Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
backref.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2011 STRATO. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/vmalloc.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "backref.h"
23 #include "ulist.h"
24 #include "transaction.h"
25 #include "delayed-ref.h"
26 #include "locking.h"
27 
32 };
33 
34 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
35  struct btrfs_file_extent_item *fi,
36  u64 extent_item_pos,
37  struct extent_inode_elem **eie)
38 {
40  u64 data_len;
41  struct extent_inode_elem *e;
42 
43  data_offset = btrfs_file_extent_offset(eb, fi);
44  data_len = btrfs_file_extent_num_bytes(eb, fi);
45 
46  if (extent_item_pos < data_offset ||
47  extent_item_pos >= data_offset + data_len)
48  return 1;
49 
50  e = kmalloc(sizeof(*e), GFP_NOFS);
51  if (!e)
52  return -ENOMEM;
53 
54  e->next = *eie;
55  e->inum = key->objectid;
56  e->offset = key->offset + (extent_item_pos - data_offset);
57  *eie = e;
58 
59  return 0;
60 }
61 
62 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
63  u64 extent_item_pos,
64  struct extent_inode_elem **eie)
65 {
66  u64 disk_byte;
67  struct btrfs_key key;
68  struct btrfs_file_extent_item *fi;
69  int slot;
70  int nritems;
71  int extent_type;
72  int ret;
73 
74  /*
75  * from the shared data ref, we only have the leaf but we need
76  * the key. thus, we must look into all items and see that we
77  * find one (some) with a reference to our extent item.
78  */
79  nritems = btrfs_header_nritems(eb);
80  for (slot = 0; slot < nritems; ++slot) {
81  btrfs_item_key_to_cpu(eb, &key, slot);
82  if (key.type != BTRFS_EXTENT_DATA_KEY)
83  continue;
84  fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
85  extent_type = btrfs_file_extent_type(eb, fi);
86  if (extent_type == BTRFS_FILE_EXTENT_INLINE)
87  continue;
88  /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
89  disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
90  if (disk_byte != wanted_disk_byte)
91  continue;
92 
93  ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
94  if (ret < 0)
95  return ret;
96  }
97 
98  return 0;
99 }
100 
101 /*
102  * this structure records all encountered refs on the way up to the root
103  */
104 struct __prelim_ref {
105  struct list_head list;
108  int level;
109  int count;
113 };
114 
115 /*
116  * the rules for all callers of this function are:
117  * - obtaining the parent is the goal
118  * - if you add a key, you must know that it is a correct key
119  * - if you cannot add the parent or a correct key, then we will look into the
120  * block later to set a correct key
121  *
122  * delayed refs
123  * ============
124  * backref type | shared | indirect | shared | indirect
125  * information | tree | tree | data | data
126  * --------------------+--------+----------+--------+----------
127  * parent logical | y | - | - | -
128  * key to resolve | - | y | y | y
129  * tree block logical | - | - | - | -
130  * root for resolving | y | y | y | y
131  *
132  * - column 1: we've the parent -> done
133  * - column 2, 3, 4: we use the key to find the parent
134  *
135  * on disk refs (inline or keyed)
136  * ==============================
137  * backref type | shared | indirect | shared | indirect
138  * information | tree | tree | data | data
139  * --------------------+--------+----------+--------+----------
140  * parent logical | y | - | y | -
141  * key to resolve | - | - | - | y
142  * tree block logical | y | y | y | y
143  * root for resolving | - | y | y | y
144  *
145  * - column 1, 3: we've the parent -> done
146  * - column 2: we take the first key from the block to find the parent
147  * (see __add_missing_keys)
148  * - column 4: we use the key to find the parent
149  *
150  * additional information that's available but not required to find the parent
151  * block might help in merging entries to gain some speed.
152  */
153 
154 static int __add_prelim_ref(struct list_head *head, u64 root_id,
155  struct btrfs_key *key, int level,
156  u64 parent, u64 wanted_disk_byte, int count)
157 {
158  struct __prelim_ref *ref;
159 
160  /* in case we're adding delayed refs, we're holding the refs spinlock */
161  ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
162  if (!ref)
163  return -ENOMEM;
164 
165  ref->root_id = root_id;
166  if (key)
167  ref->key_for_search = *key;
168  else
169  memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
170 
171  ref->inode_list = NULL;
172  ref->level = level;
173  ref->count = count;
174  ref->parent = parent;
176  list_add_tail(&ref->list, head);
177 
178  return 0;
179 }
180 
181 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
182  struct ulist *parents, int level,
183  struct btrfs_key *key_for_search, u64 time_seq,
184  u64 wanted_disk_byte,
185  const u64 *extent_item_pos)
186 {
187  int ret = 0;
188  int slot;
189  struct extent_buffer *eb;
190  struct btrfs_key key;
191  struct btrfs_file_extent_item *fi;
192  struct extent_inode_elem *eie = NULL;
193  u64 disk_byte;
194 
195  if (level != 0) {
196  eb = path->nodes[level];
197  ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
198  if (ret < 0)
199  return ret;
200  return 0;
201  }
202 
203  /*
204  * We normally enter this function with the path already pointing to
205  * the first item to check. But sometimes, we may enter it with
206  * slot==nritems. In that case, go to the next leaf before we continue.
