Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
async-thread.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2007 Oracle. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kthread.h>
20 #include <linux/slab.h>
21 #include <linux/list.h>
22 #include <linux/spinlock.h>
23 #include <linux/freezer.h>
24 #include "async-thread.h"
25 
26 #define WORK_QUEUED_BIT 0
27 #define WORK_DONE_BIT 1
28 #define WORK_ORDER_DONE_BIT 2
29 #define WORK_HIGH_PRIO_BIT 3
30 
31 /*
32  * container for the kthread task pointer and the list of pending work
33  * One of these is allocated per thread.
34  */
36  /* pool we belong to */
38 
39  /* list of struct btrfs_work that are waiting for service */
42 
43  /* list of worker threads from struct btrfs_workers */
45 
46  /* kthread */
47  struct task_struct *task;
48 
49  /* number of things on the pending list */
51 
52  /* reference counter for this struct */
54 
55  unsigned long sequence;
56 
57  /* protects the pending list. */
59 
60  /* set to non-zero when this thread is already awake and kicking */
61  int working;
62 
63  /* are we currently idle */
64  int idle;
65 };
66 
67 static int __btrfs_start_workers(struct btrfs_workers *workers);
68 
69 /*
70  * btrfs_start_workers uses kthread_run, which can block waiting for memory
71  * for a very long time. It will actually throttle on page writeback,
72  * and so it may not make progress until after our btrfs worker threads
73  * process all of the pending work structs in their queue
74  *
75  * This means we can't use btrfs_start_workers from inside a btrfs worker
76  * thread that is used as part of cleaning dirty memory, which pretty much
77  * involves all of the worker threads.
78  *
79  * Instead we have a helper queue who never has more than one thread
80  * where we scheduler thread start operations. This worker_start struct
81  * is used to contain the work and hold a pointer to the queue that needs
82  * another worker.
83  */
84 struct worker_start {
85  struct btrfs_work work;
87 };
88 
89 static void start_new_worker_func(struct btrfs_work *work)
90 {
91  struct worker_start *start;
92  start = container_of(work, struct worker_start, work);
93  __btrfs_start_workers(start->queue);
94  kfree(start);
95 }
96 
97 /*
98  * helper function to move a thread onto the idle list after it
99  * has finished some requests.
100  */
101 static void check_idle_worker(struct btrfs_worker_thread *worker)
102 {
103  if (!worker->idle && atomic_read(&worker->num_pending) <
104  worker->workers->idle_thresh / 2) {
105  unsigned long flags;
106  spin_lock_irqsave(&worker->workers->lock, flags);
107  worker->idle = 1;
108 
109  /* the list may be empty if the worker is just starting */
110  if (!list_empty(&worker->worker_list)) {
111  list_move(&worker->worker_list,
112  &worker->workers->idle_list);
113  }
114  spin_unlock_irqrestore(&worker->workers->lock, flags);
115  }
116 }
117 
118 /*
119  * helper function to move a thread off the idle list after new
120  * pending work is added.
