Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
bch.c
Go to the documentation of this file.
1 /*
2  * Generic binary BCH encoding/decoding library
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License version 2 as published by
6  * the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 51
15  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
16  *
17  * Copyright © 2011 Parrot S.A.
18  *
19  * Author: Ivan Djelic <[email protected]>
20  *
21  * Description:
22  *
23  * This library provides runtime configurable encoding/decoding of binary
24  * Bose-Chaudhuri-Hocquenghem (BCH) codes.
25  *
26  * Call init_bch to get a pointer to a newly allocated bch_control structure for
27  * the given m (Galois field order), t (error correction capability) and
28  * (optional) primitive polynomial parameters.
29  *
30  * Call encode_bch to compute and store ecc parity bytes to a given buffer.
31  * Call decode_bch to detect and locate errors in received data.
32  *
33  * On systems supporting hw BCH features, intermediate results may be provided
34  * to decode_bch in order to skip certain steps. See decode_bch() documentation
35  * for details.
36  *
37  * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of
38  * parameters m and t; thus allowing extra compiler optimizations and providing
39  * better (up to 2x) encoding performance. Using this option makes sense when
40  * (m,t) are fixed and known in advance, e.g. when using BCH error correction
41  * on a particular NAND flash device.
42  *
43  * Algorithmic details:
44  *
45  * Encoding is performed by processing 32 input bits in parallel, using 4
46  * remainder lookup tables.
47  *
48  * The final stage of decoding involves the following internal steps:
49  * a. Syndrome computation
50  * b. Error locator polynomial computation using Berlekamp-Massey algorithm
51  * c. Error locator root finding (by far the most expensive step)
52  *
53  * In this implementation, step c is not performed using the usual Chien search.
54  * Instead, an alternative approach described in [1] is used. It consists in
55  * factoring the error locator polynomial using the Berlekamp Trace algorithm
56  * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial
57  * solving techniques [2] are used. The resulting algorithm, called BTZ, yields
58  * much better performance than Chien search for usual (m,t) values (typically
59  * m >= 13, t < 32, see [1]).
60  *
61  * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields
62  * of characteristic 2, in: Western European Workshop on Research in Cryptology
63  * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear.
64  * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over
65  * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996.
66  */
67 
68 #include <linux/kernel.h>
69 #include <linux/errno.h>
70 #include <linux/init.h>
71 #include <linux/module.h>
72 #include <linux/slab.h>
73 #include <linux/bitops.h>
74 #include <asm/byteorder.h>
75 #include <linux/bch.h>
76 
77 #if defined(CONFIG_BCH_CONST_PARAMS)
78 #define GF_M(_p) (CONFIG_BCH_CONST_M)
79 #define GF_T(_p) (CONFIG_BCH_CONST_T)
80 #define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1)
81 #else
82 #define GF_M(_p) ((_p)->m)
83 #define GF_T(_p) ((_p)->t)
84 #define GF_N(_p) ((_p)->n)
85 #endif
86 
87 #define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
88 #define BCH_ECC_BYTES(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
89 
90 #ifndef dbg
91 #define dbg(_fmt, args...) do {} while (0)
92 #endif
93 
94 /*
95  * represent a polynomial over GF(2^m)
96  */
97 struct gf_poly {
98  unsigned int deg; /* polynomial degree */
99  unsigned int c[0]; /* polynomial terms */
100 };
101 
102 /* given its degree, compute a polynomial size in bytes */
103 #define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
104 
105 /* polynomial of degree 1 */
106 struct gf_poly_deg1 {
107  struct gf_poly poly;
108  unsigned int c[2];
109 };
110 
111 /*
112  * same as encode_bch(), but process input data one byte at a time
113  */
114 static void encode_bch_unaligned(struct bch_control *bch,
115  const unsigned char *data, unsigned int len,
116  uint32_t *ecc)
117 {
118  int i;
119  const uint32_t *p;
120  const int l = BCH_ECC_WORDS(bch)-1;
121 
122  while (len--) {
123  p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff);
124 
125  for (i = 0; i < l; i++)
126  ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
127 
128  ecc[l] = (ecc[l] << 8)^(*p);
129  }
130 }
131 
132 /*
133  * convert ecc bytes to aligned, zero-padded 32-bit ecc words
134  */
135 static void load_ecc8(struct bch_control *bch, uint32_t *dst,
136  const uint8_t *src)
137 {
138  uint8_t pad[4] = {0, 0, 0, 0};
139  unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
140 
141  for (i = 0; i < nwords; i++, src += 4)