207  */
208  if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
209  ret = btrfs_next_old_leaf(root, path, time_seq);
210 
211  while (!ret) {
212  eb = path->nodes[0];
213  slot = path->slots[0];
214 
215  btrfs_item_key_to_cpu(eb, &key, slot);
216 
217  if (key.objectid != key_for_search->objectid ||
218  key.type != BTRFS_EXTENT_DATA_KEY)
219  break;
220 
221  fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
222  disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
223 
224  if (disk_byte == wanted_disk_byte) {
225  eie = NULL;
226  if (extent_item_pos) {
227  ret = check_extent_in_eb(&key, eb, fi,
228  *extent_item_pos,
229  &eie);
230  if (ret < 0)
231  break;
232  }
233  if (!ret) {
234  ret = ulist_add(parents, eb->start,
235  (uintptr_t)eie, GFP_NOFS);
236  if (ret < 0)
237  break;
238  if (!extent_item_pos) {
239  ret = btrfs_next_old_leaf(root, path,
240  time_seq);
241  continue;
242  }
243  }
244  }
245  ret = btrfs_next_old_item(root, path, time_seq);
246  }
247 
248  if (ret > 0)
249  ret = 0;
250  return ret;
251 }
252 
253 /*
254  * resolve an indirect backref in the form (root_id, key, level)
255  * to a logical address
256  */
257 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
258  int search_commit_root,
259  u64 time_seq,
260  struct __prelim_ref *ref,
261  struct ulist *parents,
262  const u64 *extent_item_pos)
263 {
264  struct btrfs_path *path;
265  struct btrfs_root *root;
266  struct btrfs_key root_key;
267  struct extent_buffer *eb;
268  int ret = 0;
269  int root_level;
270  int level = ref->level;
271 
272  path = btrfs_alloc_path();
273  if (!path)
274  return -ENOMEM;
275  path->search_commit_root = !!search_commit_root;
276 
277  root_key.objectid = ref->root_id;
279  root_key.offset = (u64)-1;
280  root = btrfs_read_fs_root_no_name(fs_info, &root_key);
281  if (IS_ERR(root)) {
282  ret = PTR_ERR(root);
283  goto out;
284  }
285 
286  root_level = btrfs_old_root_level(root, time_seq);
287 
288  if (root_level + 1 == level)
289  goto out;
290 
291  path->lowest_level = level;
292  ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
293  pr_debug("search slot in root %llu (level %d, ref count %d) returned "
294  "%d for key (%llu %u %llu)\n",
295  (unsigned long long)ref->root_id, level, ref->count, ret,
296  (unsigned long long)ref->key_for_search.objectid,
297  ref->key_for_search.type,
298  (unsigned long long)ref->key_for_search.offset);
299  if (ret < 0)
300  goto out;
301 
302  eb = path->nodes[level];
303  while (!eb) {
304  if (!level) {
305  WARN_ON(1);
306  ret = 1;
307  goto out;
308  }
309  level--;
310  eb = path->nodes[level];
311  }
312 
313  ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
314  time_seq, ref->wanted_disk_byte,
315  extent_item_pos);
316 out:
317  btrfs_free_path(path);
318  return ret;
319 }
320 
321 /*
322  * resolve all indirect backrefs from the list
323  */
324 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
325  int search_commit_root, u64 time_seq,
326  struct list_head *head,
327  const u64 *extent_item_pos)
328 {
329  int err;
330  int ret = 0;
331  struct __prelim_ref *ref;
332  struct __prelim_ref *ref_safe;
333  struct __prelim_ref *new_ref;
334  struct ulist *parents;
335  struct ulist_node *node;
336  struct ulist_iterator uiter;
337 
338  parents = ulist_alloc(GFP_NOFS);
339  if (!parents)
340  return -ENOMEM;
341 
342  /*
343  * _safe allows us to insert directly after the current item without
344  * iterating over the newly inserted items.
345  * we're also allowed to re-assign ref during iteration.
346  */
347  list_for_each_entry_safe(ref, ref_safe, head, list) {
348  if (ref->parent) /* already direct */
349  continue;
350  if (ref->count == 0)
351  continue;
352  err = __resolve_indirect_ref(fs_info, search_commit_root,
353  time_seq, ref, parents,
354  extent_item_pos);
355  if (err) {
356  if (ret == 0)
357  ret = err;
358  continue;
359  }
360 
361  /* we put the first parent into the ref at hand */
362  ULIST_ITER_INIT(&uiter);
363  node = ulist_next(parents, &uiter);
364  ref->parent = node ? node->val : 0;
365  ref->inode_list = node ?
366  (struct extent_inode_elem *)(uintptr_t)node->aux : 0;
367 
368  /* additional parents require new refs being added here */
369  while ((node = ulist_next(parents, &uiter))) {
370  new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
371  if (!new_ref) {
372  ret = -ENOMEM;
373  break;
374  }
375  memcpy(new_ref, ref, sizeof(*ref));
376  new_ref->parent = node->val;
377  new_ref->inode_list = (struct extent_inode_elem *)
378  (uintptr_t)node->aux;
379  list_add(&new_ref->list, &ref->list);
380  }
381  ulist_reinit(parents);
382  }
383 
384  ulist_free(parents);
385  return ret;
386 }
387 
388 static inline int ref_for_same_block(struct __prelim_ref *ref1,
389  struct __prelim_ref *ref2)
390 {
391  if (ref1->level != ref2->level)
392  return 0;
393  if (ref1->root_id != ref2->root_id)
394  return 0;
395  if (ref1->key_for_search.type != ref2->key_for_search.type)
396  return 0;
397  if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
398  return 0;
399  if (ref1->key_for_search.offset != ref2->key_for_search.offset)
400  return 0;
401  if (ref1->parent != ref2->parent)
402  return 0;
403 
404  return 1;
405 }
406 
407 /*
408  * read tree blocks and add keys where required.
409  */
410 static int __add_missing_keys(struct btrfs_fs_info *fs_info,
411  struct list_head *head)
412 {
413  struct list_head *pos;
414  struct extent_buffer *eb;
415 
416  list_for_each(pos, head) {
417  struct __prelim_ref *ref;
418  ref = list_entry(pos, struct __prelim_ref, list);
419 
420  if (ref->parent)
421  continue;
422  if (ref->key_for_search.type)
423  continue;
424  BUG_ON(!ref->wanted_disk_byte);
425  eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
426  fs_info->tree_root->leafsize, 0);
427  BUG_ON(!eb);
429  if (btrfs_header_level(eb) == 0)
430  btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
431  else
432  btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
434  free_extent_buffer(eb);
435  }
436  return 0;
437 }
438 
439 /*
440  * merge two lists of backrefs and adjust counts accordingly
441  *
442  * mode = 1: merge identical keys, if key is set
443  * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
444  * additionally, we could even add a key range for the blocks we
445  * looked into to merge even more (-> replace unresolved refs by those
446  * having a parent).