121  */
122 static void check_busy_worker(struct btrfs_worker_thread *worker)
123 {
124  if (worker->idle && atomic_read(&worker->num_pending) >=
125  worker->workers->idle_thresh) {
126  unsigned long flags;
127  spin_lock_irqsave(&worker->workers->lock, flags);
128  worker->idle = 0;
129 
130  if (!list_empty(&worker->worker_list)) {
131  list_move_tail(&worker->worker_list,
132  &worker->workers->worker_list);
133  }
134  spin_unlock_irqrestore(&worker->workers->lock, flags);
135  }
136 }
137 
138 static void check_pending_worker_creates(struct btrfs_worker_thread *worker)
139 {
140  struct btrfs_workers *workers = worker->workers;
141  struct worker_start *start;
142  unsigned long flags;
143 
144  rmb();
145  if (!workers->atomic_start_pending)
146  return;
147 
148  start = kzalloc(sizeof(*start), GFP_NOFS);
149  if (!start)
150  return;
151 
152  start->work.func = start_new_worker_func;
153  start->queue = workers;
154 
155  spin_lock_irqsave(&workers->lock, flags);
156  if (!workers->atomic_start_pending)
157  goto out;
158 
159  workers->atomic_start_pending = 0;
160  if (workers->num_workers + workers->num_workers_starting >=
161  workers->max_workers)
162  goto out;
163 
164  workers->num_workers_starting += 1;
165  spin_unlock_irqrestore(&workers->lock, flags);
166  btrfs_queue_worker(workers->atomic_worker_start, &start->work);
167  return;
168 
169 out:
170  kfree(start);
171  spin_unlock_irqrestore(&workers->lock, flags);
172 }
173 
174 static noinline void run_ordered_completions(struct btrfs_workers *workers,
175  struct btrfs_work *work)
176 {
177  if (!workers->ordered)
178  return;
179 
180  set_bit(WORK_DONE_BIT, &work->flags);
181 
182  spin_lock(&workers->order_lock);
183 
184  while (1) {
185  if (!list_empty(&workers->prio_order_list)) {
186  work = list_entry(workers->prio_order_list.next,
187  struct btrfs_work, order_list);
188  } else if (!list_empty(&workers->order_list)) {
189  work = list_entry(workers->order_list.next,
190  struct btrfs_work, order_list);
191  } else {
192  break;
193  }
194  if (!test_bit(WORK_DONE_BIT, &work->flags))
195  break;
196 
197  /* we are going to call the ordered done function, but
198  * we leave the work item on the list as a barrier so
199  * that later work items that are done don't have their
200  * functions called before this one returns
201  */
203  break;
204 
205  spin_unlock(&workers->order_lock);
206 
207  work->ordered_func(work);
208 
209  /* now take the lock again and drop our item from the list */
210  spin_lock(&workers->order_lock);
211  list_del(&work->order_list);
212  spin_unlock(&workers->order_lock);
213 
214  /*
215  * we don't want to call the ordered free functions
216  * with the lock held though
217  */
218  work->ordered_free(work);
219  spin_lock(&workers->order_lock);
220  }
221 
222  spin_unlock(&workers->order_lock);
223 }
224 
225 static void put_worker(struct btrfs_worker_thread *worker)
226 {
227  if (atomic_dec_and_test(&worker->refs))
228  kfree(worker);
229 }
230 
231 static int try_worker_shutdown(struct btrfs_worker_thread *worker)
232 {
233  int freeit = 0;
234 
235  spin_lock_irq(&worker->lock);
236  spin_lock(&worker->workers->lock);
237  if (worker->workers->num_workers > 1 &&
238  worker->idle &&
239  !worker->working &&
240  !list_empty(&worker->worker_list) &&
241  list_empty(&worker->prio_pending) &&
242  list_empty(&worker->pending) &&
243  atomic_read(&worker->num_pending) == 0) {
244  freeit = 1;
245  list_del_init(&worker->worker_list);
246  worker->workers->num_workers--;
247  }
248  spin_unlock(&worker->workers->lock);
249  spin_unlock_irq(&worker->lock);
250 
251  if (freeit)
252  put_worker(worker);
253  return freeit;
254 }
255 
256 static struct btrfs_work *get_next_work(struct btrfs_worker_thread *worker,
257  struct list_head *prio_head,
258  struct list_head *head)
259 {
260  struct btrfs_work *work = NULL;
261  struct list_head *cur = NULL;
262 
263  if(!list_empty(prio_head))
264  cur = prio_head->next;
265 
266  smp_mb();
267  if (!list_empty(&worker->prio_pending))
268  goto refill;
269 
270  if (!list_empty(head))
271  cur = head->next;
272 
273  if (cur)
274  goto out;
275 
276 refill:
277  spin_lock_irq(&worker->lock);
278  list_splice_tail_init(&worker->prio_pending, prio_head);
279  list_splice_tail_init(&worker->pending, head);
280 
281  if (!list_empty(prio_head))
282  cur = prio_head->next;
283  else if (!list_empty(head))
284  cur = head->next;
285  spin_unlock_irq(&worker->lock);
286 
287  if (!cur)
288  goto out_fail;
289 
290 out:
291  work = list_entry(cur, struct btrfs_work, list);
292 
293 out_fail:
294  return work;
295 }
296 
297 /*
298  * main loop for servicing work items
299  */
300 static int worker_loop(void *arg)
301 {
302  struct btrfs_worker_thread *worker = arg;
303  struct list_head head;
304  struct list_head prio_head;
305  struct btrfs_work *work;
306 
307  INIT_LIST_HEAD(&head);
308  INIT_LIST_HEAD(&prio_head);
309 
310  do {
311 again:
312  while (1) {
313 
314 
315  work = get_next_work(worker, &prio_head, &head);
316  if (!work)
317  break;
318 
319  list_del(&work->list);
321 
322  work->worker = worker;
323 
324  work->func(work);
325 
326  atomic_dec(&worker->num_pending);
327  /*
328  * unless this is an ordered work queue,
329  * 'work' was probably freed by func above.
