Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
highmem.c
Go to the documentation of this file.
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation, version 2.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  * NON INFRINGEMENT. See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/highmem.h>
16 #include <linux/module.h>
17 #include <linux/pagemap.h>
18 #include <asm/homecache.h>
19 
20 #define kmap_get_pte(vaddr) \
21  pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k(vaddr), (vaddr)),\
22  (vaddr)), (vaddr))
23 
24 
25 void *kmap(struct page *page)
26 {
27  void *kva;
28  unsigned long flags;
29  pte_t *ptep;
30 
31  might_sleep();
32  if (!PageHighMem(page))
33  return page_address(page);
34  kva = kmap_high(page);
35 
36  /*
37  * Rewrite the PTE under the lock. This ensures that the page
38  * is not currently migrating.
39  */
40  ptep = kmap_get_pte((unsigned long)kva);
41  flags = homecache_kpte_lock();
42  set_pte_at(&init_mm, kva, ptep, mk_pte(page, page_to_kpgprot(page)));
43  homecache_kpte_unlock(flags);
44 
45  return kva;
46 }
48 
49 void kunmap(struct page *page)
50 {
51  if (in_interrupt())
52  BUG();
53  if (!PageHighMem(page))
54  return;
55  kunmap_high(page);
56 }
58 
59 /*
60  * Describe a single atomic mapping of a page on a given cpu at a
61  * given address, and allow it to be linked into a list.
62  */
64  struct list_head list;
65  struct page *page;
66  int cpu;
67  unsigned long va;
68 };
69 
70 static spinlock_t amp_lock = __SPIN_LOCK_UNLOCKED(&amp_lock);
71 static struct list_head amp_list = LIST_HEAD_INIT(amp_list);
72 
73 /*
74  * Combining this structure with a per-cpu declaration lets us give
75  * each cpu an atomic_mapped_page structure per type.
76  */
77 struct kmap_amps {
79 };
80 static DEFINE_PER_CPU(struct kmap_amps, amps);
81 
82 /*
83  * Add a page and va, on this cpu, to the list of kmap_atomic pages,
84  * and write the new pte to memory. Writing the new PTE under the
85  * lock guarantees that it is either on the list before migration starts
86  * (if we won the race), or set_pte() sets the migrating bit in the PTE
87  * (if we lost the race). And doing it under the lock guarantees
88  * that when kmap_atomic_fix_one_pte() comes along, it finds a valid
89  * PTE in memory, iff the mapping is still on the amp_list.
90  *
91  * Finally, doing it under the lock lets us safely examine the page
92  * to see if it is immutable or not, for the generic kmap_atomic() case.
93  * If we examine it earlier we are exposed to a race where it looks
94  * writable earlier, but becomes immutable before we write the PTE.
95  */
96 static void kmap_atomic_register(struct page *page, int type,
97  unsigned long va, pte_t *ptep, pte_t pteval)
98 {
99  unsigned long flags;
100  struct atomic_mapped_page *amp;
101 
102  flags = homecache_kpte_lock();
103  spin_lock(&amp_lock);
104 
105  /* With interrupts disabled, now fill in the per-cpu info. */
106  amp = &__get_cpu_var(amps).per_type[type];
107  amp->page = page;
108  amp->cpu = smp_processor_id();
109  amp->va = va;
110 
111  /* For generic kmap_atomic(), choose the PTE writability now. */
112  if (!pte_read(pteval))
113  pteval = mk_pte(page, page_to_kpgprot(page));
114 
115  list_add(&amp->list, &amp_list);
116  set_pte(ptep, pteval);
118 
119  spin_unlock(&amp_lock);
120  homecache_kpte_unlock(flags);
121 }
122 
123 /*
124  * Remove a page and va, on this cpu, from the list of kmap_atomic pages.
125  * Linear-time search, but we count on the lists being short.
126  * We don't need to adjust the PTE under the lock (as opposed to the
127  * kmap_atomic_register() case), since we're just unconditionally
128  * zeroing the PTE after it's off the list.
129  */
130 static void kmap_atomic_unregister(struct page *page, unsigned long va)
131 {
132  unsigned long flags;
133  struct atomic_mapped_page *amp;
134  int cpu = smp_processor_id();
135  spin_lock_irqsave(&amp_lock, flags);
136  list_for_each_entry(amp, &amp_list, list) {
137  if (amp->page == page && amp->cpu == cpu && amp->va == va)
138  break;
139  }
140  BUG_ON(&amp->list == &amp_list);
141  list_del(&amp->list);
142  spin_unlock_irqrestore(&amp_lock, flags);
143 }
144 
145 /* Helper routine for kmap_atomic_fix_kpte(), below. */
146 static void kmap_atomic_fix_one_kpte(struct atomic_mapped_page *amp,
147  int finished)
148 {
149  pte_t *ptep = kmap_get_pte(amp->va);
150  if (!finished) {
151  set_pte(ptep, pte_mkmigrate(*ptep));
152  flush_remote(0, 0, NULL, amp->va, PAGE_SIZE, PAGE_SIZE,
153  cpumask_of(amp->cpu), NULL, 0);
154  } else {
155  /*
156  * Rewrite a default kernel PTE for this page.