142  dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3];
143 
144  memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
145  dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3];
146 }
147 
148 /*
149  * convert 32-bit ecc words to ecc bytes
150  */
151 static void store_ecc8(struct bch_control *bch, uint8_t *dst,
152  const uint32_t *src)
153 {
154  uint8_t pad[4];
155  unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
156 
157  for (i = 0; i < nwords; i++) {
158  *dst++ = (src[i] >> 24);
159  *dst++ = (src[i] >> 16) & 0xff;
160  *dst++ = (src[i] >> 8) & 0xff;
161  *dst++ = (src[i] >> 0) & 0xff;
162  }
163  pad[0] = (src[nwords] >> 24);
164  pad[1] = (src[nwords] >> 16) & 0xff;
165  pad[2] = (src[nwords] >> 8) & 0xff;
166  pad[3] = (src[nwords] >> 0) & 0xff;
167  memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
168 }
169 
184 void encode_bch(struct bch_control *bch, const uint8_t *data,
185  unsigned int len, uint8_t *ecc)
186 {
187  const unsigned int l = BCH_ECC_WORDS(bch)-1;
188  unsigned int i, mlen;
189  unsigned long m;
190  uint32_t w, r[l+1];
191  const uint32_t * const tab0 = bch->mod8_tab;
192  const uint32_t * const tab1 = tab0 + 256*(l+1);
193  const uint32_t * const tab2 = tab1 + 256*(l+1);
194  const uint32_t * const tab3 = tab2 + 256*(l+1);
195  const uint32_t *pdata, *p0, *p1, *p2, *p3;
196 
197  if (ecc) {
198  /* load ecc parity bytes into internal 32-bit buffer */
199  load_ecc8(bch, bch->ecc_buf, ecc);
200  } else {
201  memset(bch->ecc_buf, 0, sizeof(r));
202  }
203 
204  /* process first unaligned data bytes */
205  m = ((unsigned long)data) & 3;
206  if (m) {
207  mlen = (len < (4-m)) ? len : 4-m;
208  encode_bch_unaligned(bch, data, mlen, bch->ecc_buf);
209  data += mlen;
210  len -= mlen;
211  }
212 
213  /* process 32-bit aligned data words */
214  pdata = (uint32_t *)data;
215  mlen = len/4;
216  data += 4*mlen;
217  len -= 4*mlen;
218  memcpy(r, bch->ecc_buf, sizeof(r));
219 
220  /*
221  * split each 32-bit word into 4 polynomials of weight 8 as follows:
222  *
223  * 31 ...24 23 ...16 15 ... 8 7 ... 0
224  * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt
225  * tttttttt mod g = r0 (precomputed)
226  * zzzzzzzz 00000000 mod g = r1 (precomputed)
227  * yyyyyyyy 00000000 00000000 mod g = r2 (precomputed)
228  * xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed)
229  * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3
230  */
231  while (mlen--) {
232  /* input data is read in big-endian format */
233  w = r[0]^cpu_to_be32(*pdata++);
234  p0 = tab0 + (l+1)*((w >> 0) & 0xff);
235  p1 = tab1 + (l+1)*((w >> 8) & 0xff);
236  p2 = tab2 + (l+1)*((w >> 16) & 0xff);
237  p3 = tab3 + (l+1)*((w >> 24) & 0xff);
238 
239  for (i = 0; i < l; i++)
240  r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
241 
242  r[l] = p0[l]^p1[l]^p2[l]^p3[l];
243  }
244  memcpy(bch->ecc_buf, r, sizeof(r));
245 
246  /* process last unaligned bytes */
247  if (len)
248  encode_bch_unaligned(bch, data, len, bch->ecc_buf);
249 
250  /* store ecc parity bytes into original parity buffer */
251  if (ecc)
252  store_ecc8(bch, ecc, bch->ecc_buf);
253 }
255 
256 static inline int modulo(struct bch_control *bch, unsigned int v)
257 {
258  const unsigned int n = GF_N(bch);
259  while (v >= n) {
260  v -= n;
261  v = (v & n) + (v >> GF_M(bch));
262  }
263  return v;
264 }
265 
266 /*
267  * shorter and faster modulo function, only works when v < 2N.
268  */
269 static inline int mod_s(struct bch_control *bch, unsigned int v)
270 {
271  const unsigned int n = GF_N(bch);
272  return (v < n) ? v : v-n;
273 }
274 
275 static inline int deg(unsigned int poly)
276 {
277  /* polynomial degree is the most-significant bit index */
278  return fls(poly)-1;
279 }
280 
281 static inline int parity(unsigned int x)
282 {
283  /*
284  * public domain code snippet, lifted from
285  * http://www-graphics.stanford.edu/~seander/bithacks.html
286  */
287  x ^= x >> 1;
288  x ^= x >> 2;
289  x = (x & 0x11111111U) * 0x11111111U;
290  return (x >> 28) & 1;
291 }
292 
293 /* Galois field basic operations: multiply, divide, inverse, etc. */
294 
295 static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
296  unsigned int b)
297 {
298  return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
299  bch->a_log_tab[b])] : 0;
300 }
301 
302 static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a)
303 {
304  return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
305 }
306 
307 static inline unsigned int gf_div(struct bch_control *bch, unsigned int a,
308  unsigned int b)
309 {
310  return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
311  GF_N(bch)-bch->a_log_tab[b])] : 0;
312 }
313 
314 static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a)
315 {
316  return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]];
317 }
318 