330  */
331  run_ordered_completions(worker->workers, work);
332 
333  check_pending_worker_creates(worker);
334  cond_resched();
335  }
336 
337  spin_lock_irq(&worker->lock);
338  check_idle_worker(worker);
339 
340  if (freezing(current)) {
341  worker->working = 0;
342  spin_unlock_irq(&worker->lock);
343  try_to_freeze();
344  } else {
345  spin_unlock_irq(&worker->lock);
346  if (!kthread_should_stop()) {
347  cpu_relax();
348  /*
349  * we've dropped the lock, did someone else
350  * jump_in?
351  */
352  smp_mb();
353  if (!list_empty(&worker->pending) ||
354  !list_empty(&worker->prio_pending))
355  continue;
356 
357  /*
358  * this short schedule allows more work to
359  * come in without the queue functions
360  * needing to go through wake_up_process()
361  *
362  * worker->working is still 1, so nobody
363  * is going to try and wake us up
364  */
365  schedule_timeout(1);
366  smp_mb();
367  if (!list_empty(&worker->pending) ||
368  !list_empty(&worker->prio_pending))
369  continue;
370 
371  if (kthread_should_stop())
372  break;
373 
374  /* still no more work?, sleep for real */
375  spin_lock_irq(&worker->lock);
377  if (!list_empty(&worker->pending) ||
378  !list_empty(&worker->prio_pending)) {
379  spin_unlock_irq(&worker->lock);
381  goto again;
382  }
383 
384  /*
385  * this makes sure we get a wakeup when someone
386  * adds something new to the queue
387  */
388  worker->working = 0;
389  spin_unlock_irq(&worker->lock);
390 
391  if (!kthread_should_stop()) {
392  schedule_timeout(HZ * 120);
393  if (!worker->working &&
394  try_worker_shutdown(worker)) {
395  return 0;
396  }
397  }
398  }
400  }
401  } while (!kthread_should_stop());
402  return 0;
403 }
404 
405 /*
406  * this will wait for all the worker threads to shutdown
407  */
408 void btrfs_stop_workers(struct btrfs_workers *workers)
409 {
410  struct list_head *cur;
411  struct btrfs_worker_thread *worker;
412  int can_stop;
413 
414  spin_lock_irq(&workers->lock);
415  list_splice_init(&workers->idle_list, &workers->worker_list);
416  while (!list_empty(&workers->worker_list)) {
417  cur = workers->worker_list.next;
418  worker = list_entry(cur, struct btrfs_worker_thread,
419  worker_list);
420 
421  atomic_inc(&worker->refs);
422  workers->num_workers -= 1;
423  if (!list_empty(&worker->worker_list)) {
424  list_del_init(&worker->worker_list);
425  put_worker(worker);
426  can_stop = 1;
427  } else
428  can_stop = 0;
429  spin_unlock_irq(&workers->lock);
430  if (can_stop)
431  kthread_stop(worker->task);
432  spin_lock_irq(&workers->lock);
433  put_worker(worker);
434  }
435  spin_unlock_irq(&workers->lock);
436 }
437 
438 /*
439  * simple init on struct btrfs_workers
440  */
441 void btrfs_init_workers(struct btrfs_workers *workers, char *name, int max,
442  struct btrfs_workers *async_helper)
443 {
444  workers->num_workers = 0;
445  workers->num_workers_starting = 0;
446  INIT_LIST_HEAD(&workers->worker_list);
447  INIT_LIST_HEAD(&workers->idle_list);
448  INIT_LIST_HEAD(&workers->order_list);
449  INIT_LIST_HEAD(&workers->prio_order_list);
450  spin_lock_init(&workers->lock);
451  spin_lock_init(&workers->order_lock);
452  workers->max_workers = max;
453  workers->idle_thresh = 32;
454  workers->name = name;
455  workers->ordered = 0;
456  workers->atomic_start_pending = 0;
457  workers->atomic_worker_start = async_helper;
458 }
459 
460 /*
461  * starts new worker threads. This does not enforce the max worker
462  * count in case you need to temporarily go past it.