447  * mode = 2: merge identical parents
448  */
449 static int __merge_refs(struct list_head *head, int mode)
450 {
451  struct list_head *pos1;
452 
453  list_for_each(pos1, head) {
454  struct list_head *n2;
455  struct list_head *pos2;
456  struct __prelim_ref *ref1;
457 
458  ref1 = list_entry(pos1, struct __prelim_ref, list);
459 
460  for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
461  pos2 = n2, n2 = pos2->next) {
462  struct __prelim_ref *ref2;
463  struct __prelim_ref *xchg;
464 
465  ref2 = list_entry(pos2, struct __prelim_ref, list);
466 
467  if (mode == 1) {
468  if (!ref_for_same_block(ref1, ref2))
469  continue;
470  if (!ref1->parent && ref2->parent) {
471  xchg = ref1;
472  ref1 = ref2;
473  ref2 = xchg;
474  }
475  ref1->count += ref2->count;
476  } else {
477  if (ref1->parent != ref2->parent)
478  continue;
479  ref1->count += ref2->count;
480  }
481  list_del(&ref2->list);
482  kfree(ref2);
483  }
484 
485  }
486  return 0;
487 }
488 
489 /*
490  * add all currently queued delayed refs from this head whose seq nr is
491  * smaller or equal that seq to the list
492  */
493 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
494  struct list_head *prefs)
495 {
496  struct btrfs_delayed_extent_op *extent_op = head->extent_op;
497  struct rb_node *n = &head->node.rb_node;
498  struct btrfs_key key;
499  struct btrfs_key op_key = {0};
500  int sgn;
501  int ret = 0;
502 
503  if (extent_op && extent_op->update_key)
504  btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
505 
506  while ((n = rb_prev(n))) {
508  node = rb_entry(n, struct btrfs_delayed_ref_node,
509  rb_node);
510  if (node->bytenr != head->node.bytenr)
511  break;
512  WARN_ON(node->is_head);
513 
514  if (node->seq > seq)
515  continue;
516 
517  switch (node->action) {
520  WARN_ON(1);
521  continue;
523  sgn = 1;
524  break;
526  sgn = -1;
527  break;
528  default:
529  BUG_ON(1);
530  }
531  switch (node->type) {
533  struct btrfs_delayed_tree_ref *ref;
534 
535  ref = btrfs_delayed_node_to_tree_ref(node);
536  ret = __add_prelim_ref(prefs, ref->root, &op_key,
537  ref->level + 1, 0, node->bytenr,
538  node->ref_mod * sgn);
539  break;
540  }
542  struct btrfs_delayed_tree_ref *ref;
543 
544  ref = btrfs_delayed_node_to_tree_ref(node);
545  ret = __add_prelim_ref(prefs, ref->root, NULL,
546  ref->level + 1, ref->parent,
547  node->bytenr,
548  node->ref_mod * sgn);
549  break;
550  }
552  struct btrfs_delayed_data_ref *ref;
553  ref = btrfs_delayed_node_to_data_ref(node);
554 
555  key.objectid = ref->objectid;
556  key.type = BTRFS_EXTENT_DATA_KEY;
557  key.offset = ref->offset;
558  ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
559  node->bytenr,
560  node->ref_mod * sgn);
561  break;
562  }
564  struct btrfs_delayed_data_ref *ref;
565 
566  ref = btrfs_delayed_node_to_data_ref(node);
567 
568  key.objectid = ref->objectid;
569  key.type = BTRFS_EXTENT_DATA_KEY;
570  key.offset = ref->offset;
571  ret = __add_prelim_ref(prefs, ref->root, &key, 0,
572  ref->parent, node->bytenr,
573  node->ref_mod * sgn);
574  break;
575  }
576  default:
577  WARN_ON(1);
578  }
579  BUG_ON(ret);
580  }
581 
582  return 0;
583 }
584 
585 /*
586  * add all inline backrefs for bytenr to the list
587  */
588 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
589  struct btrfs_path *path, u64 bytenr,
590  int *info_level, struct list_head *prefs)
591 {
592  int ret = 0;
593  int slot;
594  struct extent_buffer *leaf;
595  struct btrfs_key key;
596  unsigned long ptr;
597  unsigned long end;
598  struct btrfs_extent_item *ei;
599  u64 flags;
600  u64 item_size;
601 
602  /*
603  * enumerate all inline refs
604  */
605  leaf = path->nodes[0];
606  slot = path->slots[0];
607 
608  item_size = btrfs_item_size_nr(leaf, slot);
609  BUG_ON(item_size < sizeof(*ei));
610 
611  ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
612  flags = btrfs_extent_flags(leaf, ei);
613 
614  ptr = (unsigned long)(ei + 1);
615  end = (unsigned long)ei + item_size;
616 
617  if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
618  struct btrfs_tree_block_info *info;
619 
620  info = (struct btrfs_tree_block_info *)ptr;
621  *info_level = btrfs_tree_block_level(leaf, info);
622  ptr += sizeof(struct btrfs_tree_block_info);
623  BUG_ON(ptr > end);
624  } else {
625  BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
626  }
627 
628  while (ptr < end) {
629  struct btrfs_extent_inline_ref *iref;
630  u64 offset;
631  int type;
632 
633  iref = (struct btrfs_extent_inline_ref *)ptr;
634  type = btrfs_extent_inline_ref_type(leaf, iref);
635  offset = btrfs_extent_inline_ref_offset(leaf, iref);
636 
637  switch (type) {
639  ret = __add_prelim_ref(prefs, 0, NULL,
640  *info_level + 1, offset,
641  bytenr, 1);
642  break;
644  struct btrfs_shared_data_ref *sdref;
645  int count;
646 
647  sdref = (struct btrfs_shared_data_ref *)(iref + 1);
648  count = btrfs_shared_data_ref_count(leaf, sdref);
649  ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
650  bytenr, count);
651  break;
652  }
654  ret = __add_prelim_ref(prefs, offset, NULL,
655  *info_level + 1, 0,
656  bytenr, 1);
657  break;
659  struct btrfs_extent_data_ref *dref;
660  int count;
661  u64 root;
662 
663  dref = (struct btrfs_extent_data_ref *)(&iref->offset);
664  count = btrfs_extent_data_ref_count(leaf, dref);
665  key.objectid = btrfs_extent_data_ref_objectid(leaf,
666  dref);
667  key.type = BTRFS_EXTENT_DATA_KEY;
668  key.offset = btrfs_extent_data_ref_offset(leaf, dref);
669  root = btrfs_extent_data_ref_root(leaf, dref);
670  ret = __add_prelim_ref(prefs, root, &key, 0, 0,
671  bytenr, count);
672  break;
673  }
674  default:
675  WARN_ON(1);
676  }
677  BUG_ON(ret);
678  ptr += btrfs_extent_inline_ref_size(type);
679  }
680 
681  return 0;
682 }
683 
684 /*
685  * add all non-inline backrefs for bytenr to the list
686  */
687 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
688  struct btrfs_path *path, u64 bytenr,
689  int info_level, struct list_head *prefs)
690 {
691  struct btrfs_root *extent_root = fs_info->extent_root;
692  int ret;
693  int slot;
694  struct extent_buffer *leaf;
695  struct btrfs_key key;
696 
697  while (1) {
698  ret = btrfs_next_item(extent_root, path);
699  if (ret < 0)
700  break;
701  if (ret) {
702  ret = 0;
703  break;
704  }
705 
706  slot = path->slots[0];
707  leaf = path->nodes[0];
708  btrfs_item_key_to_cpu(leaf, &key, slot);
709 
710  if (key.objectid != bytenr)
711  break;
712  if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
713  continue;
714  if (key.type > BTRFS_SHARED_DATA_REF_KEY)
715  break;
716 
717  switch (key.type) {
719  ret = __add_prelim_ref(prefs, 0, NULL,
720  info_level + 1, key.offset,
721  bytenr, 1);
722  break;
724  struct btrfs_shared_data_ref *sdref;
725  int count;
726 
727  sdref = btrfs_item_ptr(leaf, slot,
728  struct btrfs_shared_data_ref);
729  count = btrfs_shared_data_ref_count(leaf, sdref);
730  ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
731  bytenr, count);
732  break;
733  }
735  ret = __add_prelim_ref(prefs, key.offset, NULL,
736  info_level + 1, 0,
737  bytenr, 1);
738  break;
740  struct btrfs_extent_data_ref *dref;
741  int count;
742  u64 root;
743 
744  dref = btrfs_item_ptr(leaf, slot,
745  struct btrfs_extent_data_ref);
746  count = btrfs_extent_data_ref_count(leaf, dref);
747  key.objectid = btrfs_extent_data_ref_objectid(leaf,
748  dref);
749  key.type = BTRFS_EXTENT_DATA_KEY;
750  key.offset = btrfs_extent_data_ref_offset(leaf, dref);
751  root = btrfs_extent_data_ref_root(leaf, dref);
752  ret = __add_prelim_ref(prefs, root, &key, 0, 0,
753  bytenr, count);
754  break;
755  }
756  default:
757  WARN_ON(1);
758  }
759  BUG_ON(ret);
760  }
761 
762  return ret;
763 }
764 
765 /*
766  * this adds all existing backrefs (inline backrefs, backrefs and delayed
767  * refs) for the given bytenr to the refs list, merges duplicates and resolves
768  * indirect refs to their parent bytenr.