319 static inline unsigned int a_pow(struct bch_control *bch, int i)
320 {
321  return bch->a_pow_tab[modulo(bch, i)];
322 }
323 
324 static inline int a_log(struct bch_control *bch, unsigned int x)
325 {
326  return bch->a_log_tab[x];
327 }
328 
329 static inline int a_ilog(struct bch_control *bch, unsigned int x)
330 {
331  return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]);
332 }
333 
334 /*
335  * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t
336  */
337 static void compute_syndromes(struct bch_control *bch, uint32_t *ecc,
338  unsigned int *syn)
339 {
340  int i, j, s;
341  unsigned int m;
342  uint32_t poly;
343  const int t = GF_T(bch);
344 
345  s = bch->ecc_bits;
346 
347  /* make sure extra bits in last ecc word are cleared */
348  m = ((unsigned int)s) & 31;
349  if (m)
350  ecc[s/32] &= ~((1u << (32-m))-1);
351  memset(syn, 0, 2*t*sizeof(*syn));
352 
353  /* compute v(a^j) for j=1 .. 2t-1 */
354  do {
355  poly = *ecc++;
356  s -= 32;
357  while (poly) {
358  i = deg(poly);
359  for (j = 0; j < 2*t; j += 2)
360  syn[j] ^= a_pow(bch, (j+1)*(i+s));
361 
362  poly ^= (1 << i);
363  }
364  } while (s > 0);
365 
366  /* v(a^(2j)) = v(a^j)^2 */
367  for (j = 0; j < t; j++)
368  syn[2*j+1] = gf_sqr(bch, syn[j]);
369 }
370 
371 static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src)
372 {
373  memcpy(dst, src, GF_POLY_SZ(src->deg));
374 }
375 
376 static int compute_error_locator_polynomial(struct bch_control *bch,
377  const unsigned int *syn)
378 {
379  const unsigned int t = GF_T(bch);
380  const unsigned int n = GF_N(bch);
381  unsigned int i, j, tmp, l, pd = 1, d = syn[0];
382  struct gf_poly *elp = bch->elp;
383  struct gf_poly *pelp = bch->poly_2t[0];
384  struct gf_poly *elp_copy = bch->poly_2t[1];
385  int k, pp = -1;
386 
387  memset(pelp, 0, GF_POLY_SZ(2*t));
388  memset(elp, 0, GF_POLY_SZ(2*t));
389 
390  pelp->deg = 0;
391  pelp->c[0] = 1;
392  elp->deg = 0;
393  elp->c[0] = 1;
394 
395  /* use simplified binary Berlekamp-Massey algorithm */
396  for (i = 0; (i < t) && (elp->deg <= t); i++) {
397  if (d) {
398  k = 2*i-pp;
399  gf_poly_copy(elp_copy, elp);
400  /* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */
401  tmp = a_log(bch, d)+n-a_log(bch, pd);
402  for (j = 0; j <= pelp->deg; j++) {
403  if (pelp->c[j]) {
404  l = a_log(bch, pelp->c[j]);
405  elp->c[j+k] ^= a_pow(bch, tmp+l);
406  }
407  }
408  /* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */
409  tmp = pelp->deg+k;
410  if (tmp > elp->deg) {
411  elp->deg = tmp;
412  gf_poly_copy(pelp, elp_copy);
413  pd = d;
414  pp = 2*i;
415  }
416  }
417  /* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */
418  if (i < t-1) {
419  d = syn[2*i+2];
420  for (j = 1; j <= elp->deg; j++)
421  d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]);
422  }
423  }
424  dbg("elp=%s\n", gf_poly_str(elp));
425  return (elp->deg > t) ? -1 : (int)elp->deg;
426 }
427 
428 /*
429  * solve a m x m linear system in GF(2) with an expected number of solutions,
430  * and return the number of found solutions
431  */
432 static int solve_linear_system(struct bch_control *bch, unsigned int *rows,
433  unsigned int *sol, int nsol)
434 {
435  const int m = GF_M(bch);
436  unsigned int tmp, mask;
437  int rem, c, r, p, k, param[m];
438 
439  k = 0;
440  mask = 1 << m;
441 
442  /* Gaussian elimination */
443  for (c = 0; c < m; c++) {
444  rem = 0;
445  p = c-k;
446  /* find suitable row for elimination */
447  for (r = p; r < m; r++) {
448  if (rows[r] & mask) {
449  if (r != p) {
450  tmp = rows[r];
451  rows[r] = rows[p];
452  rows[p] = tmp;
453  }
454  rem = r+1;
455  break;
456  }
457  }
458  if (rem) {
459  /* perform elimination on remaining rows */
460  tmp = rows[p];
461  for (r = rem; r < m; r++) {
462  if (rows[r] & mask)
463  rows[r] ^= tmp;
464  }
465  } else {
466  /* elimination not needed, store defective row index */
467  param[k++] = c;
468  }
469  mask >>= 1;
470  }
471  /* rewrite system, inserting fake parameter rows */
472  if (k > 0) {
473  p = k;
474  for (r = m-1; r >= 0; r--) {
475  if ((r > m-1-k) && rows[r])
476  /* system has no solution */
477  return 0;
478 
479  rows[r] = (p && (r == param[p-1])) ?
480  p--, 1u << (m-r) : rows[r-p];
481  }
482  }
483 
484  if (nsol != (1 << k))
485  /* unexpected number of solutions */
486  return 0;
487 
488  for (p = 0; p < nsol; p++) {
489  /* set parameters for p-th solution */
490  for (c = 0; c < k; c++)
491  rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1);
492 
493  /* compute unique solution */
494  tmp = 0;
495  for (r = m-1; r >= 0; r--) {
496  mask = rows[r] & (tmp|1);
497  tmp |= parity(mask) << (m-r);
498  }
499  sol[p] = tmp >> 1;
500  }
501  return nsol;
502 }
503 
504 /*
505  * this function builds and solves a linear system for finding roots of a degree
506  * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m).