463  */
464 static int __btrfs_start_workers(struct btrfs_workers *workers)
465 {
466  struct btrfs_worker_thread *worker;
467  int ret = 0;
468 
469  worker = kzalloc(sizeof(*worker), GFP_NOFS);
470  if (!worker) {
471  ret = -ENOMEM;
472  goto fail;
473  }
474 
475  INIT_LIST_HEAD(&worker->pending);
476  INIT_LIST_HEAD(&worker->prio_pending);
477  INIT_LIST_HEAD(&worker->worker_list);
478  spin_lock_init(&worker->lock);
479 
480  atomic_set(&worker->num_pending, 0);
481  atomic_set(&worker->refs, 1);
482  worker->workers = workers;
483  worker->task = kthread_run(worker_loop, worker,
484  "btrfs-%s-%d", workers->name,
485  workers->num_workers + 1);
486  if (IS_ERR(worker->task)) {
487  ret = PTR_ERR(worker->task);
488  kfree(worker);
489  goto fail;
490  }
491  spin_lock_irq(&workers->lock);
492  list_add_tail(&worker->worker_list, &workers->idle_list);
493  worker->idle = 1;
494  workers->num_workers++;
495  workers->num_workers_starting--;
496  WARN_ON(workers->num_workers_starting < 0);
497  spin_unlock_irq(&workers->lock);
498 
499  return 0;
500 fail:
501  spin_lock_irq(&workers->lock);
502  workers->num_workers_starting--;
503  spin_unlock_irq(&workers->lock);
504  return ret;
505 }
506 
507 int btrfs_start_workers(struct btrfs_workers *workers)
508 {
509  spin_lock_irq(&workers->lock);
510  workers->num_workers_starting++;
511  spin_unlock_irq(&workers->lock);
512  return __btrfs_start_workers(workers);
513 }
514 
515 /*
516  * run through the list and find a worker thread that doesn't have a lot
517  * to do right now. This can return null if we aren't yet at the thread
518  * count limit and all of the threads are busy.
519  */
520 static struct btrfs_worker_thread *next_worker(struct btrfs_workers *workers)
521 {
522  struct btrfs_worker_thread *worker;
523  struct list_head *next;
524  int enforce_min;
525 
526  enforce_min = (workers->num_workers + workers->num_workers_starting) <
527  workers->max_workers;
528 
529  /*
530  * if we find an idle thread, don't move it to the end of the
531  * idle list. This improves the chance that the next submission
532  * will reuse the same thread, and maybe catch it while it is still
533  * working
534  */
535  if (!list_empty(&workers->idle_list)) {
536  next = workers->idle_list.next;
537  worker = list_entry(next, struct btrfs_worker_thread,
538  worker_list);
539  return worker;
540  }
541  if (enforce_min || list_empty(&workers->worker_list))
542  return NULL;
543 
544  /*
545  * if we pick a busy task, move the task to the end of the list.
546  * hopefully this will keep things somewhat evenly balanced.
547  * Do the move in batches based on the sequence number. This groups
548  * requests submitted at roughly the same time onto the same worker.
549  */
550  next = workers->worker_list.next;
551  worker = list_entry(next, struct btrfs_worker_thread, worker_list);
552  worker->sequence++;
553 
554  if (worker->sequence % workers->idle_thresh == 0)
555  list_move_tail(next, &workers->worker_list);
556  return worker;
557 }
558 
559 /*
560  * selects a worker thread to take the next job. This will either find
561  * an idle worker, start a new worker up to the max count, or just return
562  * one of the existing busy workers.