769  * When roots are found, they're added to the roots list
770  *
771  * FIXME some caching might speed things up
772  */
773 static int find_parent_nodes(struct btrfs_trans_handle *trans,
774  struct btrfs_fs_info *fs_info, u64 bytenr,
775  u64 time_seq, struct ulist *refs,
776  struct ulist *roots, const u64 *extent_item_pos)
777 {
778  struct btrfs_key key;
779  struct btrfs_path *path;
780  struct btrfs_delayed_ref_root *delayed_refs = NULL;
782  int info_level = 0;
783  int ret;
784  int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT);
785  struct list_head prefs_delayed;
786  struct list_head prefs;
787  struct __prelim_ref *ref;
788 
789  INIT_LIST_HEAD(&prefs);
790  INIT_LIST_HEAD(&prefs_delayed);
791 
792  key.objectid = bytenr;
793  key.type = BTRFS_EXTENT_ITEM_KEY;
794  key.offset = (u64)-1;
795 
796  path = btrfs_alloc_path();
797  if (!path)
798  return -ENOMEM;
799  path->search_commit_root = !!search_commit_root;
800 
801  /*
802  * grab both a lock on the path and a lock on the delayed ref head.
803  * We need both to get a consistent picture of how the refs look
804  * at a specified point in time
805  */
806 again:
807  head = NULL;
808 
809  ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
810  if (ret < 0)
811  goto out;
812  BUG_ON(ret == 0);
813 
814  if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) {
815  /*
816  * look if there are updates for this ref queued and lock the
817  * head
818  */
819  delayed_refs = &trans->transaction->delayed_refs;
820  spin_lock(&delayed_refs->lock);
821  head = btrfs_find_delayed_ref_head(trans, bytenr);
822  if (head) {
823  if (!mutex_trylock(&head->mutex)) {
824  atomic_inc(&head->node.refs);
825  spin_unlock(&delayed_refs->lock);
826 
827  btrfs_release_path(path);
828 
829  /*
830  * Mutex was contended, block until it's
831  * released and try again
832  */
833  mutex_lock(&head->mutex);
834  mutex_unlock(&head->mutex);
835  btrfs_put_delayed_ref(&head->node);
836  goto again;
837  }
838  ret = __add_delayed_refs(head, time_seq,
839  &prefs_delayed);
840  mutex_unlock(&head->mutex);
841  if (ret) {
842  spin_unlock(&delayed_refs->lock);
843  goto out;
844  }
845  }
846  spin_unlock(&delayed_refs->lock);
847  }
848 
849  if (path->slots[0]) {
850  struct extent_buffer *leaf;
851  int slot;
852 
853  path->slots[0]--;
854  leaf = path->nodes[0];
855  slot = path->slots[0];
856  btrfs_item_key_to_cpu(leaf, &key, slot);
857  if (key.objectid == bytenr &&
858  key.type == BTRFS_EXTENT_ITEM_KEY) {
859  ret = __add_inline_refs(fs_info, path, bytenr,
860  &info_level, &prefs);
861  if (ret)
862  goto out;
863  ret = __add_keyed_refs(fs_info, path, bytenr,
864  info_level, &prefs);
865  if (ret)
866  goto out;
867  }
868  }
869  btrfs_release_path(path);
870 
871  list_splice_init(&prefs_delayed, &prefs);
872 
873  ret = __add_missing_keys(fs_info, &prefs);
874  if (ret)
875  goto out;
876 
877  ret = __merge_refs(&prefs, 1);
878  if (ret)
879  goto out;
880 
881  ret = __resolve_indirect_refs(fs_info, search_commit_root, time_seq,
882  &prefs, extent_item_pos);
883  if (ret)
884  goto out;
885 
886  ret = __merge_refs(&prefs, 2);
887  if (ret)
888  goto out;
889 
890  while (!list_empty(&prefs)) {
891  ref = list_first_entry(&prefs, struct __prelim_ref, list);
892  list_del(&ref->list);
893  if (ref->count < 0)
894  WARN_ON(1);
895  if (ref->count && ref->root_id && ref->parent == 0) {
896  /* no parent == root of tree */
897  ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
898  BUG_ON(ret < 0);
899  }
900  if (ref->count && ref->parent) {
901  struct extent_inode_elem *eie = NULL;
902  if (extent_item_pos && !ref->inode_list) {
903  u32 bsz;
904  struct extent_buffer *eb;
905  bsz = btrfs_level_size(fs_info->extent_root,
906  info_level);
907  eb = read_tree_block(fs_info->extent_root,
908  ref->parent, bsz, 0);
909  BUG_ON(!eb);
910  ret = find_extent_in_eb(eb, bytenr,
911  *extent_item_pos, &eie);
912  ref->inode_list = eie;
913  free_extent_buffer(eb);
914  }
915  ret = ulist_add_merge(refs, ref->parent,
916  (uintptr_t)ref->inode_list,
917  (u64 *)&eie, GFP_NOFS);
918  if (!ret && extent_item_pos) {
919  /*
920  * we've recorded that parent, so we must extend
921  * its inode list here
922  */
923  BUG_ON(!eie);
924  while (eie->next)
925  eie = eie->next;
926  eie->next = ref->inode_list;
927  }
928  BUG_ON(ret < 0);
929  }
930  kfree(ref);
931  }
932 
933 out:
934  btrfs_free_path(path);
935  while (!list_empty(&prefs)) {
936  ref = list_first_entry(&prefs, struct __prelim_ref, list);
937  list_del(&ref->list);
938  kfree(ref);
939  }
940  while (!list_empty(&prefs_delayed)) {
941  ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
942  list);
943  list_del(&ref->list);
944  kfree(ref);
945  }
946 
947  return ret;
948 }
949 
950 static void free_leaf_list(struct ulist *blocks)
951 {
952  struct ulist_node *node = NULL;
953  struct extent_inode_elem *eie;
954  struct extent_inode_elem *eie_next;
955  struct ulist_iterator uiter;
956 
957  ULIST_ITER_INIT(&uiter);
958  while ((node = ulist_next(blocks, &uiter))) {
959  if (!node->aux)
960  continue;
961  eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
962  for (; eie; eie = eie_next) {
963  eie_next = eie->next;
964  kfree(eie);
965  }
966  node->aux = 0;
967  }
968 
969  ulist_free(blocks);
970 }
971 
972 /*
973  * Finds all leafs with a reference to the specified combination of bytenr and
974  * offset. key_list_head will point to a list of corresponding keys (caller must
975  * free each list element). The leafs will be stored in the leafs ulist, which
976  * must be freed with ulist_free.
