Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
pgtable.h
Go to the documentation of this file.
1 /*
2  * linux/arch/unicore32/include/asm/pgtable.h
3  *
4  * Code specific to PKUnity SoC and UniCore ISA
5  *
6  * Copyright (C) 2001-2010 GUAN Xue-tao
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #ifndef __UNICORE_PGTABLE_H__
13 #define __UNICORE_PGTABLE_H__
14 
16 #include <asm/cpu-single.h>
17 
18 #include <asm/memory.h>
19 #include <asm/pgtable-hwdef.h>
20 
21 /*
22  * Just any arbitrary offset to the start of the vmalloc VM area: the
23  * current 8MB value just means that there will be a 8MB "hole" after the
24  * physical memory until the kernel virtual memory starts. That means that
25  * any out-of-bounds memory accesses will hopefully be caught.
26  * The vmalloc() routines leaves a hole of 4kB between each vmalloced
27  * area for the same reason. ;)
28  *
29  * Note that platforms may override VMALLOC_START, but they must provide
30  * VMALLOC_END. VMALLOC_END defines the (exclusive) limit of this space,
31  * which may not overlap IO space.
32  */
33 #ifndef VMALLOC_START
34 #define VMALLOC_OFFSET SZ_8M
35 #define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) \
36  & ~(VMALLOC_OFFSET-1))
37 #define VMALLOC_END (0xff000000UL)
38 #endif
39 
40 #define PTRS_PER_PTE 1024
41 #define PTRS_PER_PGD 1024
42 
43 /*
44  * PGDIR_SHIFT determines what a third-level page table entry can map
45  */
46 #define PGDIR_SHIFT 22
47 
48 #ifndef __ASSEMBLY__
49 extern void __pte_error(const char *file, int line, unsigned long val);
50 extern void __pgd_error(const char *file, int line, unsigned long val);
51 
52 #define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte))
53 #define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd))
54 #endif /* !__ASSEMBLY__ */
55 
56 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
57 #define PGDIR_MASK (~(PGDIR_SIZE-1))
58 
59 /*
60  * This is the lowest virtual address we can permit any user space
61  * mapping to be mapped at. This is particularly important for
62  * non-high vector CPUs.
63  */
64 #define FIRST_USER_ADDRESS PAGE_SIZE
65 
66 #define FIRST_USER_PGD_NR 1
67 #define USER_PTRS_PER_PGD ((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR)
68 
69 /*
70  * section address mask and size definitions.
71  */
72 #define SECTION_SHIFT 22
73 #define SECTION_SIZE (1UL << SECTION_SHIFT)
74 #define SECTION_MASK (~(SECTION_SIZE-1))
75 
76 #ifndef __ASSEMBLY__
77 
78 /*
79  * The pgprot_* and protection_map entries will be fixed up in runtime
80  * to include the cachable bits based on memory policy, as well as any
81  * architecture dependent bits.
82  */
83 #define _PTE_DEFAULT (PTE_PRESENT | PTE_YOUNG | PTE_CACHEABLE)
84 
85 extern pgprot_t pgprot_user;
86 extern pgprot_t pgprot_kernel;
87 
88 #define PAGE_NONE pgprot_user
89 #define PAGE_SHARED __pgprot(pgprot_val(pgprot_user | PTE_READ \
90  | PTE_WRITE)
91 #define PAGE_SHARED_EXEC __pgprot(pgprot_val(pgprot_user | PTE_READ \
92  | PTE_WRITE \
93  | PTE_EXEC)
94 #define PAGE_COPY __pgprot(pgprot_val(pgprot_user | PTE_READ)
95 #define PAGE_COPY_EXEC __pgprot(pgprot_val(pgprot_user | PTE_READ \
96  | PTE_EXEC)
97 #define PAGE_READONLY __pgprot(pgprot_val(pgprot_user | PTE_READ)
98 #define PAGE_READONLY_EXEC __pgprot(pgprot_val(pgprot_user | PTE_READ \
99  | PTE_EXEC)
100 #define PAGE_KERNEL pgprot_kernel
101 #define PAGE_KERNEL_EXEC __pgprot(pgprot_val(pgprot_kernel | PTE_EXEC))
