);
246  if (unlikely(id < 0)) {
247  kfree(new_tree);
248  return NULL;
249  }
250 
251  if ((id != prev_id[level]) || (cpu == last_cpu)) {
252  prev_id[level] = id;
253  node = &new_tree->nodes[level_rover[level]];
254  node->num_cpus = num_cpus[level];
255  num_cpus[level] = 1;
256 
257  if (cpu == last_cpu)
258  node->num_cpus++;
259 
260  /* Connect tree node to parent */
261  if (level == CPUINFO_LVL_ROOT)
262  node->parent_index = -1;
263  else
264  node->parent_index =
265  level_rover[level - 1];
266 
267  if (level == CPUINFO_LVL_PROC) {
268  node->child_end =
269  (cpu == last_cpu) ? cpu : prev_cpu;
270  } else {
271  node->child_end =
272  level_rover[level + 1] - 1;
273  }
274 
275  /* Initialize the next node in the same level */
276  n = ++level_rover[level];
277  if (n <= new_tree->level[level].end_index) {
278  node = &new_tree->nodes[n];
279  node->id = id;
280  node->level = level;
281 
282  /* Connect node to child */
283  node->child_start = node->child_end =
284  node->rover =
285  (level == CPUINFO_LVL_PROC)
286  ? cpu : level_rover[level + 1];
287  }
288  } else
289  num_cpus[level]++;
290  }
291  prev_cpu = cpu;
292  }
293 
294  return new_tree;
295 }
296 
297 static void increment_rover(struct cpuinfo_tree *t, int node_index,
298  int root_index, const int *rover_inc_table)
299 {
300  struct cpuinfo_node *node = &t->nodes[node_index];
301  int top_level, level;
302 
303  top_level = t->nodes[root_index].level;
304  for (level = node->level; level >= top_level; level--) {
305  node->rover++;
306  if (node->rover <= node->child_end)
307  return;
308 
309  node->rover = node->child_start;
310  /* If parent's rover does not need to be adjusted, stop here. */
311  if ((level == top_level) ||
312  !(rover_inc_table[level] & ROVER_INC_PARENT_ON_LOOP))
313  return;
314 
315  node = &t->nodes[node->parent_index];
316  }
317 }
318 
319 static int iterate_cpu(struct cpuinfo_tree *t, unsigned int root_index)
320 {
321  const int *rover_inc_table;
322  int level, new_index, index = root_index;
323 
324  switch (sun4v_chip_type) {
325  case SUN4V_CHIP_NIAGARA1:
326  case SUN4V_CHIP_NIAGARA2:
327  case SUN4V_CHIP_NIAGARA3:
328  case SUN4V_CHIP_NIAGARA4:
329  case SUN4V_CHIP_NIAGARA5:
330  rover_inc_table = niagara_iterate_method;
331  break;
332  default:
333  rover_inc_table = generic_iterate_method;
334  }
335 
336  for (level = t->nodes[root_index].level; level < CPUINFO_LVL_MAX;
337  level++) {
338  new_index = t->nodes[index].rover;
339  if (rover_inc_table[level] & ROVER_INC_ON_VISIT)
340  increment_rover(t, index, root_index, rover_inc_table);
341 
342  index = new_index;
343  }
344  return index;
345 }
346 
347 static void _cpu_map_rebuild(void)
348 {
349  int i;
350 
351  if (cpuinfo_tree) {
352  kfree(cpuinfo_tree);
353  cpuinfo_tree = NULL;
354  }
355 
356  cpuinfo_tree = build_cpuinfo_tree();
357  if (!cpuinfo_tree)
358  return;
359 
360  /* Build CPU distribution map that spans all online CPUs. No need
361  * to check if the CPU is online, as that is done when the cpuinfo
362  * tree is being built.
363  */
364  for (i = 0; i < cpuinfo_tree->nodes[0].num_cpus; i++)
365  cpu_distribution_map[i] = iterate_cpu(cpuinfo_tree, 0);
366 }
367 
368 /* Fallback if the cpuinfo tree could not be built. CPU mapping is linear
369  * round robin.
370  */
371 static int simple_map_to_cpu(unsigned int index)
372 {
373  int i, end, cpu_rover;
374 
375  cpu_rover = 0;
376  end = index % num_online_cpus();
377  for (i = 0; i < num_possible_cpus(); i++) {
378  if (cpu_online(cpu_rover)) {
379  if (cpu_rover >= end)
380  return cpu_rover;
381 
382  cpu_rover++;
383  }
384  }
385 
386  /* Impossible, since num_online_cpus() <= num_possible_cpus() */
387  return cpumask_first(cpu_online_mask);
388 }
389 
390 static int _map_to_cpu(unsigned int index)
391 {
392  struct cpuinfo_node *root_node;
393 
394  if (unlikely(!cpuinfo_tree)) {
395  _cpu_map_rebuild();
396  if (!cpuinfo_tree)
397  return simple_map_to_cpu(index);
398  }
399 
400  root_node = &cpuinfo_tree->nodes[0];
401 #ifdef CONFIG_HOTPLUG_CPU
402  if (unlikely(root_node->num_cpus != num_online_cpus())) {
403  _cpu_map_rebuild();
404  if (!cpuinfo_tree)
405  return simple_map_to_cpu(index);
406  }
407 #endif
408  return cpu_distribution_map[index % root_node->num_cpus];
409 }
410 
411 int map_to_cpu(unsigned int index)
412 {
413  int mapped_cpu;
414  unsigned long flag;
415 
416  spin_lock_irqsave(&cpu_map_lock, flag);
417  mapped_cpu = _map_to_cpu(index);
418 
419 #ifdef CONFIG_HOTPLUG_CPU
420  while (unlikely(!cpu_online(mapped_cpu)))
421  mapped_cpu = _map_to_cpu(index);
422 #endif
423  spin_unlock_irqrestore(&cpu_map_lock, flag);
424  return mapped_cpu;
425 }
427 
428 void cpu_map_rebuild(void)
429 {
430  unsigned long flag;
431 
432  spin_lock_irqsave(&cpu_map_lock, flag);
433  _cpu_map_rebuild();
434  spin_unlock_irqrestore(&cpu_map_lock, flag);
435 }