977  *
978  * returns 0 on success, <0 on error
979  */
980 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
981  struct btrfs_fs_info *fs_info, u64 bytenr,
982  u64 time_seq, struct ulist **leafs,
983  const u64 *extent_item_pos)
984 {
985  struct ulist *tmp;
986  int ret;
987 
988  tmp = ulist_alloc(GFP_NOFS);
989  if (!tmp)
990  return -ENOMEM;
991  *leafs = ulist_alloc(GFP_NOFS);
992  if (!*leafs) {
993  ulist_free(tmp);
994  return -ENOMEM;
995  }
996 
997  ret = find_parent_nodes(trans, fs_info, bytenr,
998  time_seq, *leafs, tmp, extent_item_pos);
999  ulist_free(tmp);
1000 
1001  if (ret < 0 && ret != -ENOENT) {
1002  free_leaf_list(*leafs);
1003  return ret;
1004  }
1005 
1006  return 0;
1007 }
1008 
1009 /*
1010  * walk all backrefs for a given extent to find all roots that reference this
1011  * extent. Walking a backref means finding all extents that reference this
1012  * extent and in turn walk the backrefs of those, too. Naturally this is a
1013  * recursive process, but here it is implemented in an iterative fashion: We
1014  * find all referencing extents for the extent in question and put them on a
1015  * list. In turn, we find all referencing extents for those, further appending
1016  * to the list. The way we iterate the list allows adding more elements after
1017  * the current while iterating. The process stops when we reach the end of the
1018  * list. Found roots are added to the roots list.
1019  *
1020  * returns 0 on success, < 0 on error.
1021  */
1023  struct btrfs_fs_info *fs_info, u64 bytenr,
1024  u64 time_seq, struct ulist **roots)
1025 {
1026  struct ulist *tmp;
1027  struct ulist_node *node = NULL;
1028  struct ulist_iterator uiter;
1029  int ret;
1030 
1031  tmp = ulist_alloc(GFP_NOFS);
1032  if (!tmp)
1033  return -ENOMEM;
1034  *roots = ulist_alloc(GFP_NOFS);
1035  if (!*roots) {
1036  ulist_free(tmp);
1037  return -ENOMEM;
1038  }
1039 
1040  ULIST_ITER_INIT(&uiter);
1041  while (1) {
1042  ret = find_parent_nodes(trans, fs_info, bytenr,
1043  time_seq, tmp, *roots, NULL);
1044  if (ret < 0 && ret != -ENOENT) {
1045  ulist_free(tmp);
1046  ulist_free(*roots);
1047  return ret;
1048  }
1049  node = ulist_next(tmp, &uiter);
1050  if (!node)
1051  break;
1052  bytenr = node->val;
1053  }
1054 
1055  ulist_free(tmp);
1056  return 0;
1057 }
1058 
1059 
1060 static int __inode_info(u64 inum, u64 ioff, u8 key_type,
1061  struct btrfs_root *fs_root, struct btrfs_path *path,
1062  struct btrfs_key *found_key)
1063 {
1064  int ret;
1065  struct btrfs_key key;
1066  struct extent_buffer *eb;
1067 
1068  key.type = key_type;
1069  key.objectid = inum;
1070  key.offset = ioff;
1071 
1072  ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1073  if (ret < 0)
1074  return ret;
1075 
1076  eb = path->nodes[0];
1077  if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1078  ret = btrfs_next_leaf(fs_root, path);
1079  if (ret)
1080  return ret;
1081  eb = path->nodes[0];
1082  }
1083 
1084  btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1085  if (found_key->type != key.type || found_key->objectid != key.objectid)
1086  return 1;
1087 
1088  return 0;
1089 }
1090 
1091 /*
1092  * this makes the path point to (inum INODE_ITEM ioff)
1093  */
1094 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1095  struct btrfs_path *path)
1096 {
1097  struct btrfs_key key;
1098  return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
1099  &key);
1100 }
1101 
1102 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1103  struct btrfs_path *path,
1104  struct btrfs_key *found_key)
1105 {
1106  return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
1107  found_key);
1108 }
1109 
1110 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1111  u64 start_off, struct btrfs_path *path,
1112  struct btrfs_inode_extref **ret_extref,
1113  u64 *found_off)
1114 {
1115  int ret, slot;
1116  struct btrfs_key key;
1117  struct btrfs_key found_key;
1118  struct btrfs_inode_extref *extref;
1119  struct extent_buffer *leaf;
1120  unsigned long ptr;
1121 
1122  key.objectid = inode_objectid;
1123  btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1124  key.offset = start_off;
1125 
1126  ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1127  if (ret < 0)
1128  return ret;
1129 
1130  while (1) {
1131  leaf = path->nodes[0];
1132  slot = path->slots[0];
1133  if (slot >= btrfs_header_nritems(leaf)) {
1134  /*
1135  * If the item at offset is not found,
1136  * btrfs_search_slot will point us to the slot
1137  * where it should be inserted. In our case
1138  * that will be the slot directly before the
1139  * next INODE_REF_KEY_V2 item. In the case
1140  * that we're pointing to the last slot in a
1141  * leaf, we must move one leaf over.