102 
103 #define __PAGE_NONE __pgprot(_PTE_DEFAULT)
104 #define __PAGE_SHARED __pgprot(_PTE_DEFAULT | PTE_READ \
105  | PTE_WRITE)
106 #define __PAGE_SHARED_EXEC __pgprot(_PTE_DEFAULT | PTE_READ \
107  | PTE_WRITE \
108  | PTE_EXEC)
109 #define __PAGE_COPY __pgprot(_PTE_DEFAULT | PTE_READ)
110 #define __PAGE_COPY_EXEC __pgprot(_PTE_DEFAULT | PTE_READ \
111  | PTE_EXEC)
112 #define __PAGE_READONLY __pgprot(_PTE_DEFAULT | PTE_READ)
113 #define __PAGE_READONLY_EXEC __pgprot(_PTE_DEFAULT | PTE_READ \
114  | PTE_EXEC)
115 
116 #endif /* __ASSEMBLY__ */
117 
118 /*
119  * The table below defines the page protection levels that we insert into our
120  * Linux page table version. These get translated into the best that the
121  * architecture can perform. Note that on UniCore hardware:
122  * 1) We cannot do execute protection
123  * 2) If we could do execute protection, then read is implied
124  * 3) write implies read permissions
125  */
126 #define __P000 __PAGE_NONE
127 #define __P001 __PAGE_READONLY
128 #define __P010 __PAGE_COPY
129 #define __P011 __PAGE_COPY
130 #define __P100 __PAGE_READONLY_EXEC
131 #define __P101 __PAGE_READONLY_EXEC
132 #define __P110 __PAGE_COPY_EXEC
133 #define __P111 __PAGE_COPY_EXEC
134 
135 #define __S000 __PAGE_NONE
136 #define __S001 __PAGE_READONLY
137 #define __S010 __PAGE_SHARED
138 #define __S011 __PAGE_SHARED
139 #define __S100 __PAGE_READONLY_EXEC
140 #define __S101 __PAGE_READONLY_EXEC
141 #define __S110 __PAGE_SHARED_EXEC
142 #define __S111 __PAGE_SHARED_EXEC
143 
144 #ifndef __ASSEMBLY__
145 /*
146  * ZERO_PAGE is a global shared page that is always zero: used
147  * for zero-mapped memory areas etc..
148  */
149 extern struct page *empty_zero_page;
150 #define ZERO_PAGE(vaddr) (empty_zero_page)
151 
152 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
153 #define pfn_pte(pfn, prot) (__pte(((pfn) << PAGE_SHIFT) \
154  | pgprot_val(prot)))
155 
156 #define pte_none(pte) (!pte_val(pte))
157 #define pte_clear(mm, addr, ptep) set_pte(ptep, __pte(0))
158 #define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
159 #define pte_offset_kernel(dir, addr) (pmd_page_vaddr(*(dir)) \
160  + __pte_index(addr))
161 
162 #define pte_offset_map(dir, addr) (pmd_page_vaddr(*(dir)) \
163  + __pte_index(addr))
164 #define pte_unmap(pte) do { } while (0)
165 
166 #define set_pte(ptep, pte) cpu_set_pte(ptep, pte)
167 
168 #define set_pte_at(mm, addr, ptep, pteval) \
169  do { \
170  set_pte(ptep, pteval); \
171  } while (0)
172 
173 /*
174  * The following only work if pte_present() is true.
175  * Undefined behaviour if not..
176  */
177 #define pte_present(pte) (pte_val(pte) & PTE_PRESENT)
178 #define pte_write(pte) (pte_val(pte) & PTE_WRITE)
179 #define pte_dirty(pte) (pte_val(pte) & PTE_DIRTY)
180 #define pte_young(pte) (pte_val(pte) & PTE_YOUNG)
181 #define pte_exec(pte) (pte_val(pte) & PTE_EXEC)
182 #define pte_special(pte) (0)
183 
184 #define PTE_BIT_FUNC(fn, op) \
185 static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
186 
187 PTE_BIT_FUNC(wrprotect, &= ~PTE_WRITE);
188 PTE_BIT_FUNC(mkwrite, |= PTE_WRITE);
189 PTE_BIT_FUNC(mkclean, &= ~PTE_DIRTY);
190 PTE_BIT_FUNC(mkdirty, |= PTE_DIRTY);
191 PTE_BIT_FUNC(mkold, &= ~PTE_YOUNG);
192 PTE_BIT_FUNC(mkyoung, |= PTE_YOUNG);
193 
194 static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
195 
196 /*
197  * Mark the prot value as uncacheable.