507  */
508 static int find_affine4_roots(struct bch_control *bch, unsigned int a,
509  unsigned int b, unsigned int c,
510  unsigned int *roots)
511 {
512  int i, j, k;
513  const int m = GF_M(bch);
514  unsigned int mask = 0xff, t, rows[16] = {0,};
515 
516  j = a_log(bch, b);
517  k = a_log(bch, a);
518  rows[0] = c;
519 
520  /* buid linear system to solve X^4+aX^2+bX+c = 0 */
521  for (i = 0; i < m; i++) {
522  rows[i+1] = bch->a_pow_tab[4*i]^
523  (a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^
524  (b ? bch->a_pow_tab[mod_s(bch, j)] : 0);
525  j++;
526  k += 2;
527  }
528  /*
529  * transpose 16x16 matrix before passing it to linear solver
530  * warning: this code assumes m < 16
531  */
532  for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) {
533  for (k = 0; k < 16; k = (k+j+1) & ~j) {
534  t = ((rows[k] >> j)^rows[k+j]) & mask;
535  rows[k] ^= (t << j);
536  rows[k+j] ^= t;
537  }
538  }
539  return solve_linear_system(bch, rows, roots, 4);
540 }
541 
542 /*
543  * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r))
544  */
545 static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly,
546  unsigned int *roots)
547 {
548  int n = 0;
549 
550  if (poly->c[0])
551  /* poly[X] = bX+c with c!=0, root=c/b */
552  roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+
553  bch->a_log_tab[poly->c[1]]);
554  return n;
555 }
556 
557 /*
558  * compute roots of a degree 2 polynomial over GF(2^m)
559  */
560 static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly,
561  unsigned int *roots)
562 {
563  int n = 0, i, l0, l1, l2;
564  unsigned int u, v, r;
565 
566  if (poly->c[0] && poly->c[1]) {
567 
568  l0 = bch->a_log_tab[poly->c[0]];
569  l1 = bch->a_log_tab[poly->c[1]];
570  l2 = bch->a_log_tab[poly->c[2]];
571 
572  /* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */
573  u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1));
574  /*
575  * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi):
576  * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) =
577  * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u)
578  * i.e. r and r+1 are roots iff Tr(u)=0
579  */
580  r = 0;
581  v = u;
582  while (v) {
583  i = deg(v);
584  r ^= bch->xi_tab[i];
585  v ^= (1 << i);
586  }
587  /* verify root */
588  if ((gf_sqr(bch, r)^r) == u) {
589  /* reverse z=a/bX transformation and compute log(1/r) */
590  roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
591  bch->a_log_tab[r]+l2);
592  roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
593  bch->a_log_tab[r^1]+l2);
594  }
595  }
596  return n;
597 }
598 
599 /*
600  * compute roots of a degree 3 polynomial over GF(2^m)
601  */
602 static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly,
603  unsigned int *roots)
604 {
605  int i, n = 0;
606  unsigned int a, b, c, a2, b2, c2, e3, tmp[4];
607 
608  if (poly->c[0]) {
609  /* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */
610  e3 = poly->c[3];
611  c2 = gf_div(bch, poly->c[0], e3);
612  b2 = gf_div(bch, poly->c[1], e3);
613  a2 = gf_div(bch, poly->c[2], e3);
614 
615  /* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */
616  c = gf_mul(bch, a2, c2); /* c = a2c2 */
617  b = gf_mul(bch, a2, b2)^c2; /* b = a2b2 + c2 */
618  a = gf_sqr(bch, a2)^b2; /* a = a2^2 + b2 */
619 
620  /* find the 4 roots of this affine polynomial */
621  if (find_affine4_roots(bch, a, b, c, tmp) == 4) {
622  /* remove a2 from final list of roots */
623  for (i = 0; i < 4; i++) {
624  if (tmp[i] != a2)
625  roots[n++] = a_ilog(bch, tmp[i]);
626  }
627  }
628  }
629  return n;
630 }
631 
632 /*
633  * compute roots of a degree 4 polynomial over GF(2^m)
634  */
635 static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly,
636  unsigned int *roots)
637 {
638  int i, l, n = 0;
639  unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4;
640 
641  if (poly->c[0] == 0)
642  return 0;
643 
644  /* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */
645  e4 = poly->c[4];
646  d = gf_div(bch, poly->c[0], e4);
647  c = gf_div(bch, poly->c[1], e4);
648  b = gf_div(bch, poly->c[2], e4);
649  a = gf_div(bch, poly->c[3], e4);
650 
651  /* use Y=1/X transformation to get an affine polynomial */
652  if (a) {
653  /* first, eliminate cX by using z=X+e with ae^2+c=0 */