1142  */
1143  ret = btrfs_next_leaf(root, path);
1144  if (ret) {
1145  if (ret >= 1)
1146  ret = -ENOENT;
1147  break;
1148  }
1149  continue;
1150  }
1151 
1152  btrfs_item_key_to_cpu(leaf, &found_key, slot);
1153 
1154  /*
1155  * Check that we're still looking at an extended ref key for
1156  * this particular objectid. If we have different
1157  * objectid or type then there are no more to be found
1158  * in the tree and we can exit.
1159  */
1160  ret = -ENOENT;
1161  if (found_key.objectid != inode_objectid)
1162  break;
1163  if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
1164  break;
1165 
1166  ret = 0;
1167  ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1168  extref = (struct btrfs_inode_extref *)ptr;
1169  *ret_extref = extref;
1170  if (found_off)
1171  *found_off = found_key.offset;
1172  break;
1173  }
1174 
1175  return ret;
1176 }
1177 
1178 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1179  u32 name_len, unsigned long name_off,
1180  struct extent_buffer *eb_in, u64 parent,
1181  char *dest, u32 size)
1182 {
1183  int slot;
1184  u64 next_inum;
1185  int ret;
1186  s64 bytes_left = ((s64)size) - 1;
1187  struct extent_buffer *eb = eb_in;
1188  struct btrfs_key found_key;
1189  int leave_spinning = path->leave_spinning;
1190  struct btrfs_inode_ref *iref;
1191 
1192  if (bytes_left >= 0)
1193  dest[bytes_left] = '\0';
1194 
1195  path->leave_spinning = 1;
1196  while (1) {
1197  bytes_left -= name_len;
1198  if (bytes_left >= 0)
1199  read_extent_buffer(eb, dest + bytes_left,
1200  name_off, name_len);
1201  if (eb != eb_in) {
1203  free_extent_buffer(eb);
1204  }
1205  ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1206  if (ret > 0)
1207  ret = -ENOENT;
1208  if (ret)
1209  break;
1210 
1211  next_inum = found_key.offset;
1212 
1213  /* regular exit ahead */
1214  if (parent == next_inum)
1215  break;
1216 
1217  slot = path->slots[0];
1218  eb = path->nodes[0];
1219  /* make sure we can use eb after releasing the path */
1220  if (eb != eb_in) {
1221  atomic_inc(&eb->refs);
1224  }
1225  btrfs_release_path(path);
1226  iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1227 
1228  name_len = btrfs_inode_ref_name_len(eb, iref);
1229  name_off = (unsigned long)(iref + 1);
1230 
1231  parent = next_inum;
1232  --bytes_left;
1233  if (bytes_left >= 0)
1234  dest[bytes_left] = '/';
1235  }
1236 
1237  btrfs_release_path(path);
1238  path->leave_spinning = leave_spinning;
1239 
1240  if (ret)
1241  return ERR_PTR(ret);
1242 
1243  return dest + bytes_left;
1244 }
1245 
1246 /*
1247  * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements
1248  * of the path are separated by '/' and the path is guaranteed to be
1249  * 0-terminated. the path is only given within the current file system.
1250  * Therefore, it never starts with a '/'. the caller is responsible to provide
1251  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1252  * the start point of the resulting string is returned. this pointer is within
1253  * dest, normally.
1254  * in case the path buffer would overflow, the pointer is decremented further
1255  * as if output was written to the buffer, though no more output is actually
1256  * generated. that way, the caller can determine how much space would be
1257  * required for the path to fit into the buffer. in that case, the returned
1258  * value will be smaller than dest. callers must check this!
1259  */
1260 char *btrfs_iref_to_path(struct btrfs_root *fs_root,
1261  struct btrfs_path *path,
1262  struct btrfs_inode_ref *iref,
1263  struct extent_buffer *eb_in, u64 parent,
1264  char *dest, u32 size)
1265 {
1266  return btrfs_ref_to_path(fs_root, path,
1267  btrfs_inode_ref_name_len(eb_in, iref),
1268  (unsigned long)(iref + 1),
1269  eb_in, parent, dest, size);
1270 }
1271 
1272 /*
1273  * this makes the path point to (logical EXTENT_ITEM *)
1274  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1275  * tree blocks and <0 on error.
1276  */
1277 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1278  struct btrfs_path *path, struct btrfs_key *found_key,
1279  u64 *flags_ret)
1280 {
1281  int ret;
1282  u64 flags;
1283  u32 item_size;
1284  struct extent_buffer *eb;
1285  struct btrfs_extent_item *ei;
1286  struct btrfs_key key;
1287 
1289  key.objectid = logical;
1290  key.offset = (u64)-1;
1291 
1292  ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1293  if (ret < 0)
1294  return ret;
1295  ret = btrfs_previous_item(fs_info->extent_root, path,
1297  if (ret < 0)
1298  return ret;
1299 
1300  btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1301  if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
1302  found_key->objectid > logical ||
1303  found_key->objectid + found_key->offset <= logical) {
1304  pr_debug("logical %llu is not within any extent\n",
1305  (unsigned long long)logical);
1306  return -ENOENT;
1307  }
1308 
1309  eb = path->nodes[0];
1310  item_size = btrfs_item_size_nr(eb, path->slots[0]);
1311  BUG_ON(item_size < sizeof(*ei));
1312 
1313  ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1314  flags = btrfs_extent_flags(eb, ei);
1315 
1316  pr_debug("logical %llu is at position %llu within the extent (%llu "
1317  "EXTENT_ITEM %llu) flags %#llx size %u\n",
1318  (unsigned long long)logical,
1319  (unsigned long long)(logical - found_key->objectid),
1320  (unsigned long long)found_key->objectid,
1321  (unsigned long long)found_key->offset,
1322  (unsigned long long)flags, item_size);
1323 
1324  WARN_ON(!flags_ret);
1325  if (flags_ret) {
1326  if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1327  *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1328  else if (flags & BTRFS_EXTENT_FLAG_DATA)
1329  *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1330  else
1331  BUG_ON(1);
1332  return 0;
1333  }
1334 
1335  return -EIO;
1336 }
1337 
1338 /*
1339  * helper function to iterate extent inline refs. ptr must point to a 0 value
1340  * for the first call and may be modified. it is used to track state.
1341  * if more refs exist, 0 is returned and the next call to
1342  * __get_extent_inline_ref must pass the modified ptr parameter to get the
1343  * next ref. after the last ref was processed, 1 is returned.
