Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
hw_breakpoint.c
Go to the documentation of this file.
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License as published by
4  * the Free Software Foundation; either version 2 of the License, or
5  * (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
15  *
16  * Copyright (C) 2007 Alan Stern
17  * Copyright (C) 2009 IBM Corporation
18  * Copyright (C) 2009 Frederic Weisbecker <[email protected]>
19  *
20  * Authors: Alan Stern <[email protected]>
21  * K.Prasad <[email protected]>
22  * Frederic Weisbecker <[email protected]>
23  */
24 
25 /*
26  * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
27  * using the CPU's debug registers.
28  */
29 
30 #include <linux/perf_event.h>
31 #include <linux/hw_breakpoint.h>
32 #include <linux/irqflags.h>
33 #include <linux/notifier.h>
34 #include <linux/kallsyms.h>
35 #include <linux/kprobes.h>
36 #include <linux/percpu.h>
37 #include <linux/kdebug.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/sched.h>
41 #include <linux/init.h>
42 #include <linux/smp.h>
43 
44 #include <asm/hw_breakpoint.h>
45 #include <asm/processor.h>
46 #include <asm/debugreg.h>
47 
48 /* Per cpu debug control register value */
49 DEFINE_PER_CPU(unsigned long, cpu_dr7);
50 EXPORT_PER_CPU_SYMBOL(cpu_dr7);
51 
52 /* Per cpu debug address registers values */
53 static DEFINE_PER_CPU(unsigned long, cpu_debugreg[HBP_NUM]);
54 
55 /*
56  * Stores the breakpoints currently in use on each breakpoint address
57  * register for each cpus
58  */
59 static DEFINE_PER_CPU(struct perf_event *, bp_per_reg[HBP_NUM]);
60 
61 
62 static inline unsigned long
63 __encode_dr7(int drnum, unsigned int len, unsigned int type)
64 {
65  unsigned long bp_info;
66 
67  bp_info = (len | type) & 0xf;
68  bp_info <<= (DR_CONTROL_SHIFT + drnum * DR_CONTROL_SIZE);
69  bp_info |= (DR_GLOBAL_ENABLE << (drnum * DR_ENABLE_SIZE));
70 
71  return bp_info;
72 }
73 
74 /*
75  * Encode the length, type, Exact, and Enable bits for a particular breakpoint
76  * as stored in debug register 7.
77  */
78 unsigned long encode_dr7(int drnum, unsigned int len, unsigned int type)
79 {
80  return __encode_dr7(drnum, len, type) | DR_GLOBAL_SLOWDOWN;
81 }
82 
83 /*
84  * Decode the length and type bits for a particular breakpoint as
85  * stored in debug register 7. Return the "enabled" status.
86  */
87 int decode_dr7(unsigned long dr7, int bpnum, unsigned *len, unsigned *type)
88 {
89  int bp_info = dr7 >> (DR_CONTROL_SHIFT + bpnum * DR_CONTROL_SIZE);
90 
91  *len = (bp_info & 0xc) | 0x40;
92  *type = (bp_info & 0x3) | 0x80;
93 
94  return (dr7 >> (bpnum * DR_ENABLE_SIZE)) & 0x3;
95 }
96 
97 /*
98  * Install a perf counter breakpoint.
99  *
100  * We seek a free debug address register and use it for this
101  * breakpoint. Eventually we enable it in the debug control register.
102  *
103  * Atomic: we hold the counter->ctx->lock and we only handle variables
104  * and registers local to this cpu.
105  */
107 {
108  struct arch_hw_breakpoint *info = counter_arch_bp(bp);
109  unsigned long *dr7;
110  int i;
111 
112  for (i = 0; i < HBP_NUM; i++) {
113  struct perf_event **slot = &__get_cpu_var(bp_per_reg[i]);
114 
115  if (!*slot) {
116  *slot = bp;
117  break;
118  }
119  }
120 
121  if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot"))
122  return -EBUSY;
123 
124  set_debugreg(info->address, i);
125  __this_cpu_write(cpu_debugreg[i], info->address);
126 
127  dr7 = &__get_cpu_var(cpu_dr7);
128  *dr7 |= encode_dr7(i, info->len, info->type);
129 
130  set_debugreg(*dr7, 7);
131 
132  return 0;
133 }
134 
135 /*
136  * Uninstall the breakpoint contained in the given counter.
