Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
page.h
Go to the documentation of this file.
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation, version 2.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  * NON INFRINGEMENT. See the GNU General Public License for
12  * more details.
13  */
14 
15 #ifndef _ASM_TILE_PAGE_H
16 #define _ASM_TILE_PAGE_H
17 
18 #include <linux/const.h>
19 #include <hv/hypervisor.h>
20 #include <arch/chip.h>
21 
22 /* PAGE_SHIFT and HPAGE_SHIFT determine the page sizes. */
23 #if defined(CONFIG_PAGE_SIZE_16KB)
24 #define PAGE_SHIFT 14
25 #define CTX_PAGE_FLAG HV_CTX_PG_SM_16K
26 #elif defined(CONFIG_PAGE_SIZE_64KB)
27 #define PAGE_SHIFT 16
28 #define CTX_PAGE_FLAG HV_CTX_PG_SM_64K
29 #else
30 #define PAGE_SHIFT HV_LOG2_DEFAULT_PAGE_SIZE_SMALL
31 #define CTX_PAGE_FLAG 0
32 #endif
33 #define HPAGE_SHIFT HV_LOG2_DEFAULT_PAGE_SIZE_LARGE
34 
35 #define PAGE_SIZE (_AC(1, UL) << PAGE_SHIFT)
36 #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
37 
38 #define PAGE_MASK (~(PAGE_SIZE - 1))
39 #define HPAGE_MASK (~(HPAGE_SIZE - 1))
40 
41 /*
42  * If the Kconfig doesn't specify, set a maximum zone order that
43  * is enough so that we can create huge pages from small pages given
44  * the respective sizes of the two page types. See <linux/mmzone.h>.
45  */
46 #ifndef CONFIG_FORCE_MAX_ZONEORDER
47 #define CONFIG_FORCE_MAX_ZONEORDER (HPAGE_SHIFT - PAGE_SHIFT + 1)
48 #endif
49 
50 #ifndef __ASSEMBLY__
51 
52 #include <linux/types.h>
53 #include <linux/string.h>
54 
55 struct page;
56 
57 static inline void clear_page(void *page)
58 {
59  memset(page, 0, PAGE_SIZE);
60 }
61 
62 static inline void copy_page(void *to, void *from)
63 {
64  memcpy(to, from, PAGE_SIZE);
65 }
66 
67 static inline void clear_user_page(void *page, unsigned long vaddr,
68  struct page *pg)
69 {
70  clear_page(page);
71 }
72 
73 static inline void copy_user_page(void *to, void *from, unsigned long vaddr,
74  struct page *topage)
75 {
76  copy_page(to, from);
77 }
78 
79 /*
80  * Hypervisor page tables are made of the same basic structure.
81  */
82 
83 typedef HV_PTE pte_t;
84 typedef HV_PTE pgd_t;
85 typedef HV_PTE pgprot_t;
86 
87 /*
88  * User L2 page tables are managed as one L2 page table per page,
89  * because we use the page allocator for them. This keeps the allocation
90  * simple, but it's also inefficient, since L2 page tables are much smaller
91  * than pages (currently 2KB vs 64KB). So we should revisit this.
92  */
93 typedef struct page *pgtable_t;
94 
95 /* Must be a macro since it is used to create constants. */
96 #define __pgprot(val) hv_pte(val)
97 
98 /* Rarely-used initializers, typically with a "zero" value. */
99 #define __pte(x) hv_pte(x)
100 #define __pgd(x) hv_pte(x)
101 
102 static inline u64 pgprot_val(pgprot_t pgprot)
103 {
104  return hv_pte_val(pgprot);
105 }
106 
107 static inline u64 pte_val(pte_t pte)
108 {
109  return hv_pte_val(pte);
110 }
111 
112 static inline u64 pgd_val(pgd_t pgd)
113 {
114  return hv_pte_val(pgd);
115 }
116 
117 #ifdef __tilegx__
118 
119 typedef HV_PTE pmd_t;
120 
121 #define __pmd(x) hv_pte(x)
122 
123 static inline u64 pmd_val(pmd_t pmd)
124 {
125  return hv_pte_val(pmd);
126 }
127 
128 #endif
129 
130 static inline __attribute_const__ int get_order(unsigned long size)
131 {
132  return BITS_PER_LONG - __builtin_clzl((size - 1) >> PAGE_SHIFT);
133 }
134 
135 #endif /* !__ASSEMBLY__ */
136 
137 #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
138 
139 #define HUGE_MAX_HSTATE 6
140 
141 #ifdef CONFIG_HUGETLB_PAGE
142 #define HAVE_ARCH_HUGETLB_UNMAPPED_AREA
143 #endif
144 
145 /* Each memory controller has PAs distinct in their high bits. */
146 #define NR_PA_HIGHBIT_SHIFT (CHIP_PA_WIDTH() - CHIP_LOG_NUM_MSHIMS())
147 #define NR_PA_HIGHBIT_VALUES (1 << CHIP_LOG_NUM_MSHIMS())
148 #define __pa_to_highbits(pa) ((phys_addr_t)(pa) >> NR_PA_HIGHBIT_SHIFT)
149 #define __pfn_to_highbits(pfn) ((pfn) >> (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT))
150 
151 #ifdef __tilegx__
152 
153 /*
154  * We reserve the lower half of memory for user-space programs, and the
155  * upper half for system code. We re-map all of physical memory in the
156  * upper half, which takes a quarter of our VA space. Then we have
157  * the vmalloc regions. The supervisor code lives at 0xfffffff700000000,
158  * with the hypervisor above that.