1344  * returns <0 on error
1345  */
1346 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1347  struct btrfs_extent_item *ei, u32 item_size,
1348  struct btrfs_extent_inline_ref **out_eiref,
1349  int *out_type)
1350 {
1351  unsigned long end;
1352  u64 flags;
1353  struct btrfs_tree_block_info *info;
1354 
1355  if (!*ptr) {
1356  /* first call */
1357  flags = btrfs_extent_flags(eb, ei);
1358  if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1359  info = (struct btrfs_tree_block_info *)(ei + 1);
1360  *out_eiref =
1361  (struct btrfs_extent_inline_ref *)(info + 1);
1362  } else {
1363  *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1364  }
1365  *ptr = (unsigned long)*out_eiref;
1366  if ((void *)*ptr >= (void *)ei + item_size)
1367  return -ENOENT;
1368  }
1369 
1370  end = (unsigned long)ei + item_size;
1371  *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1372  *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1373 
1374  *ptr += btrfs_extent_inline_ref_size(*out_type);
1375  WARN_ON(*ptr > end);
1376  if (*ptr == end)
1377  return 1; /* last */
1378 
1379  return 0;
1380 }
1381 
1382 /*
1383  * reads the tree block backref for an extent. tree level and root are returned
1384  * through out_level and out_root. ptr must point to a 0 value for the first
1385  * call and may be modified (see __get_extent_inline_ref comment).
1386  * returns 0 if data was provided, 1 if there was no more data to provide or
1387  * <0 on error.
1388  */
1389 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1390  struct btrfs_extent_item *ei, u32 item_size,
1391  u64 *out_root, u8 *out_level)
1392 {
1393  int ret;
1394  int type;
1395  struct btrfs_tree_block_info *info;
1396  struct btrfs_extent_inline_ref *eiref;
1397 
1398  if (*ptr == (unsigned long)-1)
1399  return 1;
1400 
1401  while (1) {
1402  ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1403  &eiref, &type);
1404  if (ret < 0)
1405  return ret;
1406 
1407  if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1409  break;
1410 
1411  if (ret == 1)
1412  return 1;
1413  }
1414 
1415  /* we can treat both ref types equally here */
1416  info = (struct btrfs_tree_block_info *)(ei + 1);
1417  *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1418  *out_level = btrfs_tree_block_level(eb, info);
1419 
1420  if (ret == 1)
1421  *ptr = (unsigned long)-1;
1422 
1423  return 0;
1424 }
1425 
1426 static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1427  u64 root, u64 extent_item_objectid,
1428  iterate_extent_inodes_t *iterate, void *ctx)
1429 {
1430  struct extent_inode_elem *eie;
1431  int ret = 0;
1432 
1433  for (eie = inode_list; eie; eie = eie->next) {
1434  pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1435  "root %llu\n", extent_item_objectid,
1436  eie->inum, eie->offset, root);
1437  ret = iterate(eie->inum, eie->offset, root, ctx);
1438  if (ret) {
1439  pr_debug("stopping iteration for %llu due to ret=%d\n",
1440  extent_item_objectid, ret);
1441  break;
1442  }
1443  }
1444 
1445  return ret;
1446 }
1447 
1448 /*
1449  * calls iterate() for every inode that references the extent identified by
1450  * the given parameters.
1451  * when the iterator function returns a non-zero value, iteration stops.
1452  */
1454  u64 extent_item_objectid, u64 extent_item_pos,
1455  int search_commit_root,
1456  iterate_extent_inodes_t *iterate, void *ctx)
1457 {
1458  int ret;
1459  struct list_head data_refs = LIST_HEAD_INIT(data_refs);
1460  struct list_head shared_refs = LIST_HEAD_INIT(shared_refs);
1461  struct btrfs_trans_handle *trans;
1462  struct ulist *refs = NULL;
1463  struct ulist *roots = NULL;
1464  struct ulist_node *ref_node = NULL;
1465  struct ulist_node *root_node = NULL;
1466  struct seq_list tree_mod_seq_elem = {};
1467  struct ulist_iterator ref_uiter;
1468  struct ulist_iterator root_uiter;
1469 
1470  pr_debug("resolving all inodes for extent %llu\n",
1471  extent_item_objectid);
1472 
1473  if (search_commit_root) {
1475  } else {
1476  trans = btrfs_join_transaction(fs_info->extent_root);
1477  if (IS_ERR(trans))
1478  return PTR_ERR(trans);
1479  btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1480  }
1481 
1482  ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1483  tree_mod_seq_elem.seq, &refs,
1484  &extent_item_pos);
1485  if (ret)
1486  goto out;
1487 
1488  ULIST_ITER_INIT(&ref_uiter);
1489  while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1490  ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
1491  tree_mod_seq_elem.seq, &roots);
1492  if (ret)
1493  break;
1494  ULIST_ITER_INIT(&root_uiter);
1495  while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1496  pr_debug("root %llu references leaf %llu, data list "
1497  "%#llx\n", root_node->val, ref_node->val,
1498  (long long)ref_node->aux);
1499  ret = iterate_leaf_refs((struct extent_inode_elem *)
1500  (uintptr_t)ref_node->aux,
1501  root_node->val,
1502  extent_item_objectid,
1503  iterate, ctx);
1504  }
1505  ulist_free(roots);
1506  roots = NULL;
1507  }
1508 
1509  free_leaf_list(refs);
1510  ulist_free(roots);
1511 out:
1512  if (!search_commit_root) {
1513  btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1514  btrfs_end_transaction(trans, fs_info->extent_root);
1515  }
1516 
1517  return ret;
1518 }
1519 
1520 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1521  struct btrfs_path *path,
1522  iterate_extent_inodes_t *iterate, void *ctx)
1523 {
1524  int ret;
1525  u64 extent_item_pos;
1526  u64 flags = 0;
1527  struct btrfs_key found_key;
1528  int search_commit_root = path->search_commit_root;
1529 
1530  ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1531  btrfs_release_path(path);
1532  if (ret < 0)
1533  return ret;
1534  if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1535  return -EINVAL;
1536 
1537  extent_item_pos = logical - found_key.objectid;
1538  ret = iterate_extent_inodes(fs_info, found_key.objectid,
1539  extent_item_pos, search_commit_root,
1540  iterate, ctx);
1541 
1542  return ret;
1543 }
1544 
1545 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1546  struct extent_buffer *eb, void *ctx);
1547 
1548 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1549  struct btrfs_path *path,
1550  iterate_irefs_t *iterate, void *ctx)
1551 {
1552  int ret = 0;
1553  int slot;
1554  u32 cur;
1555  u32 len;
1556  u32 name_len;
1557  u64 parent = 0;
1558  int found = 0;
1559  struct extent_buffer *eb;
1560  struct btrfs_item *item;
1561  struct btrfs_inode_ref *iref;
1562  struct btrfs_key found_key;
1563 
1564  while (!ret) {
1565  path->leave_spinning = 1;