198  */
199 #define pgprot_noncached(prot) \
200  __pgprot(pgprot_val(prot) & ~PTE_CACHEABLE)
201 #define pgprot_writecombine(prot) \
202  __pgprot(pgprot_val(prot) & ~PTE_CACHEABLE)
203 #define pgprot_dmacoherent(prot) \
204  __pgprot(pgprot_val(prot) & ~PTE_CACHEABLE)
205 
206 #define pmd_none(pmd) (!pmd_val(pmd))
207 #define pmd_present(pmd) (pmd_val(pmd) & PMD_PRESENT)
208 #define pmd_bad(pmd) (((pmd_val(pmd) & \
209  (PMD_PRESENT | PMD_TYPE_MASK)) \
210  != (PMD_PRESENT | PMD_TYPE_TABLE)))
211 
212 #define set_pmd(pmdpd, pmdval) \
213  do { \
214  *(pmdpd) = pmdval; \
215  } while (0)
216 
217 #define pmd_clear(pmdp) \
218  do { \
219  set_pmd(pmdp, __pmd(0));\
220  clean_pmd_entry(pmdp); \
221  } while (0)
222 
223 #define pmd_page_vaddr(pmd) ((pte_t *)__va(pmd_val(pmd) & PAGE_MASK))
224 #define pmd_page(pmd) pfn_to_page(__phys_to_pfn(pmd_val(pmd)))
225 
226 /*
227  * Conversion functions: convert a page and protection to a page entry,
228  * and a page entry and page directory to the page they refer to.
229  */
230 #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
231 
232 /* to find an entry in a page-table-directory */
233 #define pgd_index(addr) ((addr) >> PGDIR_SHIFT)
234 
235 #define pgd_offset(mm, addr) ((mm)->pgd+pgd_index(addr))
236 
237 /* to find an entry in a kernel page-table-directory */
238 #define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
239 
240 /* Find an entry in the third-level page table.. */
241 #define __pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
242 
243 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
244 {
245  const unsigned long mask = PTE_EXEC | PTE_WRITE | PTE_READ;
246  pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
247  return pte;
248 }
249 
251 
252 /*
253  * Encode and decode a swap entry. Swap entries are stored in the Linux
254  * page tables as follows:
255  *
256  * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
257  * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
258  * <--------------- offset --------------> <--- type --> 0 0 0 0 0
259  *
260  * This gives us up to 127 swap files and 32GB per swap file. Note that
261  * the offset field is always non-zero.
262  */
263 #define __SWP_TYPE_SHIFT 5
264 #define __SWP_TYPE_BITS 7
265 #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
266 #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
267 
268 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) \
269  & __SWP_TYPE_MASK)
270 #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
271 #define __swp_entry(type, offset) ((swp_entry_t) { \
272  ((type) << __SWP_TYPE_SHIFT) | \
273  ((offset) << __SWP_OFFSET_SHIFT) })
274 
275 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
276 #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
277 
278 /*
279  * It is an error for the kernel to have more swap files than we can
280  * encode in the PTEs. This ensures that we know when MAX_SWAPFILES
281  * is increased beyond what we presently support.
282  */
283 #define MAX_SWAPFILES_CHECK() \
284  BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
285 
286 /*
287  * Encode and decode a file entry. File entries are stored in the Linux
288  * page tables as follows:
289  *
290  * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
291  * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
292  * <----------------------- offset ----------------------> 1 0 0 0
293  */
294 #define pte_file(pte) (pte_val(pte) & PTE_FILE)
295 #define pte_to_pgoff(x) (pte_val(x) >> 4)
296 #define pgoff_to_pte(x) __pte(((x) << 4) | PTE_FILE)
297 
298 #define PTE_FILE_MAX_BITS 28
299 
300 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
301 /* FIXME: this is not correct */
302 #define kern_addr_valid(addr) (1)
303 
304 #include <asm-generic/pgtable.h>
305 
306 /*
307  * remap a physical page `pfn' of size `size' with page protection `prot'
308  * into virtual address `from'
309  */
310 #define io_remap_pfn_range(vma, from, pfn, size, prot) \
311  remap_pfn_range(vma, from, pfn, size, prot)
312 
313 #define pgtable_cache_init() do { } while (0)
314 
315 #endif /* !__ASSEMBLY__ */
316 
317 #endif /* __UNICORE_PGTABLE_H__ */