137  *
138  * First we search the debug address register it uses and then we disable
139  * it.
140  *
141  * Atomic: we hold the counter->ctx->lock and we only handle variables
142  * and registers local to this cpu.
143  */
145 {
146  struct arch_hw_breakpoint *info = counter_arch_bp(bp);
147  unsigned long *dr7;
148  int i;
149 
150  for (i = 0; i < HBP_NUM; i++) {
151  struct perf_event **slot = &__get_cpu_var(bp_per_reg[i]);
152 
153  if (*slot == bp) {
154  *slot = NULL;
155  break;
156  }
157  }
158 
159  if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot"))
160  return;
161 
162  dr7 = &__get_cpu_var(cpu_dr7);
163  *dr7 &= ~__encode_dr7(i, info->len, info->type);
164 
165  set_debugreg(*dr7, 7);
166 }
167 
168 static int get_hbp_len(u8 hbp_len)
169 {
170  unsigned int len_in_bytes = 0;
171 
172  switch (hbp_len) {
173  case X86_BREAKPOINT_LEN_1:
174  len_in_bytes = 1;
175  break;
176  case X86_BREAKPOINT_LEN_2:
177  len_in_bytes = 2;
178  break;
179  case X86_BREAKPOINT_LEN_4:
180  len_in_bytes = 4;
181  break;
182 #ifdef CONFIG_X86_64
183  case X86_BREAKPOINT_LEN_8:
184  len_in_bytes = 8;
185  break;
186 #endif
187  }
188  return len_in_bytes;
189 }
190 
191 /*
192  * Check for virtual address in kernel space.
193  */
195 {
196  unsigned int len;
197  unsigned long va;
198  struct arch_hw_breakpoint *info = counter_arch_bp(bp);
199 
200  va = info->address;
201  len = get_hbp_len(info->len);
202 
203  return (va >= TASK_SIZE) && ((va + len - 1) >= TASK_SIZE);
204 }
205 
206 int arch_bp_generic_fields(int x86_len, int x86_type,
207  int *gen_len, int *gen_type)
208 {
209  /* Type */
210  switch (x86_type) {
211  case X86_BREAKPOINT_EXECUTE:
212  if (x86_len != X86_BREAKPOINT_LEN_X)
213  return -EINVAL;
214 
215  *gen_type = HW_BREAKPOINT_X;
216  *gen_len = sizeof(long);
217  return 0;
218  case X86_BREAKPOINT_WRITE:
219  *gen_type = HW_BREAKPOINT_W;
220  break;
221  case X86_BREAKPOINT_RW:
222  *gen_type = HW_BREAKPOINT_W | HW_BREAKPOINT_R;
223  break;
224  default:
225  return -EINVAL;
226  }
227 
228  /* Len */
229  switch (x86_len) {
230  case X86_BREAKPOINT_LEN_1:
231  *gen_len = HW_BREAKPOINT_LEN_1;
232  break;
233  case X86_BREAKPOINT_LEN_2:
234  *gen_len = HW_BREAKPOINT_LEN_2;
235  break;
236  case X86_BREAKPOINT_LEN_4:
237  *gen_len = HW_BREAKPOINT_LEN_4;
238  break;
239 #ifdef CONFIG_X86_64
240  case X86_BREAKPOINT_LEN_8:
241  *gen_len = HW_BREAKPOINT_LEN_8;
242  break;
243 #endif
244  default:
245  return -EINVAL;
246  }
247 
248  return 0;
249 }
250 
251 
252 static int arch_build_bp_info(struct perf_event *bp)
253 {
254  struct arch_hw_breakpoint *info = counter_arch_bp(bp);
255 
256  info->address = bp->attr.bp_addr;
257 
258  /* Type */
259  switch (bp->attr.bp_type) {
260  case HW_BREAKPOINT_W:
261  info->type = X86_BREAKPOINT_WRITE;
262  break;
264  info->type = X86_BREAKPOINT_RW;
265  break;
266  case HW_BREAKPOINT_X:
267  info->type = X86_BREAKPOINT_EXECUTE;
268  /*
269  * x86 inst breakpoints need to have a specific undefined len.