654  if (c) {
655  /* compute e such that e^2 = c/a */
656  f = gf_div(bch, c, a);
657  l = a_log(bch, f);
658  l += (l & 1) ? GF_N(bch) : 0;
659  e = a_pow(bch, l/2);
660  /*
661  * use transformation z=X+e:
662  * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d
663  * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d
664  * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d
665  * z^4 + az^3 + b'z^2 + d'
666  */
667  d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d;
668  b = gf_mul(bch, a, e)^b;
669  }
670  /* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */
671  if (d == 0)
672  /* assume all roots have multiplicity 1 */
673  return 0;
674 
675  c2 = gf_inv(bch, d);
676  b2 = gf_div(bch, a, d);
677  a2 = gf_div(bch, b, d);
678  } else {
679  /* polynomial is already affine */
680  c2 = d;
681  b2 = c;
682  a2 = b;
683  }
684  /* find the 4 roots of this affine polynomial */
685  if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) {
686  for (i = 0; i < 4; i++) {
687  /* post-process roots (reverse transformations) */
688  f = a ? gf_inv(bch, roots[i]) : roots[i];
689  roots[i] = a_ilog(bch, f^e);
690  }
691  n = 4;
692  }
693  return n;
694 }
695 
696 /*
697  * build monic, log-based representation of a polynomial
698  */
699 static void gf_poly_logrep(struct bch_control *bch,
700  const struct gf_poly *a, int *rep)
701 {
702  int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]);
703 
704  /* represent 0 values with -1; warning, rep[d] is not set to 1 */
705  for (i = 0; i < d; i++)
706  rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1;
707 }
708 
709 /*
710  * compute polynomial Euclidean division remainder in GF(2^m)[X]
711  */
712 static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a,
713  const struct gf_poly *b, int *rep)
714 {
715  int la, p, m;
716  unsigned int i, j, *c = a->c;
717  const unsigned int d = b->deg;
718 
719  if (a->deg < d)
720  return;
721 
722  /* reuse or compute log representation of denominator */
723  if (!rep) {
724  rep = bch->cache;
725  gf_poly_logrep(bch, b, rep);
726  }
727 
728  for (j = a->deg; j >= d; j--) {
729  if (c[j]) {
730  la = a_log(bch, c[j]);
731  p = j-d;
732  for (i = 0; i < d; i++, p++) {
733  m = rep[i];
734  if (m >= 0)
735  c[p] ^= bch->a_pow_tab[mod_s(bch,
736  m+la)];
737  }
738  }
739  }
740  a->deg = d-1;
741  while (!c[a->deg] && a->deg)
742  a->deg--;
743 }
744 
745 /*
746  * compute polynomial Euclidean division quotient in GF(2^m)[X]
747  */
748 static void gf_poly_div(struct bch_control *bch, struct gf_poly *a,
749  const struct gf_poly *b, struct gf_poly *q)
750 {
751  if (a->deg >= b->deg) {
752  q->deg = a->deg-b->deg;
753  /* compute a mod b (modifies a) */
754  gf_poly_mod(bch, a, b, NULL);
755  /* quotient is stored in upper part of polynomial a */
756  memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int));
757  } else {
758  q->deg = 0;
759  q->c[0] = 0;
760  }
761 }
762 
763 /*
764  * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X]
765  */
766 static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a,
767  struct gf_poly *b)
768 {
769  struct gf_poly *tmp;
770 
771  dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b));
772 
773  if (a->deg < b->deg) {
774  tmp = b;
775  b = a;
776  a = tmp;
777  }
778 
779  while (b->deg > 0) {
780  gf_poly_mod(bch, a, b, NULL);
781  tmp = b;
782  b = a;
783  a = tmp;
784  }
785 
786  dbg("%s\n", gf_poly_str(a));
787 
788  return a;
789 }
790 
791 /*
792  * Given a polynomial f and an integer k, compute Tr(a^kX) mod f
793  * This is used in Berlekamp Trace algorithm for splitting polynomials
794  */
795 static void compute_trace_bk_mod(struct bch_control *bch, int k,
796  const struct gf_poly *f, struct gf_poly *z,
797  struct gf_poly *out)
798 {
799  const int m = GF_M(bch);
800  int i, j;
801 
802  /* z contains z^2j mod f */
803  z->deg = 1;
804  z->c[0] = 0;
805  z->c[1] = bch->a_pow_tab[k];
806 
807  out->deg = 0;
808  memset(out, 0, GF_POLY_SZ(f->deg));
809 
810  /* compute f log representation only once */
811  gf_poly_logrep(bch, f, bch->cache);
812 
813  for (i = 0; i < m; i++) {
814  /* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */
815  for (j = z->deg; j >= 0; j--) {