159  *
160  * Loadable kernel modules are placed immediately after the static
161  * supervisor code, with each being allocated a 256MB region of
162  * address space, so we don't have to worry about the range of "jal"
163  * and other branch instructions.
164  *
165  * For now we keep life simple and just allocate one pmd (4GB) for vmalloc.
166  * Similarly, for now we don't play any struct page mapping games.
167  */
168 
169 #if CHIP_PA_WIDTH() + 2 > CHIP_VA_WIDTH()
170 # error Too much PA to map with the VA available!
171 #endif
172 #define HALF_VA_SPACE (_AC(1, UL) << (CHIP_VA_WIDTH() - 1))
173 
174 #define MEM_LOW_END (HALF_VA_SPACE - 1) /* low half */
175 #define MEM_HIGH_START (-HALF_VA_SPACE) /* high half */
176 #define PAGE_OFFSET MEM_HIGH_START
177 #define FIXADDR_BASE _AC(0xfffffff400000000, UL) /* 4 GB */
178 #define FIXADDR_TOP _AC(0xfffffff500000000, UL) /* 4 GB */
179 #define _VMALLOC_START FIXADDR_TOP
180 #define HUGE_VMAP_BASE _AC(0xfffffff600000000, UL) /* 4 GB */
181 #define MEM_SV_START _AC(0xfffffff700000000, UL) /* 256 MB */
182 #define MEM_SV_INTRPT MEM_SV_START
183 #define MEM_MODULE_START _AC(0xfffffff710000000, UL) /* 256 MB */
184 #define MEM_MODULE_END (MEM_MODULE_START + (256*1024*1024))
185 #define MEM_HV_START _AC(0xfffffff800000000, UL) /* 32 GB */
186 
187 /* Highest DTLB address we will use */
188 #define KERNEL_HIGH_VADDR MEM_SV_START
189 
190 #else /* !__tilegx__ */
191 
192 /*
193  * A PAGE_OFFSET of 0xC0000000 means that the kernel has
194  * a virtual address space of one gigabyte, which limits the
195  * amount of physical memory you can use to about 768MB.
196  * If you want more physical memory than this then see the CONFIG_HIGHMEM
197  * option in the kernel configuration.
198  *
199  * The top 16MB chunk in the table below is unavailable to Linux. Since
200  * the kernel interrupt vectors must live at ether 0xfe000000 or 0xfd000000
201  * (depending on whether the kernel is at PL2 or Pl1), we map all of the
202  * bottom of RAM at this address with a huge page table entry to minimize
203  * its ITLB footprint (as well as at PAGE_OFFSET). The last architected
204  * requirement is that user interrupt vectors live at 0xfc000000, so we
205  * make that range of memory available to user processes. The remaining
206  * regions are sized as shown; the first four addresses use the PL 1
207  * values, and after that, we show "typical" values, since the actual
208  * addresses depend on kernel #defines.