270  * But we still need to check userspace is not trying to setup
271  * an unsupported length, to get a range breakpoint for example.
272  */
273  if (bp->attr.bp_len == sizeof(long)) {
274  info->len = X86_BREAKPOINT_LEN_X;
275  return 0;
276  }
277  default:
278  return -EINVAL;
279  }
280 
281  /* Len */
282  switch (bp->attr.bp_len) {
283  case HW_BREAKPOINT_LEN_1:
284  info->len = X86_BREAKPOINT_LEN_1;
285  break;
286  case HW_BREAKPOINT_LEN_2:
287  info->len = X86_BREAKPOINT_LEN_2;
288  break;
289  case HW_BREAKPOINT_LEN_4:
290  info->len = X86_BREAKPOINT_LEN_4;
291  break;
292 #ifdef CONFIG_X86_64
293  case HW_BREAKPOINT_LEN_8:
294  info->len = X86_BREAKPOINT_LEN_8;
295  break;
296 #endif
297  default:
298  return -EINVAL;
299  }
300 
301  return 0;
302 }
303 /*
304  * Validate the arch-specific HW Breakpoint register settings
305  */
307 {
308  struct arch_hw_breakpoint *info = counter_arch_bp(bp);
309  unsigned int align;
310  int ret;
311 
312 
313  ret = arch_build_bp_info(bp);
314  if (ret)
315  return ret;
316 
317  ret = -EINVAL;
318 
319  switch (info->len) {
320  case X86_BREAKPOINT_LEN_1:
321  align = 0;
322  break;
323  case X86_BREAKPOINT_LEN_2:
324  align = 1;
325  break;
326  case X86_BREAKPOINT_LEN_4:
327  align = 3;
328  break;
329 #ifdef CONFIG_X86_64
330  case X86_BREAKPOINT_LEN_8:
331  align = 7;
332  break;
333 #endif
334  default:
335  return ret;
336  }
337 
338  /*
339  * Check that the low-order bits of the address are appropriate
340  * for the alignment implied by len.
341  */
342  if (info->address & align)
343  return -EINVAL;
344 
345  return 0;
346 }
347 
348 /*
349  * Dump the debug register contents to the user.
350  * We can't dump our per cpu values because it
351  * may contain cpu wide breakpoint, something that
352  * doesn't belong to the current task.
353  *
354  * TODO: include non-ptrace user breakpoints (perf)
355  */
357 {
358  int i;
359  int dr7 = 0;
360  struct perf_event *bp;
361  struct arch_hw_breakpoint *info;
362  struct thread_struct *thread = &current->thread;
363 
364  for (i = 0; i < HBP_NUM; i++) {
365  bp = thread->ptrace_bps[i];
366 
367  if (bp && !bp->attr.disabled) {
368  dump->u_debugreg[i] = bp->attr.bp_addr;
369  info = counter_arch_bp(bp);
370  dr7 |= encode_dr7(i, info->len, info->type);
371  } else {
372  dump->u_debugreg[i] = 0;
373  }
374  }
375 
376  dump->u_debugreg[4] = 0;
377  dump->u_debugreg[5] = 0;
378  dump->u_debugreg[6] = current->thread.debugreg6;
379 
380  dump->u_debugreg[7] = dr7;
381 }
383 
384 /*
385  * Release the user breakpoints used by ptrace
386  */
388 {
389  int i;
390  struct thread_struct *t = &tsk->thread;
391 
392  for (i = 0; i < HBP_NUM; i++) {
394  t->ptrace_bps[i] = NULL;
395  }
396 }
397 
399 {
400  set_debugreg(__this_cpu_read(cpu_debugreg[0]), 0);
401  set_debugreg(__this_cpu_read(cpu_debugreg[1]), 1);
402  set_debugreg(__this_cpu_read(cpu_debugreg[2]), 2);
403  set_debugreg(__this_cpu_read(cpu_debugreg[3]), 3);
404  set_debugreg(current->thread.debugreg6, 6);
405  set_debugreg(__this_cpu_read(cpu_dr7), 7);
406 }
408 
409 /*
410  * Handle debug exception notifications.