816  out->c[j] ^= z->c[j];
817  z->c[2*j] = gf_sqr(bch, z->c[j]);
818  z->c[2*j+1] = 0;
819  }
820  if (z->deg > out->deg)
821  out->deg = z->deg;
822 
823  if (i < m-1) {
824  z->deg *= 2;
825  /* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */
826  gf_poly_mod(bch, z, f, bch->cache);
827  }
828  }
829  while (!out->c[out->deg] && out->deg)
830  out->deg--;
831 
832  dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out));
833 }
834 
835 /*
836  * factor a polynomial using Berlekamp Trace algorithm (BTA)
837  */
838 static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f,
839  struct gf_poly **g, struct gf_poly **h)
840 {
841  struct gf_poly *f2 = bch->poly_2t[0];
842  struct gf_poly *q = bch->poly_2t[1];
843  struct gf_poly *tk = bch->poly_2t[2];
844  struct gf_poly *z = bch->poly_2t[3];
845  struct gf_poly *gcd;
846 
847  dbg("factoring %s...\n", gf_poly_str(f));
848 
849  *g = f;
850  *h = NULL;
851 
852  /* tk = Tr(a^k.X) mod f */
853  compute_trace_bk_mod(bch, k, f, z, tk);
854 
855  if (tk->deg > 0) {
856  /* compute g = gcd(f, tk) (destructive operation) */
857  gf_poly_copy(f2, f);
858  gcd = gf_poly_gcd(bch, f2, tk);
859  if (gcd->deg < f->deg) {
860  /* compute h=f/gcd(f,tk); this will modify f and q */
861  gf_poly_div(bch, f, gcd, q);
862  /* store g and h in-place (clobbering f) */
863  *h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly;
864  gf_poly_copy(*g, gcd);
865  gf_poly_copy(*h, q);
866  }
867  }
868 }
869 
870 /*
871  * find roots of a polynomial, using BTZ algorithm; see the beginning of this
872  * file for details
873  */
874 static int find_poly_roots(struct bch_control *bch, unsigned int k,
875  struct gf_poly *poly, unsigned int *roots)
876 {
877  int cnt;
878  struct gf_poly *f1, *f2;
879 
880  switch (poly->deg) {
881  /* handle low degree polynomials with ad hoc techniques */
882  case 1:
883  cnt = find_poly_deg1_roots(bch, poly, roots);
884  break;
885  case 2:
886  cnt = find_poly_deg2_roots(bch, poly, roots);
887  break;
888  case 3:
889  cnt = find_poly_deg3_roots(bch, poly, roots);
890  break;
891  case 4:
892  cnt = find_poly_deg4_roots(bch, poly, roots);
893  break;
894  default:
895  /* factor polynomial using Berlekamp Trace Algorithm (BTA) */
896  cnt = 0;
897  if (poly->deg && (k <= GF_M(bch))) {
898  factor_polynomial(bch, k, poly, &f1, &f2);
899  if (f1)
900  cnt += find_poly_roots(bch, k+1, f1, roots);
901  if (f2)
902  cnt += find_poly_roots(bch, k+1, f2, roots+cnt);
903  }
904  break;
905  }
906  return cnt;
907 }
908 
909 #if defined(USE_CHIEN_SEARCH)
910 /*
911  * exhaustive root search (Chien) implementation - not used, included only for
912  * reference/comparison tests
913  */
914 static int chien_search(struct bch_control *bch, unsigned int len,
915  struct gf_poly *p, unsigned int *roots)
916 {
917  int m;
918  unsigned int i, j, syn, syn0, count = 0;
919  const unsigned int k = 8*len+bch->ecc_bits;
920 
921  /* use a log-based representation of polynomial */
922  gf_poly_logrep(bch, p, bch->cache);
923  bch->cache[p->deg] = 0;
924  syn0 = gf_div(bch, p->c[0], p->c[p->deg]);
925 
926  for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) {
927  /* compute elp(a^i) */
928  for (j = 1, syn = syn0; j <= p->deg; j++) {
929  m = bch->cache[j];
930  if (m >= 0)
931  syn ^= a_pow(bch, m+j*i);
932  }
933  if (syn == 0) {
934  roots[count++] = GF_N(bch)-i;
935  if (count == p->deg)
936  break;
937  }
938  }
939  return (count == p->deg) ? count : 0;
940 }
941 #define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc)
942 #endif /* USE_CHIEN_SEARCH */
943 
986 int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len,
987  const uint8_t *recv_ecc, const uint8_t *calc_ecc,
988  const unsigned int *syn, unsigned int *errloc)
989 {
990  const unsigned int ecc_words = BCH_ECC_WORDS(bch);
991  unsigned int nbits;
992  int i, err, nroots;
993  uint32_t sum;
994 
995  /* sanity check: make sure data length can be handled */
996  if (8*len > (bch->n-bch->ecc_bits))
997  return -EINVAL;
998 
999  /* if caller does not provide syndromes, compute them */
1000  if (!syn) {
1001  if (!calc_ecc) {
1002  /* compute received data ecc into an internal buffer */
1003  if (!data || !recv_ecc)
1004  return -EINVAL;