563  */
564 static struct btrfs_worker_thread *find_worker(struct btrfs_workers *workers)
565 {
566  struct btrfs_worker_thread *worker;
567  unsigned long flags;
568  struct list_head *fallback;
569  int ret;
570 
571  spin_lock_irqsave(&workers->lock, flags);
572 again:
573  worker = next_worker(workers);
574 
575  if (!worker) {
576  if (workers->num_workers + workers->num_workers_starting >=
577  workers->max_workers) {
578  goto fallback;
579  } else if (workers->atomic_worker_start) {
580  workers->atomic_start_pending = 1;
581  goto fallback;
582  } else {
583  workers->num_workers_starting++;
584  spin_unlock_irqrestore(&workers->lock, flags);
585  /* we're below the limit, start another worker */
586  ret = __btrfs_start_workers(workers);
587  spin_lock_irqsave(&workers->lock, flags);
588  if (ret)
589  goto fallback;
590  goto again;
591  }
592  }
593  goto found;
594 
595 fallback:
596  fallback = NULL;
597  /*
598  * we have failed to find any workers, just
599  * return the first one we can find.
600  */
601  if (!list_empty(&workers->worker_list))
602  fallback = workers->worker_list.next;
603  if (!list_empty(&workers->idle_list))
604  fallback = workers->idle_list.next;
605  BUG_ON(!fallback);
606  worker = list_entry(fallback,
607  struct btrfs_worker_thread, worker_list);
608 found:
609  /*
610  * this makes sure the worker doesn't exit before it is placed
611  * onto a busy/idle list
612  */
613  atomic_inc(&worker->num_pending);
614  spin_unlock_irqrestore(&workers->lock, flags);
615  return worker;
616 }
617 
618 /*
619  * btrfs_requeue_work just puts the work item back on the tail of the list
620  * it was taken from. It is intended for use with long running work functions
621  * that make some progress and want to give the cpu up for others.
622  */
623 void btrfs_requeue_work(struct btrfs_work *work)
624 {
625  struct btrfs_worker_thread *worker = work->worker;
626  unsigned long flags;
627  int wake = 0;
628 
630  return;
631 
632  spin_lock_irqsave(&worker->lock, flags);
633  if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags))
634  list_add_tail(&work->list, &worker->prio_pending);
635  else
636  list_add_tail(&work->list, &worker->pending);
637  atomic_inc(&worker->num_pending);
638 
639  /* by definition we're busy, take ourselves off the idle
640  * list
641  */
642  if (worker->idle) {
643  spin_lock(&worker->workers->lock);
644  worker->idle = 0;
645  list_move_tail(&worker->worker_list,
646  &worker->workers->worker_list);
647  spin_unlock(&worker->workers->lock);
648  }
649  if (!worker->working) {
650  wake = 1;
651  worker->working = 1;
652  }
653 
654  if (wake)
655  wake_up_process(worker->task);
656  spin_unlock_irqrestore(&worker->lock, flags);
657 }
658 
660 {
662 }
663 
664 /*
665  * places a struct btrfs_work into the pending queue of one of the kthreads
666  */
667 void btrfs_queue_worker(struct btrfs_workers *workers, struct btrfs_work *work)
668 {
669  struct btrfs_worker_thread *worker;
670  unsigned long flags;
671  int wake = 0;
672 
673  /* don't requeue something already on a list */
675  return;
676 
677  worker = find_worker(workers);
678  if (workers->ordered) {
679  /*
680  * you're not allowed to do ordered queues from an
681  * interrupt handler
682  */
683  spin_lock(&workers->order_lock);
684  if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags)) {
685  list_add_tail(&work->order_list,
686  &workers->prio_order_list);
687  } else {
688  list_add_tail(&work->order_list, &workers->order_list);
689  }
690  spin_unlock(&workers->order_lock);
691  } else {
692  INIT_LIST_HEAD(&work->order_list);
693  }
694 
695  spin_lock_irqsave(&worker->lock, flags);
696 
697  if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags))
698  list_add_tail(&work->list, &worker->prio_pending);
699  else
700  list_add_tail(&work->list, &worker->pending);
701  check_busy_worker(worker);
702 
703  /*
704  * avoid calling into wake_up_process if this thread has already
705  * been kicked
706  */
707  if (!worker->working)
708  wake = 1;
709  worker->working = 1;
710 
711  if (wake)
712  wake_up_process(worker->task);
713  spin_unlock_irqrestore(&worker->lock, flags);
714 }