1566  ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1567  &found_key);
1568  if (ret < 0)
1569  break;
1570  if (ret) {
1571  ret = found ? 0 : -ENOENT;
1572  break;
1573  }
1574  ++found;
1575 
1576  parent = found_key.offset;
1577  slot = path->slots[0];
1578  eb = path->nodes[0];
1579  /* make sure we can use eb after releasing the path */
1580  atomic_inc(&eb->refs);
1583  btrfs_release_path(path);
1584 
1585  item = btrfs_item_nr(eb, slot);
1586  iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1587 
1588  for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1589  name_len = btrfs_inode_ref_name_len(eb, iref);
1590  /* path must be released before calling iterate()! */
1591  pr_debug("following ref at offset %u for inode %llu in "
1592  "tree %llu\n", cur,
1593  (unsigned long long)found_key.objectid,
1594  (unsigned long long)fs_root->objectid);
1595  ret = iterate(parent, name_len,
1596  (unsigned long)(iref + 1), eb, ctx);
1597  if (ret)
1598  break;
1599  len = sizeof(*iref) + name_len;
1600  iref = (struct btrfs_inode_ref *)((char *)iref + len);
1601  }
1603  free_extent_buffer(eb);
1604  }
1605 
1606  btrfs_release_path(path);
1607 
1608  return ret;
1609 }
1610 
1611 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1612  struct btrfs_path *path,
1613  iterate_irefs_t *iterate, void *ctx)
1614 {
1615  int ret;
1616  int slot;
1617  u64 offset = 0;
1618  u64 parent;
1619  int found = 0;
1620  struct extent_buffer *eb;
1621  struct btrfs_inode_extref *extref;
1622  struct extent_buffer *leaf;
1623  u32 item_size;
1624  u32 cur_offset;
1625  unsigned long ptr;
1626 
1627  while (1) {
1628  ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1629  &offset);
1630  if (ret < 0)
1631  break;
1632  if (ret) {
1633  ret = found ? 0 : -ENOENT;
1634  break;
1635  }
1636  ++found;
1637 
1638  slot = path->slots[0];
1639  eb = path->nodes[0];
1640  /* make sure we can use eb after releasing the path */
1641  atomic_inc(&eb->refs);
1642 
1645  btrfs_release_path(path);
1646 
1647  leaf = path->nodes[0];
1648  item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1649  ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1650  cur_offset = 0;
1651 
1652  while (cur_offset < item_size) {
1653  u32 name_len;
1654 
1655  extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1656  parent = btrfs_inode_extref_parent(eb, extref);
1657  name_len = btrfs_inode_extref_name_len(eb, extref);
1658  ret = iterate(parent, name_len,
1659  (unsigned long)&extref->name, eb, ctx);
1660  if (ret)
1661  break;
1662 
1663  cur_offset += btrfs_inode_extref_name_len(leaf, extref);
1664  cur_offset += sizeof(*extref);
1665  }
1667  free_extent_buffer(eb);
1668 
1669  offset++;
1670  }
1671 
1672  btrfs_release_path(path);
1673 
1674  return ret;
1675 }
1676 
1677 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1678  struct btrfs_path *path, iterate_irefs_t *iterate,
1679  void *ctx)
1680 {
1681  int ret;
1682  int found_refs = 0;
1683 
1684  ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1685  if (!ret)
1686  ++found_refs;
1687  else if (ret != -ENOENT)
1688  return ret;
1689 
1690  ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1691  if (ret == -ENOENT && found_refs)
1692  return 0;
1693 
1694  return ret;
1695 }
1696 
1697 /*
1698  * returns 0 if the path could be dumped (probably truncated)
1699  * returns <0 in case of an error
1700  */
1701 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1702  struct extent_buffer *eb, void *ctx)
1703 {
1704  struct inode_fs_paths *ipath = ctx;
1705  char *fspath;
1706  char *fspath_min;
1707  int i = ipath->fspath->elem_cnt;
1708  const int s_ptr = sizeof(char *);
1709  u32 bytes_left;
1710 
1711  bytes_left = ipath->fspath->bytes_left > s_ptr ?
1712  ipath->fspath->bytes_left - s_ptr : 0;
1713 
1714  fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1715  fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1716  name_off, eb, inum, fspath_min, bytes_left);
1717  if (IS_ERR(fspath))
1718  return PTR_ERR(fspath);
1719 
1720  if (fspath > fspath_min) {
1721  ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1722  ++ipath->fspath->elem_cnt;
1723  ipath->fspath->bytes_left = fspath - fspath_min;
1724  } else {
1725  ++ipath->fspath->elem_missed;
1726  ipath->fspath->bytes_missing += fspath_min - fspath;
1727  ipath->fspath->bytes_left = 0;
1728  }
1729 
1730  return 0;
1731 }
1732 
1733 /*
1734  * this dumps all file system paths to the inode into the ipath struct, provided
1735  * is has been created large enough. each path is zero-terminated and accessed
1736  * from ipath->fspath->val[i].
1737  * when it returns, there are ipath->fspath->elem_cnt number of paths available
1738  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1739  * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1740  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1741  * have been needed to return all paths.
1742  */
1743 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1744 {
1745  return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1746  inode_to_path, ipath);
1747 }
1748 
1750 {
1751  struct btrfs_data_container *data;
1752  size_t alloc_bytes;
1753 
1754  alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1755  data = vmalloc(alloc_bytes);
1756  if (!data)
1757  return ERR_PTR(-ENOMEM);
1758 
1759  if (total_bytes >= sizeof(*data)) {
1760  data->bytes_left = total_bytes - sizeof(*data);
1761  data->bytes_missing = 0;
1762  } else {
1763  data->bytes_missing = sizeof(*data) - total_bytes;
1764  data->bytes_left = 0;
1765  }
1766 
1767  data->elem_cnt = 0;
1768  data->elem_missed = 0;
1769 
1770  return data;
1771 }
1772 
1773 /*
1774  * allocates space to return multiple file system paths for an inode.
1775  * total_bytes to allocate are passed, note that space usable for actual path
1776  * information will be total_bytes - sizeof(struct inode_fs_paths).
1777  * the returned pointer must be freed with free_ipath() in the end.
1778  */
1780  struct btrfs_path *path)
1781 {
1782  struct inode_fs_paths *ifp;
1783  struct btrfs_data_container *fspath;
1784 
1785  fspath = init_data_container(total_bytes);
1786  if (IS_ERR(fspath))
1787  return (void *)fspath;
1788 
1789  ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1790  if (!ifp) {
1791  kfree(fspath);
1792  return ERR_PTR(-ENOMEM);
1793  }
1794 
1795  ifp->btrfs_path = path;
1796  ifp->fspath = fspath;
1797  ifp->fs_root = fs_root;
1798 
1799  return ifp;
1800 }
1801 
1802 void free_ipath(struct inode_fs_paths *ipath)
1803 {
1804  if (!ipath)
1805  return;
1806  vfree(ipath->fspath);
1807  kfree(ipath);
1808 }