1005  encode_bch(bch, data, len, NULL);
1006  } else {
1007  /* load provided calculated ecc */
1008  load_ecc8(bch, bch->ecc_buf, calc_ecc);
1009  }
1010  /* load received ecc or assume it was XORed in calc_ecc */
1011  if (recv_ecc) {
1012  load_ecc8(bch, bch->ecc_buf2, recv_ecc);
1013  /* XOR received and calculated ecc */
1014  for (i = 0, sum = 0; i < (int)ecc_words; i++) {
1015  bch->ecc_buf[i] ^= bch->ecc_buf2[i];
1016  sum |= bch->ecc_buf[i];
1017  }
1018  if (!sum)
1019  /* no error found */
1020  return 0;
1021  }
1022  compute_syndromes(bch, bch->ecc_buf, bch->syn);
1023  syn = bch->syn;
1024  }
1025 
1026  err = compute_error_locator_polynomial(bch, syn);
1027  if (err > 0) {
1028  nroots = find_poly_roots(bch, 1, bch->elp, errloc);
1029  if (err != nroots)
1030  err = -1;
1031  }
1032  if (err > 0) {
1033  /* post-process raw error locations for easier correction */
1034  nbits = (len*8)+bch->ecc_bits;
1035  for (i = 0; i < err; i++) {
1036  if (errloc[i] >= nbits) {
1037  err = -1;
1038  break;
1039  }
1040  errloc[i] = nbits-1-errloc[i];
1041  errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7));
1042  }
1043  }
1044  return (err >= 0) ? err : -EBADMSG;
1045 }
1047 
1048 /*
1049  * generate Galois field lookup tables
1050  */
1051 static int build_gf_tables(struct bch_control *bch, unsigned int poly)
1052 {
1053  unsigned int i, x = 1;
1054  const unsigned int k = 1 << deg(poly);
1055 
1056  /* primitive polynomial must be of degree m */
1057  if (k != (1u << GF_M(bch)))
1058  return -1;
1059 
1060  for (i = 0; i < GF_N(bch); i++) {
1061  bch->a_pow_tab[i] = x;
1062  bch->a_log_tab[x] = i;
1063  if (i && (x == 1))
1064  /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
1065  return -1;
1066  x <<= 1;
1067  if (x & k)
1068  x ^= poly;
1069  }
1070  bch->a_pow_tab[GF_N(bch)] = 1;
1071  bch->a_log_tab[0] = 0;
1072 
1073  return 0;
1074 }
1075 
1076 /*
1077  * compute generator polynomial remainder tables for fast encoding
1078  */
1079 static void build_mod8_tables(struct bch_control *bch, const uint32_t *g)
1080 {
1081  int i, j, b, d;
1082  uint32_t data, hi, lo, *tab;
1083  const int l = BCH_ECC_WORDS(bch);
1084  const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
1085  const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
1086 
1087  memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
1088 
1089  for (i = 0; i < 256; i++) {
1090  /* p(X)=i is a small polynomial of weight <= 8 */
1091  for (b = 0; b < 4; b++) {
1092  /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
1093  tab = bch->mod8_tab + (b*256+i)*l;
1094  data = i << (8*b);
1095  while (data) {
1096  d = deg(data);
1097  /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
1098  data ^= g[0] >> (31-d);
1099  for (j = 0; j < ecclen; j++) {
1100  hi = (d < 31) ? g[j] << (d+1) : 0;
1101  lo = (j+1 < plen) ?
1102  g[j+1] >> (31-d) : 0;
1103  tab[j] ^= hi|lo;
1104  }
1105  }
1106  }
1107  }
1108 }
1109 
1110 /*
1111  * build a base for factoring degree 2 polynomials
1112  */
1113 static int build_deg2_base(struct bch_control *bch)
1114 {
1115  const int m = GF_M(bch);
1116  int i, j, r;
1117  unsigned int sum, x, y, remaining, ak = 0, xi[m];
1118 
1119  /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
1120  for (i = 0; i < m; i++) {
1121  for (j = 0, sum = 0; j < m; j++)
1122  sum ^= a_pow(bch, i*(1 << j));
1123 
1124  if (sum) {
1125  ak = bch->a_pow_tab[i];
1126  break;
1127  }
1128  }
1129  /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
1130  remaining = m;
1131  memset(xi, 0, sizeof(xi));
1132 
1133  for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
1134  y = gf_sqr(bch, x)^x;
1135  for (i = 0; i < 2; i++) {
1136  r = a_log(bch, y);
1137  if (y && (r < m) && !xi[r]) {
1138  bch->xi_tab[r] = x;
1139  xi[r] = 1;
1140  remaining--;
1141  dbg("x%d = %x\n", r, x);
1142  break;
1143  }
1144  y ^= ak;
1145  }
1146  }
1147  /* should not happen but check anyway */
1148  return remaining ? -1 : 0;
1149 }
1150 
1151 static void *bch_alloc(size_t size, int *err)
1152 {
1153  void *ptr;
1154 
1155  ptr = kmalloc(size, GFP_KERNEL);
1156  if (ptr == NULL)
1157  *err = 1;
1158  return ptr;
1159 }
1160 
1161 /*
1162  * compute generator polynomial for given (m,t) parameters.