209  *
210  * MEM_HV_INTRPT 0xfe000000
211  * MEM_SV_INTRPT (kernel code) 0xfd000000
212  * MEM_USER_INTRPT (user vector) 0xfc000000
213  * FIX_KMAP_xxx 0xf8000000 (via NR_CPUS * KM_TYPE_NR)
214  * PKMAP_BASE 0xf7000000 (via LAST_PKMAP)
215  * HUGE_VMAP 0xf3000000 (via CONFIG_NR_HUGE_VMAPS)
216  * VMALLOC_START 0xf0000000 (via __VMALLOC_RESERVE)
217  * mapped LOWMEM 0xc0000000
218  */
219 
220 #define MEM_USER_INTRPT _AC(0xfc000000, UL)
221 #if CONFIG_KERNEL_PL == 1
222 #define MEM_SV_INTRPT _AC(0xfd000000, UL)
223 #define MEM_HV_INTRPT _AC(0xfe000000, UL)
224 #else
225 #define MEM_GUEST_INTRPT _AC(0xfd000000, UL)
226 #define MEM_SV_INTRPT _AC(0xfe000000, UL)
227 #define MEM_HV_INTRPT _AC(0xff000000, UL)
228 #endif
229 
230 #define INTRPT_SIZE 0x4000
231 
232 /* Tolerate page size larger than the architecture interrupt region size. */
233 #if PAGE_SIZE > INTRPT_SIZE
234 #undef INTRPT_SIZE
235 #define INTRPT_SIZE PAGE_SIZE
236 #endif
237 
238 #define KERNEL_HIGH_VADDR MEM_USER_INTRPT
239 #define FIXADDR_TOP (KERNEL_HIGH_VADDR - PAGE_SIZE)
240 
241 #define PAGE_OFFSET _AC(CONFIG_PAGE_OFFSET, UL)
242 
243 /* On 32-bit architectures we mix kernel modules in with other vmaps. */
244 #define MEM_MODULE_START VMALLOC_START
245 #define MEM_MODULE_END VMALLOC_END
246 
247 #endif /* __tilegx__ */
248 
249 #ifndef __ASSEMBLY__
250 
251 #ifdef CONFIG_HIGHMEM
252 
253 /* Map kernel virtual addresses to page frames, in HPAGE_SIZE chunks. */
254 extern unsigned long pbase_map[];
255 extern void *vbase_map[];
256 
257 static inline unsigned long kaddr_to_pfn(const volatile void *_kaddr)
258 {
259  unsigned long kaddr = (unsigned long)_kaddr;
260  return pbase_map[kaddr >> HPAGE_SHIFT] +
261  ((kaddr & (HPAGE_SIZE - 1)) >> PAGE_SHIFT);
262 }
263 
264 static inline void *pfn_to_kaddr(unsigned long pfn)
265 {
266  return vbase_map[__pfn_to_highbits(pfn)] + (pfn << PAGE_SHIFT);
267 }
268 
269 static inline phys_addr_t virt_to_phys(const volatile void *kaddr)
270 {
271  unsigned long pfn = kaddr_to_pfn(kaddr);
272  return ((phys_addr_t)pfn << PAGE_SHIFT) +
273  ((unsigned long)kaddr & (PAGE_SIZE-1));
274 }
275 
276 static inline void *phys_to_virt(phys_addr_t paddr)
277 {
278  return pfn_to_kaddr(paddr >> PAGE_SHIFT) + (paddr & (PAGE_SIZE-1));
279 }
280 
281 /* With HIGHMEM, we pack PAGE_OFFSET through high_memory with all valid VAs. */
282 static inline int virt_addr_valid(const volatile void *kaddr)
283 {
284  extern void *high_memory; /* copied from <linux/mm.h> */
285  return ((unsigned long)kaddr >= PAGE_OFFSET && kaddr < high_memory);
286 }
287 
288 #else /* !CONFIG_HIGHMEM */
289 
290 static inline unsigned long kaddr_to_pfn(const volatile void *kaddr)
291 {
292  return ((unsigned long)kaddr - PAGE_OFFSET) >> PAGE_SHIFT;
293 }
294 
295 static inline void *pfn_to_kaddr(unsigned long pfn)
296 {
297  return (void *)((pfn << PAGE_SHIFT) + PAGE_OFFSET);
298 }
299 
300 static inline phys_addr_t virt_to_phys(const volatile void *kaddr)
301 {
302  return (phys_addr_t)((unsigned long)kaddr - PAGE_OFFSET);
303 }
304 
305 static inline void *phys_to_virt(phys_addr_t paddr)
306 {
307  return (void *)((unsigned long)paddr + PAGE_OFFSET);
308 }
309 
310 /* Check that the given address is within some mapped range of PAs. */
311 #define virt_addr_valid(kaddr) pfn_valid(kaddr_to_pfn(kaddr))
312 
313 #endif /* !CONFIG_HIGHMEM */
314 
315 /* All callers are not consistent in how they call these functions. */
316 #define __pa(kaddr) virt_to_phys((void *)(unsigned long)(kaddr))
317 #define __va(paddr) phys_to_virt((phys_addr_t)(paddr))
318 
319 extern int devmem_is_allowed(unsigned long pagenr);
320 
321 #ifdef CONFIG_FLATMEM
322 static inline int pfn_valid(unsigned long pfn)
323 {
324  return pfn < max_mapnr;
325 }
326 #endif
327 
328 /* Provide as macros since these require some other headers included. */
329 #define page_to_pa(page) ((phys_addr_t)(page_to_pfn(page)) << PAGE_SHIFT)
330 #define virt_to_page(kaddr) pfn_to_page(kaddr_to_pfn((void *)(kaddr)))
331 #define page_to_virt(page) pfn_to_kaddr(page_to_pfn(page))
332 
333 struct mm_struct;
334 extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
335 
336 #endif /* !__ASSEMBLY__ */
337 
338 #define VM_DATA_DEFAULT_FLAGS \
339  (VM_READ | VM_WRITE | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
340 
342 
343 #endif /* _ASM_TILE_PAGE_H */