411  *
412  * Return value is either NOTIFY_STOP or NOTIFY_DONE as explained below.
413  *
414  * NOTIFY_DONE returned if one of the following conditions is true.
415  * i) When the causative address is from user-space and the exception
416  * is a valid one, i.e. not triggered as a result of lazy debug register
417  * switching
418  * ii) When there are more bits than trap<n> set in DR6 register (such
419  * as BD, BS or BT) indicating that more than one debug condition is
420  * met and requires some more action in do_debug().
421  *
422  * NOTIFY_STOP returned for all other cases
423  *
424  */
425 static int __kprobes hw_breakpoint_handler(struct die_args *args)
426 {
427  int i, cpu, rc = NOTIFY_STOP;
428  struct perf_event *bp;
429  unsigned long dr7, dr6;
430  unsigned long *dr6_p;
431 
432  /* The DR6 value is pointed by args->err */
433  dr6_p = (unsigned long *)ERR_PTR(args->err);
434  dr6 = *dr6_p;
435 
436  /* If it's a single step, TRAP bits are random */
437  if (dr6 & DR_STEP)
438  return NOTIFY_DONE;
439 
440  /* Do an early return if no trap bits are set in DR6 */
441  if ((dr6 & DR_TRAP_BITS) == 0)
442  return NOTIFY_DONE;
443 
444  get_debugreg(dr7, 7);
445  /* Disable breakpoints during exception handling */
446  set_debugreg(0UL, 7);
447  /*
448  * Assert that local interrupts are disabled
449  * Reset the DRn bits in the virtualized register value.
450  * The ptrace trigger routine will add in whatever is needed.
451  */
452  current->thread.debugreg6 &= ~DR_TRAP_BITS;
453  cpu = get_cpu();
454 
455  /* Handle all the breakpoints that were triggered */
456  for (i = 0; i < HBP_NUM; ++i) {
457  if (likely(!(dr6 & (DR_TRAP0 << i))))
458  continue;
459 
460  /*
461  * The counter may be concurrently released but that can only
462  * occur from a call_rcu() path. We can then safely fetch
463  * the breakpoint, use its callback, touch its counter
464  * while we are in an rcu_read_lock() path.
465  */
466  rcu_read_lock();
467 
468  bp = per_cpu(bp_per_reg[i], cpu);
469  /*
470  * Reset the 'i'th TRAP bit in dr6 to denote completion of
471  * exception handling
472  */
473  (*dr6_p) &= ~(DR_TRAP0 << i);
474  /*
475  * bp can be NULL due to lazy debug register switching
476  * or due to concurrent perf counter removing.
477  */
478  if (!bp) {
479  rcu_read_unlock();
480  break;
481  }
482 
483  perf_bp_event(bp, args->regs);
484 
485  /*
486  * Set up resume flag to avoid breakpoint recursion when
487  * returning back to origin.
488  */
489  if (bp->hw.info.type == X86_BREAKPOINT_EXECUTE)
490  args->regs->flags |= X86_EFLAGS_RF;
491 
492  rcu_read_unlock();
493  }
494  /*
495  * Further processing in do_debug() is needed for a) user-space
496  * breakpoints (to generate signals) and b) when the system has
497  * taken exception due to multiple causes
498  */
499  if ((current->thread.debugreg6 & DR_TRAP_BITS) ||
500  (dr6 & (~DR_TRAP_BITS)))
501  rc = NOTIFY_DONE;
502 
503  set_debugreg(dr7, 7);
504  put_cpu();
505 
506  return rc;
507 }
508 
509 /*
510  * Handle debug exception notifications.
511  */
513  struct notifier_block *unused, unsigned long val, void *data)
514 {
515  if (val != DIE_DEBUG)
516  return NOTIFY_DONE;
517 
518  return hw_breakpoint_handler(data);
519 }
520 
522 {
523  /* TODO */
524 }