1163  */
1164 static uint32_t *compute_generator_polynomial(struct bch_control *bch)
1165 {
1166  const unsigned int m = GF_M(bch);
1167  const unsigned int t = GF_T(bch);
1168  int n, err = 0;
1169  unsigned int i, j, nbits, r, word, *roots;
1170  struct gf_poly *g;
1171  uint32_t *genpoly;
1172 
1173  g = bch_alloc(GF_POLY_SZ(m*t), &err);
1174  roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
1175  genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
1176 
1177  if (err) {
1178  kfree(genpoly);
1179  genpoly = NULL;
1180  goto finish;
1181  }
1182 
1183  /* enumerate all roots of g(X) */
1184  memset(roots , 0, (bch->n+1)*sizeof(*roots));
1185  for (i = 0; i < t; i++) {
1186  for (j = 0, r = 2*i+1; j < m; j++) {
1187  roots[r] = 1;
1188  r = mod_s(bch, 2*r);
1189  }
1190  }
1191  /* build generator polynomial g(X) */
1192  g->deg = 0;
1193  g->c[0] = 1;
1194  for (i = 0; i < GF_N(bch); i++) {
1195  if (roots[i]) {
1196  /* multiply g(X) by (X+root) */
1197  r = bch->a_pow_tab[i];
1198  g->c[g->deg+1] = 1;
1199  for (j = g->deg; j > 0; j--)
1200  g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
1201 
1202  g->c[0] = gf_mul(bch, g->c[0], r);
1203  g->deg++;
1204  }
1205  }
1206  /* store left-justified binary representation of g(X) */
1207  n = g->deg+1;
1208  i = 0;
1209 
1210  while (n > 0) {
1211  nbits = (n > 32) ? 32 : n;
1212  for (j = 0, word = 0; j < nbits; j++) {
1213  if (g->c[n-1-j])
1214  word |= 1u << (31-j);
1215  }
1216  genpoly[i++] = word;
1217  n -= nbits;
1218  }
1219  bch->ecc_bits = g->deg;
1220 
1221 finish:
1222  kfree(g);
1223  kfree(roots);
1224 
1225  return genpoly;
1226 }
1227 
1249 struct bch_control *init_bch(int m, int t, unsigned int prim_poly)
1250 {
1251  int err = 0;
1252  unsigned int i, words;
1253  uint32_t *genpoly;
1254  struct bch_control *bch = NULL;
1255 
1256  const int min_m = 5;
1257  const int max_m = 15;
1258 
1259  /* default primitive polynomials */
1260  static const unsigned int prim_poly_tab[] = {
1261  0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
1262  0x402b, 0x8003,
1263  };
1264 
1265 #if defined(CONFIG_BCH_CONST_PARAMS)
1266  if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
1267  printk(KERN_ERR "bch encoder/decoder was configured to support "
1268  "parameters m=%d, t=%d only!\n",
1269  CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
1270  goto fail;
1271  }
1272 #endif
1273  if ((m < min_m) || (m > max_m))
1274  /*
1275  * values of m greater than 15 are not currently supported;
1276  * supporting m > 15 would require changing table base type
1277  * (uint16_t) and a small patch in matrix transposition
1278  */
1279  goto fail;
1280 
1281  /* sanity checks */
1282  if ((t < 1) || (m*t >= ((1 << m)-1)))
1283  /* invalid t value */
1284  goto fail;
1285 
1286  /* select a primitive polynomial for generating GF(2^m) */
1287  if (prim_poly == 0)
1288  prim_poly = prim_poly_tab[m-min_m];
1289 
1290  bch = kzalloc(sizeof(*bch), GFP_KERNEL);
1291  if (bch == NULL)
1292  goto fail;
1293 
1294  bch->m = m;
1295  bch->t = t;
1296  bch->n = (1 << m)-1;
1297  words = DIV_ROUND_UP(m*t, 32);
1298  bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
1299  bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
1300  bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
1301  bch->mod8_tab = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
1302  bch->ecc_buf = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
1303  bch->ecc_buf2 = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
1304  bch->xi_tab = bch_alloc(m*sizeof(*bch->xi_tab), &err);
1305  bch->syn = bch_alloc(2*t*sizeof(*bch->syn), &err);
1306  bch->cache = bch_alloc(2*t*sizeof(*bch->cache), &err);
1307  bch->elp = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
1308 
1309  for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1310  bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
1311 
1312  if (err)
1313  goto fail;
1314 
1315  err = build_gf_tables(bch, prim_poly);
1316  if (err)
1317  goto fail;
1318 
1319  /* use generator polynomial for computing encoding tables */
1320  genpoly = compute_generator_polynomial(bch);
1321  if (genpoly == NULL)
1322  goto fail;
1323 
1324  build_mod8_tables(bch, genpoly);
1325  kfree(genpoly);
1326 
1327  err = build_deg2_base(bch);
1328  if (err)
1329  goto fail;
1330 
1331  return bch;
1332 
1333 fail:
1334  free_bch(bch);
1335  return NULL;
1336 }
1338 
1343 void free_bch(struct bch_control *bch)
1344 {
1345  unsigned int i;
1346 
1347  if (bch) {
1348  kfree(bch->a_pow_tab);
1349  kfree(bch->a_log_tab);
1350  kfree(bch->mod8_tab);
1351  kfree(bch->ecc_buf);
1352  kfree(bch->ecc_buf2);
1353  kfree(bch->xi_tab);
1354  kfree(bch->syn);
1355  kfree(bch->cache);
1356  kfree(bch->elp);
1357 
1358  for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1359  kfree(bch->poly_2t[i]);
1360 
1361  kfree(bch);
1362  }
1363 }
1365 
1366 MODULE_LICENSE("GPL");
1367 MODULE_AUTHOR("Ivan Djelic <[email protected]>");
1368 MODULE_DESCRIPTION("Binary BCH encoder/decoder");