157  * We rely on the fact that set_pte() writes the
158  * present+migrating bits last.
159  */
160  pte_t pte = mk_pte(amp->page, page_to_kpgprot(amp->page));
161  set_pte(ptep, pte);
162  }
163 }
164 
165 /*
166  * This routine is a helper function for homecache_fix_kpte(); see
167  * its comments for more information on the "finished" argument here.
168  *
169  * Note that we hold the lock while doing the remote flushes, which
170  * will stall any unrelated cpus trying to do kmap_atomic operations.
171  * We could just update the PTEs under the lock, and save away copies
172  * of the structs (or just the va+cpu), then flush them after we
173  * release the lock, but it seems easier just to do it all under the lock.
174  */
175 void kmap_atomic_fix_kpte(struct page *page, int finished)
176 {
177  struct atomic_mapped_page *amp;
178  unsigned long flags;
179  spin_lock_irqsave(&amp_lock, flags);
180  list_for_each_entry(amp, &amp_list, list) {
181  if (amp->page == page)
182  kmap_atomic_fix_one_kpte(amp, finished);
183  }
184  spin_unlock_irqrestore(&amp_lock, flags);
185 }
186 
187 /*
188  * kmap_atomic/kunmap_atomic is significantly faster than kmap/kunmap
189  * because the kmap code must perform a global TLB invalidation when
190  * the kmap pool wraps.
191  *
192  * Note that they may be slower than on x86 (etc.) because unlike on
193  * those platforms, we do have to take a global lock to map and unmap
194  * pages on Tile (see above).
195  *
196  * When holding an atomic kmap is is not legal to sleep, so atomic
197  * kmaps are appropriate for short, tight code paths only.
198  */
199 void *kmap_atomic_prot(struct page *page, pgprot_t prot)
200 {
201  unsigned long vaddr;
202  int idx, type;
203  pte_t *pte;
204 
205  /* even !CONFIG_PREEMPT needs this, for in_atomic in do_page_fault */
206  pagefault_disable();
207 
208  /* Avoid icache flushes by disallowing atomic executable mappings. */
209  BUG_ON(pte_exec(prot));
210 
211  if (!PageHighMem(page))
212  return page_address(page);
213 
214  type = kmap_atomic_idx_push();
215  idx = type + KM_TYPE_NR*smp_processor_id();
216  vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
217  pte = kmap_get_pte(vaddr);
218  BUG_ON(!pte_none(*pte));
219 
220  /* Register that this page is mapped atomically on this cpu. */
221  kmap_atomic_register(page, type, vaddr, pte, mk_pte(page, prot));
222 
223  return (void *)vaddr;
224 }
226 
227 void *kmap_atomic(struct page *page)
228 {
229  /* PAGE_NONE is a magic value that tells us to check immutability. */
230  return kmap_atomic_prot(page, PAGE_NONE);
231 }
233 
234 void __kunmap_atomic(void *kvaddr)
235 {
236  unsigned long vaddr = (unsigned long) kvaddr & PAGE_MASK;
237 
238  if (vaddr >= __fix_to_virt(FIX_KMAP_END) &&
239  vaddr <= __fix_to_virt(FIX_KMAP_BEGIN)) {
240  pte_t *pte = kmap_get_pte(vaddr);
241  pte_t pteval = *pte;
242  int idx, type;
243 
244  type = kmap_atomic_idx();
245  idx = type + KM_TYPE_NR*smp_processor_id();
246 
247  /*
248  * Force other mappings to Oops if they try to access this pte
249  * without first remapping it. Keeping stale mappings around
250  * is a bad idea.
251  */
252  BUG_ON(!pte_present(pteval) && !pte_migrating(pteval));
253  kmap_atomic_unregister(pte_page(pteval), vaddr);
254  kpte_clear_flush(pte, vaddr);
255  kmap_atomic_idx_pop();
256  } else {
257  /* Must be a lowmem page */
258  BUG_ON(vaddr < PAGE_OFFSET);
259  BUG_ON(vaddr >= (unsigned long)high_memory);
260  }
261 
263  pagefault_enable();
264 }
266 
267 /*
268  * This API is supposed to allow us to map memory without a "struct page".
269  * Currently we don't support this, though this may change in the future.
270  */
271 void *kmap_atomic_pfn(unsigned long pfn)
272 {
273  return kmap_atomic(pfn_to_page(pfn));
274 }
275 void *kmap_atomic_prot_pfn(unsigned long pfn, pgprot_t prot)
276 {
277  return kmap_atomic_prot(pfn_to_page(pfn), prot);
278 }
279 
280 struct page *kmap_atomic_to_page(void *ptr)
281 {
282  pte_t *pte;
283  unsigned long vaddr = (unsigned long)ptr;
284 
285  if (vaddr < FIXADDR_START)
286  return virt_to_page(ptr);
287 
288  pte = kmap_get_pte(vaddr);
289  return pte_page(*pte);
290 }